Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

The Preliminary Study on Preparation Technology of PolyHb-SOD-CATCA - The Effects of Different Extractants

Author(s): Rongrong Liu, Wanjun Wang, Yaoxi Wang, Lili Zhang and Gang Chen*

Volume 24, Issue 15, 2023

Published on: 03 May, 2023

Page: [1928 - 1937] Pages: 10

DOI: 10.2174/1389201024666230331083354

Price: $65

Abstract

Introduction: During the preparation of polyHb-SOD-CAT-CA, the lysate was extracted by toluene. However, due to its serious toxicity and potential application in the production of dangerous explosives, the use of toluene would likely be a restriction of the industrial development of polyHb-SOD-CAT-CA. So, selecting other extraction reagents as alternatives to toluene is necessary to promote the industrialization of polyHb-SOD-CAT-CA.

Aims: The objective of this study is to investigate the application of several organic solvents extraction during polyHb-SOC-CAT-CA preparation process, which include n-haxane and diethyl ether, and also to compare with the existing toluene.

Methods: After extraction with different extractants, the effects of studied organic extractant on the stability of hemoglobin and enzymes include SOD, CAT and CA through monitoring the property indexes include Hb concentration, MetHb content, oxygen affinity of Hb, enzymes activities and so on.

Results: The P50 and Hill coefficient of n-hexane group were higher than that in diethyl ether group and toluene group. The MetHb contents, Hb recoveries and enzymes recoveries of n-hexane group and toluene group were much better than that in diethyl ether group. The SOD activity recovery rate in n-hexane experimental group was slightly lower than that in toluene group. However, the CAT and CA recovery rate of n-hexane group was higher than that in toluene group.

Conclusion: The results of this study suggested that the effects of n-hexane on the properties stability and productivity of polyHb-SOD-CAT-CA were nearly similar with that of toluene, indicating potential reliability and feasibility of n-hexane in the future research and development of polyHb- SOD-CAT-CA.

Graphical Abstract

[1]
Chang, T.M.S. Red blood cell replacement, or nanobiotherapeutics with enhanced red blood cell functions? Artif. Cells Nanomed. Biotechnol., 2015, 43(3), 145-147.
[http://dx.doi.org/10.3109/21691401.2015.1047557] [PMID: 26096663]
[2]
Chang, T.M.S. Blood substitutes based on nanobiotechnology. Trends Biotechnol., 2006, 24(8), 372-377.
[http://dx.doi.org/10.1016/j.tibtech.2006.06.005] [PMID: 16815577]
[3]
Alayash, AI. Hemoglobin-based blood substitutes and the treatment of sickle cell disease: More harm than help? Biomolecules, 2017, 7(1), 2.
[4]
van Veen, T.; Hunt, J.A. Tissue engineering red blood cells: A therapeutic. J. Tissue Eng. Regen. Med., 2015, 9(7), 760-770.
[http://dx.doi.org/10.1002/term.1885] [PMID: 24753354]
[5]
Gao, M.; Liang, C.; Song, X.; Chen, Q.; Jin, Q.; Wang, C.; Liu, Z. Erythrocyte‐membrane‐enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv. Mater., 2017, 29(35), 1701429.
[http://dx.doi.org/10.1002/adma.201701429] [PMID: 28722140]
[6]
Bian, Y.; Rong, Z.; Chang, T.M.S. Polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase: A novel biotechnology-based blood substitute that transports both oxygen and carbon dioxide and also acts as an antioxidant. Artif. Cells Blood Substit. Immobil. Biotechnol., 2011, 39(3), 127-136.
[http://dx.doi.org/10.3109/10731199.2011.581052] [PMID: 21574914]
[7]
Zangi, M.; Donald, K.A.; Casals, A.G.; Franson, A.D.; Yu, A.J.; Marker, E.M.; Woodson, M.E.; Campbell, S.D.; Mottaleb, M.A.; Narayana Hajay Kumar, T.V.; Reddy, M.S.; Raghava Reddy, L.V.; Sadhukhan, S.K.; Griggs, D.W.; Morrison, L.A.; Meyers, M.J. Synthetic derivatives of the antifungal drug ciclopirox are active against herpes simplex virus 2. Eur. J. Med. Chem., 2022, 238, 114443.
[http://dx.doi.org/10.1016/j.ejmech.2022.114443] [PMID: 35635945]
[8]
Mollan, T.L.; Alayash, A.I. Redox reactions of hemoglobin: Mechanisms of toxicity and control. Antioxid. Redox Signal., 2013, 18(17), 2251-2253.
[http://dx.doi.org/10.1089/ars.2013.5195] [PMID: 23330885]
[9]
Alayash, AI. Blood substitutes: Why haven’t we been more successful?. Trends Biotechnol., 2014, 32(4), 177-185.
[http://dx.doi.org/10.1016/j.tibtech.2014.02.006]
[10]
Nigam, S.; McCarron, R.; Arnaud, F. Storage of nitroglycerin (NTG) admixed with HBOC-201 for 30 days in polyolefin plastic bags: A pilot study. Drug Deliv. Transl. Res., 2017, 7(5), 674-682.
[http://dx.doi.org/10.1007/s13346-017-0411-6] [PMID: 28744782]
[11]
Belcher, J.D.; Young, M.; Chen, C.; Nguyen, J.; Burhop, K.; Tran, P.; Vercellotti, G.M. MP4CO, a pegylated hemoglobin saturated with carbon monoxide, is a modulator of HO-1, inflammation, and vaso-occlusion in transgenic sickle mice. Blood, 2013, 122(15), 2757-2764.
[http://dx.doi.org/10.1182/blood-2013-02-486282] [PMID: 23908468]
[12]
Alayash, A.I. Blood substitutes: Why haven’t we been more successful? Trends Biotechnol., 2014, 32(4), 177-185.
[http://dx.doi.org/10.1016/j.tibtech.2014.02.006] [PMID: 24630491]
[13]
Lin, J.; Zangi, M.; Kumar, T.V.N.H.; Shakar Reddy, M.; Reddy, L.V.R.; Sadhukhan, S.K.; Bradley, D.P.; Moreira-Walsh, B.; Edwards, T.C.; O’Dea, A.T.; Tavis, J.E.; Meyers, M.J.; Donlin, M.J. Synthetic derivatives of ciclopirox are effective inhibitors of Cryptococcus neoformans. ACS Omega, 2021, 6(12), 8477-8487.
[http://dx.doi.org/10.1021/acsomega.1c00273] [PMID: 33817509]
[14]
Lu, XL; Zheng, CY; Xiao-Dong, Shi Conjugate of bovine hemoglobin and human serum albumin as a candidate for blood substitute: Characteristics and effects on rats. Artif Cells Blood Substit. Immobil. Biotechnol., 2005, 33(2), 83-99.
[http://dx.doi.org/10.1081/bio-200055841]
[15]
Nadithe, V.; Bae, Y.H. Synthesis and characterization of hemoglobin conjugates with antioxidant enzymes via poly(ethylene glycol) cross-linker (Hb-SOD-CAT) for protection from free radical stress. Int. J. Biol. Macromol., 2010, 47(5), 603-613.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.08.007] [PMID: 20723561]
[16]
Powanda, D.D.; Chang, T.M.S. Cross-linked polyhemoglobinsuperoxide dismutase-catalase supplies oxygen without causing blood-brain barrier disruption or brain edema in a rat model of transient global brain ischemia-reperfusion. Artif. Cells Blood Substit. Immobil. Biotechnol., 2002, 30(1), 23-37.
[http://dx.doi.org/10.1081/BIO-120002725] [PMID: 12000224]
[17]
Bian, Y.; Chang, T.M.S. A novel nanobiotherapeutic poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] with no cardiac toxicity for the resuscitation of a rat model with 90 minutes of sustained severe hemorrhagic shock with loss of 2/3 blood volume. Artif. Cells Nanomed. Biotechnol., 2015, 43(1), 1-9.
[http://dx.doi.org/10.3109/21691401.2014.964554] [PMID: 25297052]
[18]
Schimel, J.; Becerra, C.A.; Blankinship, J. Estimating decay dynamics for enzyme activities in soils from different ecosystems. Soil Biol. Biochem., 2017, 114, 5-11.
[http://dx.doi.org/10.1016/j.soilbio.2017.06.023]
[19]
Guo, C.; Gynn, M.; Chang, T.M.S. Extraction of superoxide dismutase, catalase, and carbonic anhydrase from stroma-free red blood cell hemolysate for the preparation of the nanobiotechnological complex of polyhemoglobin–superoxide dismutase–catalase–carbonic anhydrase. Artif. Cells Nanomed. Biotechnol., 2015, 43(3), 157-162.
[http://dx.doi.org/10.3109/21691401.2015.1035479] [PMID: 25961364]
[20]
D’Agnillo, F.; Chang, T.M.S. Polyhemoglobin-superoxide dismutase-catalase as a blood substitute with antioxidant properties. Nat. Biotechnol., 1998, 16(7), 667-671.
[http://dx.doi.org/10.1038/nbt0798-667] [PMID: 9661202]
[21]
Bian, Y.; Rong, Z.; Chang, T.M.S. Polyhemoglobin-superoxide dismutase-catalase-carbonic anhydrase: A novel biotechnology-based blood substitute that transports both oxygen and carbon dioxide and also acts as an antioxidant. Artif. Cells Blood Substit. Immobil. Biotechnol., 2012, 40(1-2), 28-37.
[http://dx.doi.org/10.3109/10731199.2011.582041] [PMID: 21689051]
[22]
Clark, P.A.; Al-Ahmad, A.J.; Qian, T.; Zhang, R.R.; Wilson, H.K.; Weichert, J.P.; Palecek, S.P.; Kuo, J.S.; Shusta, E.V. Analysis of cancer-targeting alkylphosphocholine analogue permeability characteristics using a human induced pluripotent stem cell blood-brain barrier model. Mol. Pharm., 2016, 13(9), 3341-3349.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00441] [PMID: 27421304]
[23]
Panadare, D.C.; Rathod, V.K. Extraction of peroxidase from bitter gourd (Momordica charantia) by three phase partitioning with dimethyl carbonate (DMC) as organic phase. Process Biochem., 2017, 61, 195-201.
[http://dx.doi.org/10.1016/j.procbio.2017.06.028]
[24]
Badoei-Dalfard, A.; Khajeh, K.; Asghari, S.M.; Ranjbar, B.; Karbalaei-Heidari, H.R. Enhanced activity and stability in the presence of organic solvents by increased active site polarity and stabilization of a surface loop in a metalloprotease. J. Biochem., 2010, 148(2), 231-238.
[http://dx.doi.org/10.1093/jb/mvq057] [PMID: 20519323]
[25]
Das, D.; Roy, S.; Debnath, S.; Das, P.K. Surfactant-stabilized small hydrogel particles in oil: Hosts for remarkable activation of enzymes in organic solvents. Chemistry, 2010, 16(16), 4911-4922.
[http://dx.doi.org/10.1002/chem.200903205] [PMID: 20229535]
[26]
Jiang, W.; Bian, Y.; Wang, Z.; Chang, T.M.S. Hepatoprotective effects of Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] on alcohol-damaged primary rat hepatocyte culture in vitro. Artif. Cells Nanomed. Biotechnol., 2017, 45(1), 46-50.
[http://dx.doi.org/10.1080/21691401.2016.1191229] [PMID: 27263665]
[27]
Tao, Z.; Ghoroghchian, P.P. Microparticle, nanoparticle, and stem cell-based oxygen carriers as advanced blood substitutes. Trends Biotechnol., 2014, 32(9), 466-473.
[http://dx.doi.org/10.1016/j.tibtech.2014.05.001] [PMID: 24929580]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy