Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Selective Cellular Uptake and Cytotoxicity of Curcumin-encapsulated SPC and HSPC Liposome Nanoparticles on Human Bladder Cancer Cells

Author(s): Leila Gholami, Amir Abbas Momtazi-Borojeni, Bizhan Malaekeh-Nikouei, Banafsheh Nikfar, Farjad Amanolahi, Ali Mohammadi and Reza Kazemi Oskuee*

Volume 29, Issue 13, 2023

Published on: 27 April, 2023

Page: [1046 - 1058] Pages: 13

DOI: 10.2174/1381612829666230331084848

Price: $65

Abstract

Background: Curcumin is a main bioactive constituent of turmeric (Curcuma longa L.) with pleiotropic health beneficial effects. However, poor bioavailability is the major barrier to the efficient pharmacological effects of curcumin in humans.

Aims: The present study aimed to develop liposome formulations based on soybean phosphatidylcholine (SPC) and hydrogenated SPC (HSPC) to enhance the bioavailability of curcumin in bladder cancer cells.

Methods: Curcumin was encapsulated in HSPC and SPC liposome nanoparticles using the solvent evaporation method. Physical properties, encapsulation efficiency (%), stability, and in vitro drug release of the prepared liposome formulations have been evaluated. The cellular uptake and cytotoxicity of curcumin-encapsulated nanoliposomes on bladder carcinoma HTB9 cell line and normal fibroblast L929 cell line were studied. DNA fragmentation, apoptosis, and genotoxicity assessments have been carried out to determine the molecular mechanisms underlying the cytotoxic effects of liposomal curcumin formulations on bladder cancer cells.

Results: The results indicated that curcumin could be efficiently encapsulated in the HSPC and SPC liposome formulations. The liposomal curcumin formulations have shown shelf-life stability for 14 weeks at 4°C. The accelerated stability testing showed that curcumin encapsulated in nanoliposomes was significantly (p < 0.001) more stable than free curcumin at various pH degrees ranging from alkaline to acidic pH. The in vitro drug release study showed curcumin to be sustainably released from the liposome nanoparticles. Of note, SPC and HSPC nanoliposome formulations significantly increased the cellular uptake and cytotoxicity of curcumin on bladder cancer HTB9 cells. Mechanistically, liposomal curcumin was found to exert a selective inhibitory effect on the viability of cancer cells by inducing apoptosis and DNA damage.

Conclusion: In conclusion, SPC and HSPC liposome nanoparticles can significantly increase the stability and bioavailability of curcumin, which are important for improving its pharmacological effect.

[1]
Itokawa H, Shi Q, Akiyama T, Morris-Natschke SL, Lee KH. Recent advances in the investigation of curcuminoids. Chin Med 2008; 3(1): 11.
[http://dx.doi.org/10.1186/1749-8546-3-11] [PMID: 18798984]
[2]
Zahedipour F, Hosseini SA, Sathyapalan T, et al. Potential effects of curcumin in the treatment of COVID-19 infection. Phytother Res 2020; 34(11): 2911-20.
[http://dx.doi.org/10.1002/ptr.6738] [PMID: 32430996]
[3]
Praditya D, Kirchhoff L, Brüning J, Rachmawati H, Steinmann J, Steinmann E. Anti-infective properties of the golden spice curcumin. Front Microbiol 2019; 10: 912.
[http://dx.doi.org/10.3389/fmicb.2019.00912] [PMID: 31130924]
[4]
Yau AA, Sani SK, Datta A. Potential of curcumin loaded nanoparticles in antimicrobial photodyanamic therapy. Int J Pharm Res Technol 2021; 11(2): 44.
[5]
Wang H, Zhang K, Liu J, et al. Curcumin regulates cancer progression: Focus on ncRNAs and molecular signaling pathways. Front Oncol 2021; 11: 660712.
[http://dx.doi.org/10.3389/fonc.2021.660712] [PMID: 33912467]
[6]
Momtazi AA, Shahabipour F, Khatibi S, Johnston TP, Pirro M, Sahebkar A. Curcumin as a microRNA regulator in cancer: A review. In: Reviews of Physiology, Biochemistry and Pharmacology. Springer: Switzerland 2016; 171: pp. 1-38.
[7]
Momtazi-Borojeni AA, Mosafer J, Nikfar B, Ekhlasi-Hundrieser M, Chaichian S, Mehdizadehkashi A, et al. Curcumin in advancing treatment for gynecological cancers with developed drug-and radiotherapy-associated resistance. In: Reviews of Physiology, Biochemistry and Pharmacology 176. Springer: Switzerland 2018; pp. 107-29.
[8]
Barati N, Momtazi-Borojeni AA, Majeed M, Sahebkar A. Potential therapeutic effects of curcumin in gastric cancer. J Cell Physiol 2019; 234(3): 2317-28.
[http://dx.doi.org/10.1002/jcp.27229] [PMID: 30191991]
[9]
Zendehdel E, Abdollahi E, Momtazi-Borojeni AA, Korani M, Alavizadeh SH, Sahebkar A. The molecular mechanisms of curcumin’s inhibitory effects on cancer stem cells. J Cell Biochem 2019; 120(4): 4739-47.
[http://dx.doi.org/10.1002/jcb.27757] [PMID: 30269360]
[10]
Naeini MB, Momtazi AA, Jaafari MR, et al. Antitumor effects of curcumin: A lipid perspective. J Cell Physiol 2019; 234(9): 14743-58.
[http://dx.doi.org/10.1002/jcp.28262] [PMID: 30741424]
[11]
Momtazi-Borojeni AA, Ghasemi F, Hesari A, Majeed M, Caraglia M, Sahebkar A. Anti-cancer and radio-sensitizing effects of curcumin in nasopharyngeal carcinoma. Curr Pharm Des 2018; 24(19): 2121-8.
[http://dx.doi.org/10.2174/1381612824666180522105202] [PMID: 29788875]
[12]
Hajavi J, Momtazi AA, Johnston TP, Banach M, Majeed M, Sahebkar A. Curcumin: A naturally occurring modulator of adipokines in diabetes. J Cell Biochem 2017; 118(12): 4170-82.
[http://dx.doi.org/10.1002/jcb.26121] [PMID: 28485496]
[13]
Momtazi-Borojeni A, Banach M, Majeed M, Sahebkar A. P5330 Evaluating lipid-lowering and anti-atherogenic effect of injectable curcumin in a rabbit model of atherosclerosis. Euro Heart J 2019; 40 (Supplement 1): ehz746.
[14]
Radbakhsh S, Momtazi-Borojeni AA, Mahmoudi A, Sarborji MR, Hatamipour M, Moallem SA, et al. Investigation of the effects of difluorinated curcumin on glycemic indices in streptozotocin-induced diabetic rats. In: Natural Products and Human Diseases. Springer 2021; pp. 131-41.
[15]
Momtazi-Borojeni AA, Zabihi NA, Bagheri RK, Majeed M, Jamialahmadi T, Sahebkar A. Intravenous Curcumin Mitigates Atherosclerosis Progression in Cholesterol-Fed Rabbits.Pharmacological Properties of Plant-Derived Natural Products and Implications for Human Health. Springer: Switzerland, 2021; pp. 45-54.
[16]
Momtazi-Borojeni AA, Haftcheshmeh SM, Esmaeili SA, Johnston TP, Abdollahi E, Sahebkar A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun Rev 2018; 17(2): 125-35.
[http://dx.doi.org/10.1016/j.autrev.2017.11.016] [PMID: 29180127]
[17]
Ghaneifar Z, Yousefi Z, Tajik F, et al. The potential therapeutic effects of curcumin on pregnancy complications: Novel insights into reproductive medicine. IUBMB Life 2020; 72(12): 2572-83.
[http://dx.doi.org/10.1002/iub.2399] [PMID: 33107698]
[18]
Mohammadian Haftcheshmeh S, Khosrojerdi A, Aliabadi A, Lotfi S, Mohammadi A, Momtazi-Borojeni AA. Immunomodulatory effects of curcumin in rheumatoid arthritis: Evidence from molecular mechanisms to clinical outcomes. Rev Physiol Biochem Pharmacol 2021; 179: 1-29.
[PMID: 33404796]
[19]
Heath DD, Pruitt MA, Brenner DE, Rock CL. Curcumin in plasma and urine: Quantitation by high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 783(1): 287-95.
[http://dx.doi.org/10.1016/S1570-0232(02)00714-6] [PMID: 12450549]
[20]
Dhillon N, Aggarwal BB, Newman RA, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 2008; 14(14): 4491-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0024] [PMID: 18628464]
[21]
Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 2014; 66(1): 222-307.
[http://dx.doi.org/10.1124/pr.110.004044] [PMID: 24368738]
[22]
Wong KE, Ngai SC, Chan KG, Lee LH, Goh BH, Chuah LH. Curcumin nanoformulations for colorectal cancer: A review. Front Pharmacol 2019; 10: 152.
[http://dx.doi.org/10.3389/fphar.2019.00152] [PMID: 30890933]
[23]
Hassan SSM, Kamel AH, Hashem HM, Bary EMA. Drug delivery systems between metal, liposome, and polymer-based nanomedicine: A review. Eur Chem Bull 2020; 9(3): 91-102.
[http://dx.doi.org/10.17628/ecb.2020.9.91-102]
[24]
Kumbar VM, Muddapur U, Bin Muhsinah A, et al. Curcumin-encapsulated nanomicelles improve cellular uptake and cytotoxicity in cisplatin-resistant human oral cancer cells. J Funct Biomater 2022; 13(4): 158.
[http://dx.doi.org/10.3390/jfb13040158] [PMID: 36278627]
[25]
Prasad C, Bhatia E, Banerjee R. Curcumin encapsulated lecithin nanoemulsions: An oral platform for ultrasound mediated spatiotemporal delivery of curcumin to the tumor. Sci Rep 2020; 10(1): 8587.
[http://dx.doi.org/10.1038/s41598-020-65468-1] [PMID: 32444829]
[26]
Kazemi M, Madani R, Aghamaali MR, Emami T, Golchinfar F, Heshmati L. Preparation and characterization of nanoliposome containing isolated vp1 protein of foot and mouth disease virus as a model of vaccine. Arch Razi Inst 2022; 77(1): 37-44.
[PMID: 35891774]
[27]
Heshmati L, Rezayat SM, Madani R, et al. Immunity evaluation of an experimental designed nanoliposomal vaccine containing FMDV immunodominant peptides. Arch Razi Inst 2021; 76(5): 1183-90.
[PMID: 35355777]
[28]
Song JW, Liu YS, Guo YR, Zhong WX, Guo YP, Guo L. Nano–liposomes double loaded with curcumin and tetrandrine: Preparation, characterization, hepatotoxicity and anti-tumor effects. Int J Mol Sci 2022; 23(12): 6858.
[http://dx.doi.org/10.3390/ijms23126858] [PMID: 35743311]
[29]
Storka A, Vcelar B, Klickovic U, et al. Safety, tolerability and pharmacokinetics of liposomal curcumin in healthy humans. Int J Clin Pharmacol Ther 2015; 53(1): 54-65.
[http://dx.doi.org/10.5414/CP202076] [PMID: 25500488]
[30]
Greil R, Greil-Ressler S, Weiss L, et al. A phase 1 dose-escalation study on the safety, tolerability and activity of liposomal curcumin (Lipocurc™) in patients with locally advanced or metastatic cancer. Cancer Chemother Pharmacol 2018; 82(4): 695-706.
[http://dx.doi.org/10.1007/s00280-018-3654-0] [PMID: 30074076]
[31]
Wang WY, Cao YX, Zhou X, Wei B. Delivery of folic acid-modified liposomal curcumin for targeted cervical carcinoma therapy. Drug Des Devel Ther 2019; 13: 2205-13.
[http://dx.doi.org/10.2147/DDDT.S205787] [PMID: 31308632]
[32]
Lakshmi BA, Reddy AS, Sangubotla R, Hong JW, Kim S. Ruthenium(II)-curcumin liposome nanoparticles: Synthesis, characterization, and their effects against cervical cancer. Colloids Surf B Biointerfaces 2021; 204: 111773.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111773] [PMID: 33933878]
[33]
Hasan M, Belhaj N, Benachour H, et al. Liposome encapsulation of curcumin: Physico-chemical characterizations and effects on MCF7 cancer cell proliferation. Int J Pharm 2014; 461(1-2): 519-28.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.007] [PMID: 24355620]
[34]
Dhule SS, Penfornis P, Frazier T, et al. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine 2012; 8(4): 440-51.
[http://dx.doi.org/10.1016/j.nano.2011.07.011] [PMID: 21839055]
[35]
Dhule SS, Penfornis P, He J, et al. The combined effect of encapsulating curcumin and C6 ceramide in liposomal nanoparticles against osteosarcoma. Mol Pharm 2014; 11(2): 417-27.
[http://dx.doi.org/10.1021/mp400366r] [PMID: 24380633]
[36]
Zhang X, Dai F, Chen J, et al. Antitumor effect of curcumin liposome after transcatheter arterial embolization in VX2 rabbits. Cancer Biol Ther 2019; 20(5): 642-52.
[http://dx.doi.org/10.1080/15384047.2018.1550567] [PMID: 30621501]
[37]
Wang Y, Ding R, Zhang Z, Zhong C, Wang J, Wang M. Curcumin-loaded liposomes with the hepatic and lysosomal dual-targeted effects for therapy of hepatocellular carcinoma. Int J Pharm 2021; 602: 120628.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120628] [PMID: 33892061]
[38]
Zhang T, Chen Y, Ge Y, Hu Y, Li M, Jin Y. Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers. Acta Pharm Sin B 2018; 8(3): 440-8.
[http://dx.doi.org/10.1016/j.apsb.2018.03.004] [PMID: 29881683]
[39]
Narayanan NK, Nargi D, Randolph C, Narayanan BA. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer 2009; 125(1): 1-8.
[http://dx.doi.org/10.1002/ijc.24336] [PMID: 19326431]
[40]
Ma Q, Qian W, Tao W, Zhou Y, Xue B. Delivery of curcumin nanoliposomes using surface modified with CD133 aptamers for prostate cancer. Drug Des Devel Ther 2019; 13: 4021-33.
[http://dx.doi.org/10.2147/DDDT.S210949] [PMID: 31819373]
[41]
Ranjan AP, Mukerjee A, Helson L, Gupta R, Vishwanatha JK. Efficacy of liposomal curcumin in a human pancreatic tumor xenograft model: Inhibition of tumor growth and angiogenesis. Anticancer Res 2013; 33(9): 3603-9.
[PMID: 24023285]
[42]
Mahmud M, Piwoni A, Filiczak N, Janicka M, Gubernator J. Long-circulating curcumin-loaded liposome formulations with high incorporation efficiency, stability and anticancer activity towards pancreatic adenocarcinoma cell lines in vitro. PLoS One 2016; 11(12): e0167787.
[http://dx.doi.org/10.1371/journal.pone.0167787] [PMID: 27936114]
[43]
Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J Clin 2020; 70(5): 404-23.
[http://dx.doi.org/10.3322/caac.21631] [PMID: 32767764]
[44]
Gupta A, Gupta S, Mani R, et al. Expression of Human epidermal growth factor receptor 2, Survivin, Enhancer of zeste homolog -2, Cyclooxygenase-2, p53 and p16 molecular markers in Gall bladder carcinoma. J Carcinog 2021; 20(1): 7.
[http://dx.doi.org/10.4103/jcar.JCar_4_21] [PMID: 34321957]
[45]
Gupta A, Siddeek RAT, Gupta S, et al. Evaluation of platelet distribution width as novel biomarker in gall bladder cancer. J Carcinog 2020; 19(1): 5.
[http://dx.doi.org/10.4103/jcar.JCar_12_20] [PMID: 33033461]
[46]
Mousa FA, Jasim HA, Shakir F. A prognostic impact of interleukin 17 (IL-17) as an immune-marker in patients with bladder cancer. Arch Razi Inst 2022; 77(3): 1059-65.
[PMID: 36618324]
[47]
Chang SS, Boorjian SA, Chou R, et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline. J Urol 2016; 196(4): 1021-9.
[http://dx.doi.org/10.1016/j.juro.2016.06.049] [PMID: 27317986]
[48]
Zargar H, Aning J, Ischia J, So A, Black P. Optimizing intravesical mitomycin C therapy in non-muscle-invasive bladder cancer. Nat Rev Urol 2014; 11(4): 220-30.
[http://dx.doi.org/10.1038/nrurol.2014.52] [PMID: 24619373]
[49]
Li J, Wang X, Zhang T, et al. A review on phospholipids and their main applications in drug delivery systems. As. J Pharm Sci 2015; 10(2): 81-98.
[http://dx.doi.org/10.1016/j.ajps.2014.09.004]
[50]
Thomas AH, Catalá Á, Vignoni M. Soybean phosphatidylcholine liposomes as model membranes to study lipid peroxidation photoinduced by pterin. Biochim Biophys Acta Biomembr 2016; 1858(1): 139-45.
[http://dx.doi.org/10.1016/j.bbamem.2015.11.002] [PMID: 26551322]
[51]
Kolbina M, Schulte A, van Hoogevest P, Körber M, Bodmeier R. Evaluation of hydrogenated soybean phosphatidylcholine matrices prepared by hot melt extrusion for oral controlled delivery of water-soluble drugs. AAPS PharmSciTech 2019; 20(4): 159.
[http://dx.doi.org/10.1208/s12249-019-1366-3] [PMID: 30968304]
[52]
Amanolahi F, Mohammadi A, Kazemi Oskuee R, Nassirli H, Malaekeh-Nikouei B. A simple, sensitive and rapid isocratic reversed-phase high-performance liquid chromatography method for determination and stability study of curcumin in pharmaceutical samples. Avicenna J Phytomed 2017; 7(5): 444-53.
[PMID: 29062806]
[53]
Zhan S, Li S, Zhao Q, Wang W, Wang J. Measurement and correlation of curcumin solubility in supercritical carbon dioxide. J Chem Eng Data 2017; 62(4): 1257-63.
[http://dx.doi.org/10.1021/acs.jced.6b00798]
[54]
Kunwar A, Barik A, Mishra B, Rathinasamy K, Pandey R, Priyadarsini KI. Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim Biophys Acta, Gen Subj 2008; 1780(4): 673-9.
[http://dx.doi.org/10.1016/j.bbagen.2007.11.016] [PMID: 18178166]
[55]
Burton K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J 1956; 62(2): 315-23.
[http://dx.doi.org/10.1042/bj0620315] [PMID: 13293190]
[56]
Gholami L, Sadeghnia HR, Darroudi M, Kazemi Oskuee R. Evaluation of genotoxicity and cytotoxicity induced by different molecular weights of polyethylenimine/DNA nanoparticles. Turk J Biol 2014; 38(3): 380-7.
[http://dx.doi.org/10.3906/biy-1309-51]
[57]
Kumaravel TS, Jha AN. Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutat Res Genet Toxicol Environ Mutagen 2006; 605(1-2): 7-16.
[http://dx.doi.org/10.1016/j.mrgentox.2006.03.002] [PMID: 16621680]
[58]
Karewicz A, Bielska D, Gzyl-Malcher B, Kepczynski M, Lach R, Nowakowska M. Interaction of curcumin with lipid monolayers and liposomal bilayers. Colloids Surf B Biointerfaces 2011; 88(1): 231-9.
[http://dx.doi.org/10.1016/j.colsurfb.2011.06.037] [PMID: 21778041]
[59]
Chen Y, Wu Q, Zhang Z, Yuan L, Liu X, Zhou L. Preparation of curcumin-loaded liposomes and evaluation of their skin permeation and pharmacodynamics. Molecules 2012; 17(5): 5972-87.
[http://dx.doi.org/10.3390/molecules17055972] [PMID: 22609787]
[60]
Tai K, Rappolt M, Mao L, Gao Y, Yuan F. Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids. Food Chem 2020; 326: 126973.
[http://dx.doi.org/10.1016/j.foodchem.2020.126973] [PMID: 32413757]
[61]
Sebaaly C, Greige-Gerges H, Agusti G, Fessi H, Charcosset C. Large-scale preparation of clove essential oil and eugenol-loaded liposomes using a membrane contactor and a pilot plant. J Liposome Res 2016; 26(2): 126-38.
[PMID: 26099849]
[62]
Jin HH, Lu Q, Jiang JG. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin. J Dairy Sci 2016; 99(3): 1780-90.
[http://dx.doi.org/10.3168/jds.2015-10391] [PMID: 26774724]
[63]
Chen X, Zou LQ, Niu J, Liu W, Peng SF, Liu CM. The stability, sustained release and cellular antioxidant activity of curcumin nanoliposomes. Molecules 2015; 20(8): 14293-311.
[http://dx.doi.org/10.3390/molecules200814293] [PMID: 26251892]
[64]
Kharat M, Du Z, Zhang G, McClements DJ. Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment. J Agric Food Chem 2017; 65(8): 1525-32.
[http://dx.doi.org/10.1021/acs.jafc.6b04815] [PMID: 27935709]
[65]
Wang YJ, Pan MH, Cheng AL, et al. Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 1997; 15(12): 1867-76.
[http://dx.doi.org/10.1016/S0731-7085(96)02024-9] [PMID: 9278892]
[66]
El Kateb N, Cynober L, Chaumeil JC, Dumortier G. L-cysteine encapsulation in liposomes: Effect of phospholipids nature on entrapment efficiency and stability. J Microencapsul 2008; 25(6): 399-413.
[http://dx.doi.org/10.1080/02652040802012453] [PMID: 18608804]
[67]
Lev-Ari S, Zinger H, Kazanov D, et al. Curcumin synergistically potentiates the growth inhibitory and pro-apoptotic effects of celecoxib in pancreatic adenocarcinoma cells. Biomed Pharmacoth 2005; 59 (Suppl. 2): S276-80.
[http://dx.doi.org/10.1016/S0753-3322(05)80045-9]
[68]
Aliabadi HM, Mahmud A, Sharifabadi AD, Lavasanifar A. Micelles of methoxy poly(ethylene oxide)-b-poly(epsilon-caprolactone) as vehicles for the solubilization and controlled delivery of cyclosporine A. J Cont Rel Official J Cont Rel Soc 2005; 104(2): 301-11.
[69]
Martínez-Castillo M, Villegas-Sepúlveda N, Meraz-Rios MA, et al. Curcumin differentially affects cell cycle and cell death in acute and chronic myeloid leukemia cells. Oncol Lett 2018; 15(5): 6777-83.
[PMID: 29616136]
[70]
Shang HS, Chang CH, Chou YR, et al. Curcumin causes DNA damage and affects associated protein expression in HeLa human cervical cancer cells. Oncol Rep 2016; 36(4): 2207-15.
[http://dx.doi.org/10.3892/or.2016.5002] [PMID: 27499229]
[71]
Cao J, Jia L, Zhou HM, Liu Y, Zhong LF. Mitochondrial and nuclear DNA damage induced by curcumin in human hepatoma G2 cells. Toxicol Sci Official J Soc Toxicol 2006; 91(2): 476-83.
[http://dx.doi.org/10.1093/toxsci/kfj153]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy