Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

A Complete Sojourn of Current Trends in Gastro-retentive Drug Delivery System: Recent Advances and Patent Survey

Author(s): Abhisek Dey, Amrinder Singh, Balak Das Kurmi and Dilpreet Singh*

Volume 18, Issue 2, 2024

Published on: 10 May, 2023

Page: [190 - 206] Pages: 17

DOI: 10.2174/1872210517666230331083346

Price: $65

Abstract

The current work aims to provide a complete sojourn on gastro-retentive drug delivery system (GRDDS) along with formulation methods, polymer selection, and in vitro/ in vivo challenges with finished dosage forms. Ideally, a biopharmaceutical-hindered drug has a rapid clearance and erratic bioavailability due to its low aqueous solubility and permeability. Additionally, it also suffers from high first-pass metabolism and pre-systemic gut wall clearance. Gastro-retentive drug delivery systems have become an emerging technology where newer methodologies and scientific approaches have been used to provide the controlled release of drugs and provide a protective mechanism in the stomach. By the virtue of utilizing GRDDS as a dosage form, these formulations increase Gastroretention time (GRT) which prolongs the controlled release of the drug in the dosage form. GRDDS contribute to increased drug bioavailability and targeting at a site of action, which enhances therapeutic action and offers significant patient compliance. Furthermore, the present work also highlighted the critical role of polymers in favoring drug retention across GIT with the mechanism of gastro-retention and recommended concentration ranges. The emerging technology is also highlighted by the approved drug products and patented formulations in the recent decade which is depicted in a justified manner. GRDDS formulations have demonstrated clinical efficacy, which is supported by a compilation of patents for cutting-edge innovations in dosage forms that can be held in the stomach for an extended period of time.

Graphical Abstract

[1]
Tiwari S, Batra N. Oral drug delivery system: A review. Am J Life Sci 2014; 27-35.
[2]
Bala R, Khanna S, Pawar P, Arora S. Orally dissolving strips: A new approach to oral drug delivery system. Int J Pharm Investig 2013; 3(2): 67-76.
[http://dx.doi.org/10.4103/2230-973X.114897] [PMID: 24015378]
[3]
Jassal M, Nautiyal U, Kundlas J, Singh D. A review: Gastroretentive drug delivery system (grdds). Indian J Pharm Biol Res 2015; 3(1): 82-92.
[4]
Deloose E, Janssen P, Depoortere I, Tack J. The migrating motor complex: Control mechanisms and its role in health and disease. Nat Rev Gastroenterol Hepatol 2012; 9(5): 271-85.
[http://dx.doi.org/10.1038/nrgastro.2012.57] [PMID: 22450306]
[5]
Shannahoff-Khalsa D. Psychophysiological states: The ultradian dynamics of mind-body interactions. Int Rev Neurobiol 2008; 80: 1-220.
[PMID: 17967615]
[6]
Bhatt P. Oral controlled release systems: Current strategies and challenges. In:Novel Drug Delivery Technologies. Berlin: Springer 2019; pp. 73-120.
[http://dx.doi.org/10.1007/978-981-13-3642-3_4]
[7]
Panakanti R, Narang AS. Impact of excipient interactions on drug bioavailability from solid dosage forms. Excipient Applications in formulation design. Drug Deliv 2015; 38(1): 273-310.
[8]
Kharia AA, Singhai AK, Verma R. Formulation and evaluation of polymeric nanoparticles of an antiviral drug for gastroretention. Int J Pharm Sci Nanotechnol 2012; 4(4): 1557-62.
[http://dx.doi.org/10.37285/ijpsn.2011.4.4.6]
[9]
Raghuvanshi S, Pathak K. Recent advances in delivery systems and therapeutics of cinnarizine: A poorly water soluble drug with absorption window in stomach. J Drug Deliv 2014; 2014: 1-15.
[http://dx.doi.org/10.1155/2014/479246] [PMID: 25478230]
[10]
Mandal UK, Chatterjee B, Senjoti FG. Gastro-retentive drug delivery systems and their in vivo success: A recent update. Asian J Pharm Sci 2016; 11(5): 575-84.
[http://dx.doi.org/10.1016/j.ajps.2016.04.007]
[11]
Badoni A, Ojha A, Gnanarajan G, Kothiyal P. Review on gastro retentive drug delivery system. Pharma Innov 2012; 1(8): 13-22.
[12]
Pawar VK, Kansal S, Asthana S, Chourasia MK. Industrial perspective of gastroretentive drug delivery systems: Physicochemical, biopharmaceutical, technological and regulatory consideration. Expert Opin Drug Deliv 2012; 9(5): 551-65.
[http://dx.doi.org/10.1517/17425247.2012.677431] [PMID: 22512596]
[13]
Tomar A, Upadhyay A, Gupta SK, Kumar S. An overview on gastroretentive drug delivery system: Current approaches and advancements. Curr Res Pharm Sci 2019; 9(01): 12-6.
[14]
Chordiya M, Gangurde H, Borkar V. Technologies, optimization and analytical parameters in gastroretentive drug delivery systems. Curr Sci 2017; 112(5): 946-53.
[http://dx.doi.org/10.18520/cs/v112/i05/946-953]
[15]
Goud MSC, Pandey VP. Gastroretentive drug delivery system. Int J Pharm Biol Sci 2016; 6(3): 158-65.
[http://dx.doi.org/10.21276/ijpbs.2016.6.3.19]
[16]
Dhole AR, Gaikwad PD, Bankar VH, Pawar SP. A review on floating multiparticulate drug delivery system-A novel approach to gastric retention. Int J Pharm Sci Rev Res 2011; 205-11.
[17]
Singh B, Kim KH. Floating drug delivery systems: An approach to oral controlled drug delivery via gastric retention. J Control Release 2000; 63(3): 235-59.
[http://dx.doi.org/10.1016/S0168-3659(99)00204-7] [PMID: 10601721]
[18]
Srikanth Meka V, Wee Liang VAPH, Dharmalingham SR, Sheshala R, Gorajana A, Gorajana A. Preparation and in vitro characterization of non-effervescent floating drug delivery system of poorly soluble drug, carvedilol phosphate. Acta Pharm 2014; 64(4): 485-94.
[http://dx.doi.org/10.2478/acph-2014-0038] [PMID: 25531788]
[19]
Erni W, Held K. The hydrodynamically balanced system: A novel principle of controlled drug release. Eur Neurol 1987; 27(1): 21-7.
[http://dx.doi.org/10.1159/000116171] [PMID: 3322836]
[20]
Ahuja G, Pathak K. Porous carriers for controlled/modulated drug delivery. Indian J Pharm Sci 2009; 71(6): 599-607.
[http://dx.doi.org/10.4103/0250-474X.59540] [PMID: 20376211]
[21]
Choi BY, Park HJ, Hwang SJ, Park JB. Preparation of alginate beads for floating drug delivery system: Effects of CO2 gas-forming agents. Int J Pharm 2002; 239(1-2): 81-91.
[http://dx.doi.org/10.1016/S0378-5173(02)00054-6] [PMID: 12052693]
[22]
Hajare PP, Rachh PR. Gastroretentive microballoons: A novel approach for drug delivery. Int J Pharm Sci Res 2020; 11(3): 1075-83.
[23]
Kawashima Y, Niwa T, Takeuchi H, Hino T, Itoh Y. Hollow microspheres for use as a floating controlled drug delivery system in the stomach. J Pharm Sci 1992; 81(2): 135-40.
[http://dx.doi.org/10.1002/jps.2600810207] [PMID: 1372046]
[24]
Pakhale NV, Gondkar SB, Saudagar RB. Effervescent floating drug delivery system: A review. J Drug Deliv Ther 2019; 836-8.
[25]
Dehghan M, Kha F. Gastroretentive drug delivery systems: A patent perspective. Int J Health Sci 2009; 2(1): 1-24.
[http://dx.doi.org/10.4314/ijhr.v2i1.55385]
[26]
Singh J, Kaur S, Singh J. Floating drug delivery system. A critical review. World J Pharm Res 2016; 5(8): 1-19.
[27]
Neetika B, Manish G. Floating drug delivery system. IJPRAS 2012; 1(4): 20-8.
[28]
Shaha SH, Patel JK, Pundarikakshudu K, Patel NV. An overview of a gastro-retentive floating drug delivery system. Asian J Pharm Sci 2009; 65-80.
[29]
Madhav NS, Ojha A, Tyagi Y, Negi M. Mucoadhesion: A novelistic platform for drug delivery system. Int J Pharm Drug Anal 2014; 2(9): 773-81.
[30]
Tamizharasi S, Rathi V, Rathi JC. Floating drug delivery system. Syst Rev Pharm 2011; 2(1): 1-11.
[31]
More S, Gavali K, Doke O, Kasgawade P. Gastroretentive drug delivery system. J Drug Deliv Ther 2018; 8(4): 24-35.
[32]
Mali AD, Bathe RS, Patil MK. Floating microspheres: A novel approach in drug delivery system. S&T 2015; 1(5): 134-53.
[http://dx.doi.org/10.15200/winn.143464.44998]
[33]
Sravya V. Patro J; Ch, S. Formulate gastroretentive floating bioadhesive drug delivery system of nizatidine by direct compression technique. World J Pharm Sci 2022; 10(1): 59-73.
[http://dx.doi.org/10.54037/WJPS.2022.100106]
[34]
Samanthula KS, Bairi AG, Mahendra Kumar CB. Muco-adhesive buccal tablets of candesartan cilexetil for oral delivery: Preparation, in-vitro and ex-vivo evaluation. J Drug Deliv Ther 2021; 11(1-s): 35-42.
[http://dx.doi.org/10.22270/jddt.v11i1-s.4547]
[35]
Singpanna K, Chareonying T, Patrojanasophon P, Rojanarata T, Sukma M, Opanasopit P. Fabrication of a floating device of domperidone tablets using 3D-printing technologies. Key Engineer Mater 2020; 859: 289-94.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.859.289]
[36]
Ajmeera Ramarao, Rajesh G. Gastroretentive floating-bioadhesive drug delivery system for rebamipide: Design, in vitro and in vivo evaluation. IJRPNS 2019; 12(3): 4534-43.
[http://dx.doi.org/10.37285/ijpsn.2019.12.3.4]
[37]
Alalor CA, Uhumwangho MU, Iwuagwu MA. Evaluation of ciprofloxacin floating-bioadhesive tablet formulated with okra gum as multifunctional polymer. Pharm Biosci J 2018; 6(2): 01-11.
[http://dx.doi.org/10.20510/ukjpb/6/i2/173535]
[38]
Hasnain MS, Rishishwar P, Ali S. Floating-bioadhesive matrix tablets of hydralazine HCL made of cashew gum and HPMC K4M. Int J Pharm Pharm Sci 2017; 9(7): 124-9.
[http://dx.doi.org/10.22159/ijpps.2017v9i7.18945]
[39]
Marmwar PA. Modified release of metformin hydrochloride using ion exchange resin complex in floating mucoadhesive tablets. Asian J Pharm 2016; 10(1): 7-15.
[40]
Kotla NG, Siddam H, Maddiboyina B, et al. Formulation and evaluation of atenolol floating bioadhesive system using optimized polymer blends. Int J Pharm Investig 2016; 6(2): 116-22.
[http://dx.doi.org/10.4103/2230-973X.177832] [PMID: 27051631]
[41]
Zhang C, Tang J, Liu D, Li X, Cheng L, Tang X. Design and evaluation of an innovative floating and bioadhesive multiparticulate drug delivery system based on hollow structure. Int J Pharm 2016; 503(1-2): 41-55.
[http://dx.doi.org/10.1016/j.ijpharm.2016.02.045] [PMID: 26943975]
[42]
Biswas N, Sahoo RK. Tapioca starch blended alginate mucoadhesive-floating beads for intragastric delivery of Metoprolol Tartrate. Int J Biol Macromol 2016; 83: 61-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.039] [PMID: 26592698]
[43]
Abduljabbar H, Badr-Eldin S, Aldawsari H. Gastroretentive ranitidine hydrochloride tablets with combined floating and bioadhesive properties: Factorial design analysis, in vitro evaluation and in vivo abdominal X-ray imaging. Curr Drug Deliv 2015; 12(5): 578-90.
[http://dx.doi.org/10.2174/1567201812666150608101720] [PMID: 26051347]
[44]
Manohar SD, Sanjay AN, Bhanudas SR. Formulation, optimization and evaluation of gastro retentive drug delivery system of cefuroxime axetil. World J Pharm Res 2015; 1060.
[45]
Bera H, Kandukuri SG, Nayak AK, Boddupalli S. Alginate–sterculia gum gel-coated oil-entrapped alginate beads for gastroretentive risperidone delivery. Carbohydr Polym 2015; 120: 74-84.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.009] [PMID: 25662690]
[46]
Rajab M, Jouma M, Neubert RHH, Dittgen M. Influence of water-soluble polymers on the in vitro performance of floating mucoadhesive tablets containing metformin. Drug Dev Ind Pharm 2014; 40(7): 879-85.
[http://dx.doi.org/10.3109/03639045.2013.789052] [PMID: 23607725]
[47]
Bomma R, Veerabrahma K. Statistical optimization of floating-bioadhesive drug delivery system for risedronate sodium: In vitro, ex vivo and in vivo evaluation. Int J Drug Deliv 2015; 6(1): 36-49.
[48]
Svirskis D, Seyfoddin A, Chalabi S, et al. Development of mucoadhesive floating hollow beads of acyclovir with gastroretentive properties. Pharm Dev Technol 2014; 19(5): 571-6.
[http://dx.doi.org/10.3109/10837450.2013.813539] [PMID: 23859639]
[49]
Chalikwar SS, Gattani SG. Design, development, and in vitro characterization of floating-bioadhesive tablets of ciprofloxacin hydrochloride for biphasic release. Int J Pharm Res Dev 2013; 5(1): 1-17.
[50]
Vengatesh S, Elango K, Damayanthi RD, Deattu N, Christina P. Formulation and evaluation of floating tablets of ondansetron hydrochloride. Int J Drug Dev Res 2012; 4(4): 265-74.
[51]
Pahwa R, Bisht S, Kumar V, Kohli K. Recent advances in gastric floating drug delivery technology: A review. Curr Drug Deliv 2013; 10(3): 286-98.
[http://dx.doi.org/10.2174/1567201811310030005] [PMID: 23808593]
[52]
Singh PK, Shukla VK, Easwari TS. Kumar Sanjoo. Formulation development and evaluation of mucoadhesive oral dosage form containing clarithromycin using different mucoadhesive polymers. Int J Pharm Sci Health Care 2012; 2(2): 159-66.
[53]
Chowdhury MEH. Preparation and evaluation of floating matrix tablets of Ranitidine Hydrochloride. Pharma Innov 2012; 1(7): 1-8.
[54]
Rapolu K, Sanka K, Vemula PK, Aatipamula V, Mohd AB, Diwan PV. Optimization and characterization of gastroretentive floating drug delivery system using Box-Behnken design. Drug Dev Ind Pharm 2013; 39(12): 1928-35.
[http://dx.doi.org/10.3109/03639045.2012.699068] [PMID: 22762132]
[55]
Khan Z, Pillay V, Choonara YE, du Toit LC. Drug delivery technologies for chronotherapeutic applications. Pharm Dev Technol 2009; 14(6): 602-12.
[http://dx.doi.org/10.3109/10837450902922736] [PMID: 19883249]
[56]
Reddy Dumpa N, Bandari S. A Repka M. M. Novel gastroretentive floating pulsatile drug delivery system produced via hot-melt extrusion and fused deposition modeling 3D printing. Pharmaceutics 2020; 12(1): 52.
[http://dx.doi.org/10.3390/pharmaceutics12010052] [PMID: 31936212]
[57]
Sharma S, Pawar A. Low density multiparticulate system for pulsatile release of meloxicam. Int J Pharm 2006; 313(1-2): 150-8.
[http://dx.doi.org/10.1016/j.ijpharm.2006.02.001] [PMID: 16540268]
[58]
Badve SS, Sher P, Korde A, Pawar AP. Development of hollow/porous calcium pectinate beads for floating-pulsatile drug delivery. Eur J Pharm Biopharm 2007; 65(1): 85-93.
[http://dx.doi.org/10.1016/j.ejpb.2006.07.010] [PMID: 16971097]
[59]
Wilson RL, Stevenson CE. Anatomy and Physiology of the Stomach Shackelford’s Surgery of the Alimentary Tract. Philadelphia: Elsevier Inc. 2019; pp. 634-46.
[http://dx.doi.org/10.1016/B978-0-323-40232-3.00056-X]
[60]
Tanwar YS, Naruka PS, Ojha GR. Development and evaluation of floating microspheres of verapamil hydrochloride. RBCF Rev Bras Cienc Farm 2007; 43(4): 529-34.
[http://dx.doi.org/10.1590/S1516-93322007000400005]
[61]
Kol A, Arjariya BK, Mansuri S, Jalaluddin M, Khan R, Dubey R. formulation and evaluation of floating-pulsatile drug delivery system of nifedipine. World J Pharm Res 2022; 11(9): 321-41.
[62]
Reddy NV, Kishore K, Kumar GV. Formulation and evaluation of enalapril floating pulsatile tablets. Int J Res Dev 2021; 6(11): 1-13.
[http://dx.doi.org/10.36713/epra2016]
[63]
Vo AQ, Zhang J, Nyavanandi D, Bandari S, Repka MA. Hot melt extrusion paired fused deposition modeling 3D printing to develop hydroxypropyl cellulose based floating tablets of cinnarizine. Carbohydr Polym 2020; 246: 116519.
[http://dx.doi.org/10.1016/j.carbpol.2020.116519] [PMID: 32747229]
[64]
Kumar YG, Pulla RP, Ganesh A, Naresh G, Saleem A. Formulation and in-vitro evaluation of floating pulsatile drug delivery system of ivabradine. J Drug Deliv Ther 2019; 188-93.
[65]
Adhikari C, Kulkarni GS, Swamy S. Formulation and evaluation of pulsatile drug delivery system of Salbutamol sulfate for the chronotherapy of asthma. Asian J Pharm Clin Res 2018; 11(9): 305-11.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i9.20423]
[66]
Suddala S, Sahoo SK, Yamsani MR. Development and evaluation of floating pulsatile drug delivery system using meloxicam. J Drug Deliv Ther 2017; 7(4): 244-54.
[67]
Malladi M, Jukanti R. Floating pulsatile drug delivery system of famotidine: Design, statistical optimization, and in vitro evaluation. Int J Pharm Pharm Sci 2016; 8(5): 169-81.
[68]
Taranalli SS, Dandagi PM, Mastiholimath VS. Development of hollow/porous floating beads of metoprolol for pulsatile drug delivery. Eur J Drug Metab Pharmacokinet 2015; 40(2): 225-33.
[http://dx.doi.org/10.1007/s13318-014-0194-9] [PMID: 24744159]
[69]
Jagdale SC, Suryawanshi VM, Pandya SV, Kuchekar BS, Chabukswar AR. Development of press-coated, floating-pulsatile drug delivery of lisinopril. Sci Pharm 2014; 82(2): 423-40.
[http://dx.doi.org/10.3797/scipharm.1301-27] [PMID: 24959410]
[70]
Duppada DR, Swapna R, Gourisankar K, Rao KR, Sarbudeen S. Formulation & in vitro evaluation of novel floating pulsatile approach for the chronotherapeutic release of Nizatidine-A time & site specific drug delivery system. J Appl Pharm 2015; 7(4): 1-8.
[71]
Sudhamani T, Radhakrishnan M. Formulation and in-vitro evaluation of floating pulsatile beads of indomethacin for site and time-specific release. Asian J Pharm Clin Res 2013; 6(1): 23-30.
[72]
Rajesh A, Jaimin P, Sangeeta A, Dhruv M. Formulation and Evaluation of floating pulsatile drug delivery for chronotherapy of hypertension. Int J Pharm Sci Res 2013; 2(2): 1-10.
[73]
Patel S, Modasiya MK, Patel VM, Patel AK. Design and development of floating pulsatile drug delivery system using meloxicam. Int J Pharma Res Bio Sci 2012; 1(2): 215-35.
[74]
Thitinan S, McConville JT. Development of a gastroretentive pulsatile drug delivery platform. J Pharm Pharmacol 2012; 64(4): 505-16.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01428.x] [PMID: 22420657]
[75]
Suthar M, Patel U, Brahmbatt T, Patel H. Pulsatile drug delivery: A review. Int J Pharma Bio Sci 2012; 1(1): 1-10.
[76]
Mukund JY, Kantilal BR, Sudhakar RN. Floating microspheres: A review. Braz J Pharm Sci 2012; 48(1): 17-30.
[http://dx.doi.org/10.1590/S1984-82502012000100003]
[77]
Kumar S, Tiwari A, Goyal N. Floating microspheres of lafutidine: Formulation, optimization, characterization, in-vitro and in-vivo floatability studies using eudragit grades. Indian J Pharm Educ Res 2022; 56(3): 681-8.
[http://dx.doi.org/10.5530/ijper.56.3.116]
[78]
Asa PS, Mirzaeei S. Design and evaluation of novel sustained-release floating microspheres for oral delivery of ciprofloxacin hydrochloride. Pharm Sci 2021; 28(2): 331-9.
[79]
swati S, Batta S, Pandala S, Sravanthi TS, Vineesha S. Formulation and in vitro characterisation of floating microspheres of glipizide. J Pharm Sci 2020; 12(5): 684-90.
[80]
Purohit KK, Garud N. Formulation and evaluation of floating microspheres of lovastatin using Eudragit-E and ethyl cellulose by solvent evaporation method. J Drug Deliv Ther 2019; 9(3): 46-53.
[81]
Abbas AK, Alhamdany AT. Floating microspheres of enalapril maleate as a developed controlled release dosage form: Investigation of the effect of an ionotropic gelation technique. Turk J Pharm Sci 2020; 17(2): 159-71.
[http://dx.doi.org/10.4274/tjps.galenos.2018.15046]
[82]
Kusuma D, Krishnan KS, Sri S, Sree V. Formulation and evaluation of floating microspheres of acebutolol. Int J Pharm Sci Rev Res 2017; 46: 31-6.
[83]
Umamaheshwari RB, Jain S, Bhadra D, Jain NK. Floating microspheres bearing acetohydroxamic acid for the treatment of Helicobacter pylori. J Pharm Pharmacol 2010; 55(12): 1607-13.
[http://dx.doi.org/10.1211/0022357022223] [PMID: 14738585]
[84]
Khamanga SMM, Walker RB. The effects of buffer molarity, agitation rate, and mesh size on verapamil release from modified-release mini-tablets using USP apparatus 3. Dissolut Technol 2007; 14(2): 19-23.
[http://dx.doi.org/10.14227/DT140207P19]
[85]
Ravindran VK, Vasa SA, Subadhra SA, Banji DA, Banji OT, Rao YM. Comparative study of mucoadhesive polymers carbopol 974p and sodium carboxymethyl cellulose for single unit dosage of imatinib mesylate. Malays J Pharm Sci 2012; 10(1): 61-77.
[86]
Gupta P, Kumar M, Sachan N. An overview on polymethacrylate polymers in gastroretentive dosage form. Open Pharm Sci J 2015; 9(1): 31-42.
[http://dx.doi.org/10.2174/1874844901502010031]
[87]
Dressman JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res 1998; 15(1): 11-22.
[http://dx.doi.org/10.1023/A:1011984216775] [PMID: 9487541]
[88]
Streubel A, Siepmann J, Bodmeier R. Drug delivery to the upper small intestine window using gastroretentive technologies. Curr Opin Pharmacol 2006; 6(5): 501-8.
[http://dx.doi.org/10.1016/j.coph.2006.04.007] [PMID: 16890020]
[89]
Janjale VR, Patil SR, Fegade TD. A Review on: Floating Microsphere. Am J Pharm 2020; 232-59.
[90]
Malakar J, Nayak AK, Pal D. Development of cloxacillin loaded multiple-unit alginate-based floating system by emulsion–gelation method. Int J Biol Macromol 2012; 50(1): 138-47.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.10.001] [PMID: 22020191]
[91]
Bera H, Nadimpalli J, Kumar S, Vengala P. Kondogogu gum-Zn+2-pectinate emulgel matrices reinforced with mesoporous silica for intragastric furbiprofen delivery. Int J Biol Macromol 2017; 104(Pt A): 1229-37.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.027] [PMID: 28688948]
[92]
Myers CE, Collins JM. Pharmacology of intraperitoneal chemotherapy. Cancer Investig 1983; 1(5): 395-407.
[93]
Bardonnet PL, Faivre V, Pugh WJ, Piffaretti JC, Falson F. Gastroretentive dosage forms: Overview and special case of Helicobacter pylori. J Control Release 2006; 111(1-2): 1-18.
[http://dx.doi.org/10.1016/j.jconrel.2005.10.031] [PMID: 16403588]
[94]
Hoffman A, Stepensky D, Lavy E, Eyal S, Klausner E, Friedman M. Pharmacokinetic and pharmacodynamic aspects of gastroretentive dosage forms. Int J Pharm 2004; 277(1-2): 141-53.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.047] [PMID: 15158977]
[95]
Schneider F, Koziolek M, Weitschies W. in vitro and in vivo test methods for the evaluation of gastroretentive dosage forms. Pharmaceutics 2019; 11(8): 416.
[http://dx.doi.org/10.3390/pharmaceutics11080416] [PMID: 31426417]
[96]
Klausner EA, Lavy E, Barta M, Cserepes E, Friedman M, Hoffman A. Novel gastroretentive dosage forms: evaluation of gastroretentivity and its effect on levodopa absorption in humans. Pharm Res 2003; 20(9): 1466-73.
[http://dx.doi.org/10.1023/A:1025770530084] [PMID: 14567643]
[97]
Klausner EA, Lavy E, Friedman M, Hoffman A. Expandable gastroretentive dosage forms. J Control Release 2003; 90(2): 143-62.
[http://dx.doi.org/10.1016/S0168-3659(03)00203-7] [PMID: 12810298]
[98]
Tripathi J, Thapa P, Maharjan R, Jeong SH. Current state and future perspectives on gastroretentive drug delivery systems. Pharmaceutics 2019; 11(4): 193.
[http://dx.doi.org/10.3390/pharmaceutics11040193] [PMID: 31010054]
[99]
Somwanshi SB, Dolas RT, Nikam VK, et al. Floating multiparticulate oral sustained release drug delivery system. J Chem Pharm Res 2011; 3(1): 536-47.
[100]
Maghsoodi M, Hemati E, Qadermazi B, Yari Z. Hollow microspheres for gastroretentive floating- pulsatile drug delivery: Preparation and in vitro evaluation. Adv Pharm Bull 2011; 1(2): 55-61.
[PMID: 24312757]
[101]
Adibkia K, Hamedeyazdan S, Javadzadeh Y. Drug release kinetics and physicochemical characteristics of floating drug delivery systems. Expert Opin Drug Deliv 2011; 8(7): 891-903.
[http://dx.doi.org/10.1517/17425247.2011.574124] [PMID: 21506906]
[102]
Singh PK. Bilayer and floating-bioadhesive tablets: Innovative approach to gastroretension. J Drug Deliv Ther 2011; 1(1): 1-4.
[103]
Muley V. A gastroretentive drug delivery system. US Patent 2022152741A1, 2022.
[104]
Liao J, Liu P, Dinh S, Singh B, Majuru S, Bhargav NP. Gastric retention and controlled release drug delivery system. US Patent (US20190216729A1), 2019.
[105]
Gerard DE, Schoelkof J, Gane Patrick AC, Eberle VA, Alles R, Maxim PJ. Gastroretentive Drug loaded formulation and delivery systems and their method of preparation using functional CaCo3. US Patent (US9987230B2), 2018.
[106]
Friedman M, Kirmayer D. Novel gastroretentive delivery system. Patent US20110268666A1, 2011.
[107]
Welzig S, Rothenburger J, Kälz B, Gungl J, Gerdes K. GRDDS contain Tolperisone controlled release tablet. US Patent EP2228056A2 2010.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy