Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Thermal Analysis and Biocidal Studies of Copper (II) Soapgroundnut Complex Containing Urea and Thiourea as a Ligand

Author(s): Asha Meena*, Rashmi Sharma and Vandana Sukhadia

Volume 13, Issue 2, 2023

Published on: 12 May, 2023

Page: [165 - 176] Pages: 12

DOI: 10.2174/1877946813666230331090939

Price: $65

Abstract

Background: Studies on the thermal decomposition of synthesized complexes have great importance for calculating the thermal stability and characterization of copper (II) soap complexes, and represent new investigations on the solution of environmental problems.

Aim: The present research work aims to report new findings in the field of thermogravimetric analysis and biocidal studies for copper (II) groundnut complexes with urea and thiourea ligands.

Objective: The objective of this study was to conduct the kinetic analysis of copper (II) soap complexes of nitrogen and sulphur-containing ligands with the help of a thermogravimetric analyser (TGA), as this technique is commonly applied for thermal analysis.

Methods: In relevance of aforesaid applications, the present work deals with determining the different thermal degradation steps of newly synthesized copper (II) groundnut urea complex (CGU) and copper (II) groundnut thiourea complex (CGT) by using Coats- Redfern, Horowitz-Metzger, Broido, and Piloyan-Novikova equations for determining kinetic parameters, i.e., the energy of activation (E), rate constant, order of decomposition reaction, and pre-exponential factor (Z).

Results: The results obtained from kinetic parameters were used to evaluate the thermodynamic parameters, i.e., entropy of activation (ΔS), enthalpy of activation (ΔH), and Gibbs free energy of activation (ΔG), corresponding to the activation by using previously mentioned equations. Kinetics of degradation for the synthesized complexes in solid state were studied using thermogravimetric analysis technique (TGA) in nitrogen atmosphere.

Conclusion: The present study has discussed the biocidal activities of these complexes against Staphylococcus aureus and an explicit correlation between structure and biological activity has also been provided.

Graphical Abstract

[1]
Swisher, R.D. Surfactant biodegradation; M. Dekker: New York, 1970.
[2]
Ribeiro, S.A.O.; Nicacio, A.E.; Zanqui, A.B.; Biondo, P.B.F.; Abreu-Filho, B.A.; Visentainer, J.V.; Gomes, S.T.M.; Matsushita, M. Improvements in the quality of sesame oil obtained by a green extraction method using enzymes. Lebensm. Wiss. Technol., 2016, 65, 464-470.
[http://dx.doi.org/10.1016/j.lwt.2015.08.053]
[3]
Sharma, S.; Sharma, R.; Sharma, A.K. Photo Catalytic and Kinetic study of ZnO catalyzed degradation of Copper Stearate Surfactant. Curr. Environ. Eng., 2018, 5(3), 221-229.
[http://dx.doi.org/10.2174/2212717805666180801143324]
[4]
Sharma, R.; Heda, L.C.; Joram, A.; Sharma, S. Thermo gravimetric analysis of Copper (II) soaps derived from Groundnut (Arachishypogaea) and Sesame (Sesamumindicum). Edible Oils. Res. J. Pharm. Biol. Chem. Sci., 2013, 4(4), 304-310.
[5]
Ayoola, P.B.; Adeyeye, A. Effect of heating on the chemical composition and physico-chemical properties of Arachis hypogea (groundnut) seed flour and oil. Pak. J. Nutr., 2010, 9(8), 751-754.
[http://dx.doi.org/10.3923/pjn.2010.751.754]
[6]
Denniston, K.J.; Topping, J.J.; Cariet, R.L. General Organic and Biochemistry, 4th ed; McGraw Hill Companies: New York, 2004, p. 432.
[7]
Tank, P.; Sharma, R.; Sharma, A.K. A pharmaceutical approach & antifungal activities of copper soaps with their N & S donor complexes derived from mustard and soyabean oils. Glob. J. Pharmaceu. Sci., 2017, 3(4), 555-619.
[http://dx.doi.org/10.19080/GJPPS.2017.03.555619006]
[8]
Khan, S.; Sharma, R.; Sharma, A.K. Acoustic studies and other acoustic parameters of Cu(II) soap derived from nonedible Neem oil (Azadirectaindica), in Non-aqueous media at 298.15. Acta. Ac united Ac, 2018, 104, 277-283.
[http://dx.doi.org/10.3813/AAA.919170]
[9]
Mehrotra, K.N.; Varma, R.P. Studies on surface tension of the system: Barium soap-water and propanol-1. J. Am. Oil Chem. Soc., 1969, 46(3), 152-154.
[http://dx.doi.org/10.1007/BF02635721]
[10]
Hilditch, T.P.; Willimams, P.N. The chemical constitution of natural fats, 4th ed; Chapman & Hall: London, 1964.
[11]
Sharma, A.K.; Sharma, R.; Gangwal, A. Antifungal activities and characterization of some new environmentally safe Cu (II) surfactants substituted 2-amino-6-methyl benzothiazole. Open Pharm. Sci. J., 2018, 5(1), 1-11.
[http://dx.doi.org/10.2174/1874844901805010001]
[12]
Angelusiu, M.V. Cu(II) complexes with nitrogen-oxygen donor ligands: Synthesis and biological activity. Chem. Bull., 2008, 53(67), 1-2.
[13]
Bhati, S.K.; Kumar, A. Synthesis of new substituted azetidinoyl and thiazolidinoyl-1,3,4-thiadiazino (6,5-b) indoles as promising anti-inflammatory agents. Eur. J. Med. Chem., 2008, 43(11), 2323-2330.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.012] [PMID: 18063224]
[14]
Raman, N.; Joseph, J.; Velan, A.S.K.; Pothiraj, C. Antifungal activities of biorelevant complexes of copper (II) with biosensitive macrocyclic ligands. Mycobiology, 2006, 34(4), 214-218.
[http://dx.doi.org/10.4489/MYCO.2006.34.4.214] [PMID: 24039502]
[15]
Borhade, S.S. Synthesis, characterization and antimicrobial activity of copper (II) with 2-chloroquinoline-3-carbaldehyde thiosemicarbazide {1-((2-chloroquinolin-3-yl)methylene) thiosemicarbazide (2-chloro- QAT). Int. J. Pharm. Life Sci., 2012, 3(1), 1344-1350.
[16]
Mathur, N.; Jain, N.; Sharma, A.K. Synthesis, characterization and biological analysis of some novel complexes of phenyl thiourea derivatives with copper. Open Chem. J., 2018, 5(1), 182-195.
[http://dx.doi.org/10.2174/1874842201805010182]
[17]
Vishwavidhyalaya, H.S.G.; Chaurasia, S.; Shrivastava, S.D. Synthesis of some novel heterocyclic compounds and evaluation of their biological activity. Indian Drugs, 1991, 28, 474-486.
[18]
Howlader, M.B.H.; Islam, M.S.; Karim, M.R. Synthesis of some 16-membered macrocyclic complexes of chrornium(III), manganese(II), iron(III), cobalt(II), nickel(II) and copper(II) containing a tetraoxooctaazacyclohexadecane ligand. Indian J. Chem., 2000, 39A, 407-409. http://hdl.handle.net/123456789/21091
[19]
Hossain, M.S.; Roy, P.K.; Ali, R.; Zakaria, C.M.; Zahan, Md. K.; Selected pharmacological applications of 1st row transition metal complexes: A review. Clin. Med. Res., 2017, 6(6), 177-191.
[http://dx.doi.org/10.11648/j.cmr.20170606.13]
[20]
Hassan, M. Synthesis and evaluation of antimicrobial and cytotoxic activities of some Mannich bases bearing amino acid units and their copper complexes. Biointerface Res. Appl. Chem., 2012, 2(6), 450-462.
[21]
Mahajan, K.; Swami, M.; Singh, R.V. Microwave synthesis, spectral studies, antimicrobial approach, and coordination behavior of antimony(III) and bismuth(III) compounds with benzothiazoline. Russ. J. Coord. Chem., 2009, 35(3), 179-185.
[http://dx.doi.org/10.1134/S1070328409030038]
[22]
Garg, B.S.; Nandan Kumar, D.; Singh, R.V. Spectral studies of complexes of nickel(II) with tetradentate schiff bases having N2O2 donor groups. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2003, 59(2), 229-234.
[http://dx.doi.org/10.1016/S1386-1425(02)00142-7] [PMID: 12685895]
[23]
Joram, A.; Sharma, R.; Sharma, A.K. Synthesis, spectral and thermo-gravimetric analysis of novel macromolecular organo-copper surfactants. Open Chem. J., 2018, 5(1), 145-157.
[http://dx.doi.org/10.2174/1874842201805010145]
[24]
Vogel, A.I. A text book of qualitative organic analysis, 3rd ed; Longman Group Limited: London, 1971, p. 166.
[25]
Sharma, A.K.; Sharma, R.; Gangwal, A. Biomedical and fungicidal application of copper surfactants derived from pure fatty acid. Organic Med. Chem. IJ, 2018, 5(5), 555680.
[26]
Joram, A.; Sharma, R.; Sharma, A.K. Thermal degradation of complexes derived from Cu (II) groundnut soap (Arachis hypogaea) and Cu (II) sesame soap (Sesamum indicum). Z. Phys. Chem., 2018, 232(4), 459-470.
[http://dx.doi.org/10.1515/zpch-2017-1073]
[27]
Sharma, A.K.; Saxena, M.; Sharma, R. Fungicidal activities and characterization of novel biodegradable Cu (II) surfactants derived from lauric acid. Open Chem. J., 2018, 5(1), 89-101.
[http://dx.doi.org/10.2174/1874842201805010089]
[28]
Mahendra, K.N.; Parashar, G.K.; Mehrotra, R.C. Synthesis and properties of alkoxy soaps of chromium (III). Synth. React. Inorg. Met.-Org. Chem., 1981, 11(3), 187-196.
[http://dx.doi.org/10.1080/00945718108059295]
[29]
Anderson, D.A.; Freeman, E.S. The kinetics of the thermal degradation of polystyrene and polyethylene. J. Polym. Sci., 1961, 54(159), 253-260.
[http://dx.doi.org/10.1002/pol.1961.1205415920]
[30]
Meena, A.; Sukhadia, V.; Sharma, R. Solid state kinetics and antimicrobial studies for copper (II) sesame and copper (II) groundnut complexes with substituted benzothiazole ligand. Lett. Org. Chem., 2021, 18(6), 477-489.
[http://dx.doi.org/10.2174/1570178617999200812134745]
[31]
Coats, A.W.; Redfern, J.P. Kinetic parameters from thermogravimetric data. Nature, 1964, 201(4914), 68-69.
[http://dx.doi.org/10.1038/201068a0]
[32]
Broido, A. A simple, sensitive graphical method of treating thermogravimetric analysis data. J. Polym. Sci., A-2. Polym. Phys., 1969, 7(10), 1761-1773.
[http://dx.doi.org/10.1002/pol.1969.160071012]
[33]
Horowitz, H.H.; Metzger, G. New analysis of thermogravimetric traces. Anal. Chem., 1963, 35(10), 1464-1468.
[http://dx.doi.org/10.1021/ac60203a013]
[34]
Piloyan, G.O.; Ryabchikov, I.D.; Novikova, O.S. Determination of activation energies of chemical reactions by differential thermal analysis. Nature, 1966, 212(5067), 1229.
[http://dx.doi.org/10.1038/2121229a0]
[35]
Meena, A.; Sharma, R.; Sukhadia, V. Synthesis and characterization of chemical structures, thermal decomposition and biological properties of novel copper (II) bio-based surfactants. Curr. Phys. Chem., 2020, 10(3), 213-228.
[http://dx.doi.org/10.2174/1877946810666200116091321]
[36]
Karapınar, E.; Gubbuk, I.H.; Taner, B.; Deveci, P.; Ozcan, E. Thermal degradation behaviour of Ni(II) complex of 3,4-Methylenedioxaphenylaminoglyoxime. J. Chem., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/548067]
[37]
Kumawat, P.; Sharma, R.; Sharma, A. Spectral, antimicrobial, TGA and photocatalytic degradation studies of copper neem–urea complex using synthetic, nano and doped ZnO. Int. J. Environ. Anal. Chem., 2019, 99.
[http://dx.doi.org/10.1080/03067319.2019.1651302]
[38]
Salama, N.N.; Mohammad, M.A.; Fattah, T.A. Thermal behavior study and decomposition kinetics of amisulpride under non-isothermal and isothermal conditions. J. Therm. Anal. Calorim., 2015, 120(1), 953-958.
[http://dx.doi.org/10.1007/s10973-015-4419-1]
[39]
Ito, T.; Katayama, Y.; Asada, K.; Mori, N.; Tsutsumimoto, K.; Tiensasitorn, C.; Hiramatsu, K. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 2001, 45(5), 1323-1336.
[http://dx.doi.org/10.1128/AAC.45.5.1323-1336.2001] [PMID: 11302791]
[40]
Jansen, W.T.M.; Beitsma, M.M.; Koeman, C.J.; van Wamel, W.J.B.; Verhoef, J.; Fluit, A.C. Novel mobile variants of staphylococcal cassette chromosome mec in Staphylococcus aureus. Antimicrob. Agents Chemother., 2006, 50(6), 2072-2078.
[http://dx.doi.org/10.1128/AAC.01539-05] [PMID: 16723568]
[41]
Valle, D.L., Jr; Andrade, J.I.; Puzon, J.J.M.; Cabrera, E.C.; Rivera, W.L. Antibacterial activities of ethanol extracts of Philippine medicinal plants against multidrug-resistant bacteria. Asian Pac. J. Trop. Biomed., 2015, 5(7), 532-540.
[http://dx.doi.org/10.1016/j.apjtb.2015.04.005]
[42]
Sukhadia, V.; Sharma, R.; Meena, A. Study of photocatalytic degradation, kinetics and microbial activities of copper (II) soya urea complex in non-aqueous media. Lett. Org. Chem., 2021, 18(11), 912-923.
[http://dx.doi.org/10.2174/1570178617999200711175559]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy