Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Graph Convolutional Capsule Regression (GCCR): A Model for Accelerated Filtering of Novel Potential Candidates for SARS-CoV-2 based on Binding Affinity

Author(s): Aravind Krishnan and Dayanand Vinod*

Volume 20, Issue 1, 2024

Published on: 05 May, 2023

Page: [33 - 41] Pages: 9

DOI: 10.2174/1573409919666230331083953

Price: $65

conference banner
Abstract

Background: There has been a growing interest in discovering a viable drug for the new coronavirus (SARS-CoV-2) since the beginning of the pandemic. Protein-ligand interaction studies are a crucial step in the drug discovery process, as it helps us narrow the search space for potential ligands with high drug-likeness. Derivatives of popular drugs like Remdesivir generated through tools employing evolutionary algorithms are usually considered potential candidates. However, screening promising molecules from such a large search space is difficult. In a conventional screening process, for each ligand-target pair, there are time-consuming interaction studies that use docking simulations before downstream tasks like thermodynamic, kinetic, and electrostatic-potential evaluation.

Objective: This work aims to build a model based on deep learning applied over the graph structure of the molecules to accelerate the screening process for novel potential candidates for SARS-CoV-2 by predicting the binding energy of the protein-ligand complex.

Methods: In this work, ‘Graph Convolutional Capsule Regression’ (GCCR), a model which uses Capsule Neural Networks (CapsNet) and Graph Convolutional Networks (GCN) to predict the binding energy of a protein-ligand complex is being proposed. The model’s predictions were further validated with kinetic and free energy studies like Molecular Dynamics (MD) for kinetic stability and MM/GBSA analysis for free energy calculations.

Results: The GCCR showed an RMSE value of 0.0978 for 81.3% of the concordance index. The RMSE of GCCR converged around the iteration of just 50 epochs scoring a lower RMSE than GCN and GAT. When training with Davis Dataset, GCCR gave an RMSE score of 0.3806 with a CI score of 87.5%.

Conclusion: The proposed GCCR model shows great potential in improving the screening process based on binding affinity and outperforms baseline machine learning models like DeepDTA, KronRLS, Sim- Boost, and other Graph Neural Networks (GNN) based models like Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT).

Graphical Abstract

[1]
World Health Organization. Global Situation of COVID-19. 2022. Available from: https://covid19.who.int/
[2]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-An update on the status. Mil. Med. Res., 2020, 7(1), 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0]
[3]
Hillen, H.S.; Kokic, G.; Farnung, L.; Dienemann, C.; Tegunov, D.; Cramer, P. Structure of replicating SARS-CoV-2 polymerase. Nature, 2020, 584(7819), 154-156.
[http://dx.doi.org/10.1038/s41586-020-2368-8] [PMID: 32438371]
[4]
Zhou, G.; Stewart, L.; Reggiano, G.; DiMaio, F. Computational drug repurposing studies on SARS-CoV-2 protein targets. ChemRxiv, 2020.
[http://dx.doi.org/10.26434/chemrxiv.12315437.v1]
[5]
Selvaraj, J.; Sundar P, S.; Rajan, L.; Selvaraj, D.; Palanisamy, D.; Namboori PK, K.; Mohankumar, S.K. Identification of (2 R, 3 R)-2-(3,4-dihydroxyphenyl)chroman-3-yl-3,4,5-trihydroxy benzoate as multiple inhibitors of SARS-CoV-2 targets; a systematic molecular modelling approach. RSC Advances, 2021, 11(22), 13051-13060.
[http://dx.doi.org/10.1039/D1RA01603B] [PMID: 35423848]
[6]
Pahikkala, T.; Airola, A.; Pietilä, S.; Shakyawar, S.; Szwajda, A.; Tang, J.; Aittokallio, T. Toward more realistic drug-target interaction predictions. Brief. Bioinform., 2015, 16(2), 325-337.
[http://dx.doi.org/10.1093/bib/bbu010] [PMID: 24723570]
[7]
He, T.; Heidemeyer, M.; Ban, F.; Cherkasov, A.; Ester, M. SimBoost: A read-across approach for predicting drug-target binding affinities using gradient boosting machines. J. Cheminform., 2017, 9(1), 24.
[http://dx.doi.org/10.1186/s13321-017-0209-z] [PMID: 29086119]
[8]
Öztürk, H.; Özgür, A.; Ozkirimli, E. DeepDTA: Deep drug-target binding affinity prediction. Bioinformatics, 2018, 34(17), i821-i829.
[http://dx.doi.org/10.1093/bioinformatics/bty593] [PMID: 30423097]
[9]
Ioannidis, V.N.; Marques, A.G.; Giannakis, G.B. Graph Neural Networks for Predicting Protein Functions. In. 2019 IEEE 8th International Workshop on Computational Advances in MultiSensor Adaptive Processing (CAMSAP), 15-18 December 2019Le gosier, Guadeloupe 2019, pp. 221-225.
[http://dx.doi.org/10.1109/CAMSAP45676.2019.9022646]
[10]
Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. AI Open, 2020, 1, 57-81.
[http://dx.doi.org/10.1016/j.aiopen.2021.01.001]
[11]
David, L.; Thakkar, A.; Mercado, R.; Engkvist, O. Molecular representations in AI-driven drug discovery: A review and practical guide. J. Cheminform., 2020, 12(1), 56.
[http://dx.doi.org/10.1186/s13321-020-00460-5] [PMID: 33431035]
[12]
Scarselli, F.; Gori, M.; Hagenbuchner, M.; Monfardini, G.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw., 2009, 20(1), 61-80.
[http://dx.doi.org/10.1109/TNN.2008.2005605] [PMID: 19068426]
[13]
Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural Message Passing for Quantum Chemistry. In: International conference on machine learning; , 2017; pp. 1263-1272.
[14]
Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv, 2016.
[http://dx.doi.org/10.48550/arXiv.1609.02907]
[15]
Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. arXiv, 2013.
[http://dx.doi.org/10.48550/arXiv.1312.6203]
[16]
Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. Adv. Neural Inf. Process. Syst., 2016, 29 Available from: https://proceedings.neurips.cc/paper/2016/hash/04df4d434d481c5bb723be1b6df1ee65-Abstract.html
[17]
Hinton, G.E.; Krizhevsky, A.; Wang, S.D. Transforming Auto-encoders. In: artificial neural networks and machine learning- ICANN 2011. ICANN 2011; Honkela, T.; Duch, W.; Girolami, M.; Kaski, S., Eds.; Springer: Berlin, Heidelberg, 2011; pp. 44-51.
[http://dx.doi.org/10.1007/978-3-642-21735-7_6]
[18]
Sabour, S.; Frosst, N.; Hinton, G.E. Dynamic routing between capsules. Adv. Neural Inf. Process. Syst., 2017, 30.
[19]
Elnaggar, A.; Heinzinger, M.; Dallago, C.; Rihawi, G.; Wang, Y.; Jones, L.; Gibbs, T.; Feher, T.; Angerer, C.; Steinegger, M. ProtTrans: Towards cracking the language of Life’s code through self-supervised deep learning and high performance computing. arXiv, 2020.
[http://dx.doi.org/10.48550/arXiv.2007.06225]
[20]
Davis, M.I.; Hunt, J.P.; Herrgard, S.; Ciceri, P.; Wodicka, L.M.; Pallares, G.; Hocker, M.; Treiber, D.K.; Zarrinkar, P.P. Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol., 2011, 29(11), 1046-1051.
[http://dx.doi.org/10.1038/nbt.1990] [PMID: 22037378]
[21]
Pushkaran, A.C.; Nath EN, P.; Melge, A.R.; Puthiyedath, R.; Mohan, C.G. A phytochemical-based medication search for the SARS-CoV-2 infection by molecular docking models towards spike glycoproteins and main proteases. RSC Advances, 2021, 11(20), 12003-12014.
[http://dx.doi.org/10.1039/D0RA10458B] [PMID: 35423778]
[22]
Haridas, M.; Sasidhar, V.; Nath, P.; Abhithaj, J.; Sabu, A.; Rammanohar, P. Compounds of citrus medica and zingiber officinale for COVID-19 inhibition: In silico evidence for cues from ayurveda. Futur. J. Pharm. Sci., 2021, 7, 1-9.
[http://dx.doi.org/10.1186/s43094-020-00171-6] [PMID: 33457429]
[23]
Naresh, P.; Selvaraj, A.; Shyam Sundar, P.; Murugesan, S.; Sathianarayanan, S.; Namboori, P.K. Targeting a conserved pocket (n-octyl-β-D–glucoside) on the dengue virus envelope protein by small bioactive molecule inhibitors. J. Biomol. Struct. Dyn., 2020, 40(11), 4866-4878.
[http://dx.doi.org/10.1080/07391102.2020.1862707] [PMID: 33345726]
[24]
Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model., 2015, 55(2), 460-473.
[http://dx.doi.org/10.1021/ci500588j] [PMID: 25558886]
[25]
Kukol, A. Molecular modeling of proteins; Springer: Totowa, New Jersey, 2008, p. 443.
[http://dx.doi.org/10.1007/978-1-59745-177-2]
[26]
Gaillard, T. Evaluation of autodock and autodock vina on the CASF-2013 benchmark. J. Chem. Inf. Model., 2018, 58(8), 1697-1706.
[http://dx.doi.org/10.1021/acs.jcim.8b00312] [PMID: 29989806]
[27]
Deng, C.; Zhang, L.; Cen, Y. Retrieval of chemical oxygen demand through modified capsule network based on hyperspectral data. Appl. Sci., 2019, 9(21), 4620.
[http://dx.doi.org/10.3390/app9214620]
[28]
Smith, T.F.; Waterman, M.S. Identification of common molecular subsequences. J. Mol. Biol., 1981, 147(1), 195-197.
[http://dx.doi.org/10.1016/0022-2836(81)90087-5] [PMID: 7265238]
[29]
Knutson, C.; Bontha, M.; Bilbrey, J.A.; Kumar, N. Decoding the protein-ligand interactions using parallel graph neural networks. Sci. Rep., 2022, 12(1), 7624.
[http://dx.doi.org/10.1038/s41598-022-10418-2] [PMID: 35538084]
[30]
Gonen, M.; Heller, G. Concordance probability and discriminatory power in proportional hazards regression. Biometrika, 2005, 92(4), 965-970.
[http://dx.doi.org/10.1093/biomet/92.4.965]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy