Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Technological Advancement in ω-3 Fatty Acids: Their Therapeutic Functions and Novel Delivery Strategies

Author(s): Francis Victor, Kanwal Rehman, Muhammad Sajid Hamid Akash*, Sumbal Rasheed, Muhammad Imran and Mohammed Ali Assiri

Volume 29, Issue 12, 2023

Published on: 17 April, 2023

Page: [893 - 903] Pages: 11

DOI: 10.2174/1381612829666230330144614

Price: $65

Abstract

Being an important dietary component, omega-3 (ω-3) fatty acids are essential polyunsaturated fatty acids, which play a crucial role in the normal growth and development of an individual. ω-3 fatty acids have been reported to possess therapeutic activities against several diseases, including cardiovascular, neurological, cancer, etc. Due to the unsaturation, ω-3 fatty acids are highly reactive and prone to oxidation, which is the biggest hurdle in their administration, as oxidation produces a foul smell and reduces their therapeutic efficacy. Although numerous supplementation strategies have been developed to enhance the bioavailability, targeted drug delivery, and therapeutic potential, the rate of compliance is low due to difficulty in swallowing and unpleasant aftertaste. To cope with these problems, several novel drug delivery approaches have been developed, which may be used as an alternative to enhance the effectiveness of ω-3 fatty acids when administered alone or in combination therapy. This review focuses on how novel drug delivery approaches can be used to overcome the ω-3 fatty acids stability issues and how to maximize its therapeutic activity.

Next »
[1]
Bourre JM. Dietary omega-3 fatty acids for women. Biomed Pharmacother 2007; 61(2-3): 105-12.
[http://dx.doi.org/10.1016/j.biopha.2006.09.015] [PMID: 17254747]
[2]
Bailey N. Current choices in omega 3 supplementation. Nutrition Bulletin 2009; 34(1): 85-91.
[http://dx.doi.org/10.1111/j.1467-3010.2008.01736.x]
[3]
Ian Givens D, Gibbs RA. Current intakes of EPA and DHA in European populations and the potential of animal-derived foods to increase them. Proc Nutr Soc 2008; 67(3): 273-80.
[http://dx.doi.org/10.1017/S0029665108007167] [PMID: 18498671]
[4]
Gebauer SK, Psota TL, Harris WS, Kris-Etherton PM. n-3 Fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am J Clin Nutr 2006; 83(6) (Suppl.): 1526S-35S.
[http://dx.doi.org/10.1093/ajcn/83.6.1526S] [PMID: 16841863]
[5]
Gaziano TA. Reducing the growing burden of cardiovascular disease in the developing world. Health Aff 2007; 26(1): 13-24.
[http://dx.doi.org/10.1377/hlthaff.26.1.13] [PMID: 17211010]
[6]
Mizia-Stec K, Haberka M, Mizia M, et al. N-3 Polyunsaturated fatty acid therapy improves endothelial function and affects adiponectin and resistin balance in the first month after myocardial infarction. Arch Med Sci 2011; 5(5): 788-95.
[http://dx.doi.org/10.5114/aoms.2011.25553] [PMID: 22291823]
[7]
Holub BJ. Clinical nutrition: 4. Omega-3 fatty acids in cardiovascular care. CMAJ 2002; 166(5): 608-15.
[PMID: 11898942]
[8]
Metcalf RG, James MJ, Mantzioris E, Cleland LG. A practical approach to increasing intakes of n-3 polyunsaturated fatty acids: use of novel foods enriched with n-3 fats. Eur J Clin Nutr 2003; 57(12): 1605-12.
[http://dx.doi.org/10.1038/sj.ejcn.1601731] [PMID: 14647226]
[9]
(a) ) Kamal-Eldin A, Yanishlieva NV. N-3 fatty acids for human nutrition: stability considerations. Eur J Lipid Sci Technol 2002; 104(12): 825-36.
[http://dx.doi.org/10.1002/1438-9312(200212)104:12<825::AID-EJLT825>3.0.CO;2-N];
(b) ) Vardanyan R, Hruby V. Chapter 20 - Hypolipidemic and Antihyperlipidemic Drugs. Synthesis of Best-Seller Drugs. Academic Press: Boston 2016; pp. 285-315.
[10]
Williams CM, Burdge G. Long-chain n-3 PUFA: plant v. marine sources. Proc Nutr Soc 2006; 65(1): 42-50.
[http://dx.doi.org/10.1079/PNS2005473] [PMID: 16441943]
[11]
Taneja A, Singh H. Challenges for the delivery of long-chain n-3 fatty acids in functional foods. Annu Rev Food Sci Technol 2012; 3(1): 105-23.
[http://dx.doi.org/10.1146/annurev-food-022811-101130] [PMID: 22224555]
[12]
McManus A, Merga M, Newton W. Omega-3 fatty acids. What consumers need to know. Appetite 2011; 57(1): 80-3.
[http://dx.doi.org/10.1016/j.appet.2011.03.015] [PMID: 21497627]
[13]
Barrow CJ, Nolan C, Jin Y. Stabilization of highly unsaturated fatty acids and delivery into foods. Lipid Technol 2007; 19(5): 108-11.
[http://dx.doi.org/10.1002/lite.200600037]
[14]
Busnelli M, Manzini S, Hilvo M, et al. Liver-specific deletion of the Plpp3 gene alters plasma lipid composition and worsens atherosclerosis in apoE−/− mice. Sci Rep 2017; 7(1): 44503.
[http://dx.doi.org/10.1038/srep44503] [PMID: 28291223]
[15]
Watanabe Y, Tatsuno I. Omega-3 polyunsaturated fatty acids for cardiovascular diseases: present, past and future. Expert Rev Clin Pharmacol 2017; 10(8): 865-73.
[http://dx.doi.org/10.1016/0005-2760(95)00242-1] [PMID: 8652653]
[16]
Dellera F, Ganzetti GS, Froio A, et al. L-homoarginine administration reduces neointimal hyperplasia in balloon-injured rat carotids. Thromb Haemost 2016; 116(8): 400-2.
[http://dx.doi.org/10.1160/TH15-10-0831] [PMID: 27279573]
[17]
Geleijnse JM, Giltay EJ, Grobbee DE, Donders ART, Kok FJ. Blood pressure response to fish oil supplementation: metaregression analysis of randomized trials. J Hypertens 2002; 20(8): 1493-9.
[http://dx.doi.org/10.1097/00004872-200208000-00010] [PMID: 12172309]
[18]
Appel LJ, Miller ER III, Seidler AJ, Whelton PK. Does supplementation of diet with ‘fish oil’ reduce blood pressure? A meta-analysis of controlled clinical trials. Arch Intern Med 1993; 153(12): 1429-38.
[http://dx.doi.org/10.1001/archinte.1993.00410120017003] [PMID: 8141868]
[19]
Mori TA, Watts GF, Burke V, Hilme E, Puddey IB, Beilin LJ. Differential effects of eicosapentaenoic acid and docosahexaenoic acid on vascular reactivity of the forearm microcirculation in hyperlipidemic, overweight men. Circulation 2000; 102(11): 1264-9.
[http://dx.doi.org/10.1161/01.CIR.102.11.1264] [PMID: 10982541]
[20]
Bourre JM, Francois M, Youyou A, et al. The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr 1989; 119(12): 1880-92.
[http://dx.doi.org/10.1093/jn/119.12.1880] [PMID: 2576038]
[21]
Green KN, Martinez-Coria H, Khashwji H, et al. Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-beta and tau pathology via a mechanism involving presenilin 1 levels. J Neurosci 2007; 27(16): 4385-95.
[http://dx.doi.org/10.1523/JNEUROSCI.0055-07.2007] [PMID: 17442823]
[22]
Farioli-Vecchioli S, Sacchetti S, di Robilant NV, Cutuli D. The role of physical exercise and omega-3 fatty acids in depressive illness in the elderly. Curr Neuropharmacol 2018; 16(3): 308-26.
[http://dx.doi.org/10.2174/1570159X15666170912113852] [PMID: 28901279]
[23]
Zhang W, Wang H, Zhang H, et al. Dietary supplementation with omega-3 polyunsaturated fatty acids robustly promotes neurovascular restorative dynamics and improves neurological functions after stroke. Exp Neurol 2015; 272: 170-80.
[http://dx.doi.org/10.1016/j.expneurol.2015.03.005] [PMID: 25771800]
[24]
Wu A, Ying Z, Gomez-Pinilla F. The salutary effects of DHA dietary supplementation on cognition, neuroplasticity, and membrane homeostasis after brain trauma. J Neurotrauma 2011; 28(10): 2113-22.
[http://dx.doi.org/10.1089/neu.2011.1872] [PMID: 21851229]
[25]
Figueroa JD, Cordero K, llán MS, De Leon M. Dietary omega-3 polyunsaturated fatty acids improve the neurolipidome and restore the DHA status while promoting functional recovery after experimental spinal cord injury. J Neurotrauma 2013; 30(10): 853-68.
[http://dx.doi.org/10.1089/neu.2012.2718] [PMID: 23294084]
[26]
Bailes JE, Mills JD. Docosahexaenoic acid reduces traumatic axonal injury in a rodent head injury model. J Neurotrauma 2010; 27(9): 1617-24.
[http://dx.doi.org/10.1089/neu.2009.1239] [PMID: 20597639]
[27]
D’Eliseo D, Velotti F. Omega-3 fatty acids and cancer cell cytotoxicity: Implications for multi-targeted cancer therapy. J Clin Med 2016; 5(2): 15.
[http://dx.doi.org/10.3390/jcm5020015] [PMID: 26821053]
[28]
Berquin IM, Edwards IJ, Chen YQ. Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Lett 2008; 269(2): 363-77.
[http://dx.doi.org/10.1016/j.canlet.2008.03.044] [PMID: 18479809]
[29]
Biondo PD, Brindley DN, Sawyer MB, Field CJ. The potential for treatment with dietary long-chain polyunsaturated n-3 fatty acids during chemotherapy. J Nutr Biochem 2008; 19(12): 787-96.
[http://dx.doi.org/10.1016/j.jnutbio.2008.02.003] [PMID: 18602809]
[30]
de Aguiar Pastore Silva J, de Souza Fabre M, Waitzberg DL. Omega-3 supplements for patients in chemotherapy and/or radiotherapy: A systematic review. Clin Nutr 2015; 34(3): 359-66.
[http://dx.doi.org/10.1016/j.clnu.2014.11.005] [PMID: 25907586]
[31]
Wang J, Luo T, Li S, Zhao J. The powerful applications of polyunsaturated fatty acids in improving the therapeutic efficacy of anticancer drugs. Expert Opin Drug Deliv 2012; 9(1): 1-7.
[http://dx.doi.org/10.1517/17425247.2011.618183] [PMID: 22171694]
[32]
Nadhanan RR, Skinner J, Chung R, Su YW, Howe PR, Xian CJ. Supplementation with fish oil and genistein, individually or in combination, protects bone against the adverse effects of methotrexate chemotherapy in rats. PLoS One 2013; 8(8): e71592.
[http://dx.doi.org/10.1371/journal.pone.0071592] [PMID: 23951199]
[33]
Rasheed S, Rehman K, Shahid M, Suhail S, Akash MSH. Therapeutic potentials of genistein: New insights and perspectives. J Food Biochem 2022; 46(9): e14228.
[http://dx.doi.org/10.1111/jfbc.14228] [PMID: 35579327]
[34]
Yang T, Fang S, Zhang HX, et al. N-3 PUFAs have antiproliferative and apoptotic effects on human colorectal cancer stem-like cells in vitro. J Nutr Biochem 2013; 24(5): 744-53.
[http://dx.doi.org/10.1016/j.jnutbio.2012.03.023] [PMID: 22854319]
[35]
Alaarg A, Jordan N, Verhoef J, Metselaar J, Storm G, Kok R. Docosahexaenoic acid liposomes for targeting chronic inflammatory diseases and cancer: An in vitro assessment. Int J Nanomedicine 2016; 11: 5027-40.
[http://dx.doi.org/10.2147/IJN.S115995] [PMID: 27785012]
[36]
Siddiqui RA, Harvey K, Stillwell W. Anticancer properties of oxidation products of docosahexaenoic acid. Chem Phys Lipids 2008; 153(1): 47-56.
[http://dx.doi.org/10.1016/j.chemphyslip.2008.02.009] [PMID: 18343223]
[37]
Siddiqui RA, Harvey KA, Xu Z, Bammerlin EM, Walker C, Altenburg JD. Docosahexaenoic acid: A natural powerful adjuvant that improves efficacy for anticancer treatment with no adverse effects. Biofactors 2011; 37(6): 399-412.
[http://dx.doi.org/10.1002/biof.181] [PMID: 22038684]
[38]
Hawkins RA, Sangster K, Arends MJ. Apoptotic death of pancreatic cancer cells induced by polyunsaturated fatty acids varies with double bond number and involves an oxidative mechanism. J Pathol 1998; 185(1): 61-70.
[http://dx.doi.org/10.1002/(SICI)1096-9896(199805)185:1<61::AID-PATH49>3.0.CO;2-8] [PMID: 9713361]
[39]
Heimli H, Giske C, Naderi S, Drevon CA, Hollung K. Eicosapentaenoic acid promotes apoptosis in Ramos cells via activation of caspase-3 and -9. Lipids 2002; 37(8): 797-802.
[http://dx.doi.org/10.1007/s11745-002-0963-6] [PMID: 12371751]
[40]
Xue H, Ren W, Denkinger M, Schlotzer E, Wischmeyer PE. Nutrition modulation of cardiotoxicity and anticancer efficacy related to doxorubicin chemotherapy by glutamine and ω-3 polyunsaturated fatty acids. JPEN J Parenter Enteral Nutr 2016; 40(1): 52-66.
[http://dx.doi.org/10.1177/0148607115581838] [PMID: 25888676]
[41]
Vega OM, Abkenari S, Tong Z, Tedman A, Huerta-Yepez S. Omega-3 polyunsaturated fatty acids and lung cancer: Nutrition or pharmacology? Nutr Cancer 2020; 1-21.
[PMID: 32393071]
[42]
Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851(4): 469-84.
[http://dx.doi.org/10.1016/j.bbalip.2014.08.010] [PMID: 25149823]
[43]
Burdge GC, Calder PC. Introduction to fatty acids and lipids. World Rev Nutr Diet 2015; 112: 1-16.
[http://dx.doi.org/10.1159/000365423] [PMID: 25471798]
[44]
Yaqoob P, Pala HS, Cortina-Borja M, Newsholme EA, Calder PC. Encapsulated fish oil enriched in α-tocopherol alters plasma phospholipid and mononuclear cell fatty acid compositions but not mononuclear cell functions. Eur J Clin Invest 2000; 30(3): 260-74.
[http://dx.doi.org/10.1046/j.1365-2362.2000.00623.x] [PMID: 10692004]
[45]
Epstein FH, Lewis RA, Austen KF, Soberman RJ. Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med 1990; 323(10): 645-55.
[http://dx.doi.org/10.1056/NEJM199009063231006] [PMID: 2166915]
[46]
(a) ) Tilley SL, Coffman TM, Koller BH. Mixed messages: Modulation of inflammation and immune responses by prostaglandins and thromboxanes. J Clin Invest 2001; 108(1): 15-23.
[http://dx.doi.org/10.1172/JCI200113416] [PMID: 11435451];
(b) ) Hoxha M. A systematic review on the role of eicosanoid pathways in rheumatoid arthritis. Adv Med Sci 2018; 63(1): 22-9.
[http://dx.doi.org/10.1016/j.advms.2017.06.004] [PMID: 28818745]
[47]
Mas E, Croft KD, Zahra P, Barden A, Mori TA. Resolvins D1, D2, and other mediators of self-limited resolution of inflammation in human blood following n-3 fatty acid supplementation. Clin Chem 2012; 58(10): 1476-84.
[http://dx.doi.org/10.1373/clinchem.2012.190199] [PMID: 22912397]
[48]
Weylandt KH. Docosapentaenoic acid derived metabolites and mediators – The new world of lipid mediator medicine in a nutshell. Eur J Pharmacol 2016; 785: 108-15.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.002] [PMID: 26546723]
[49]
Mas E, Barden A, Burke V, et al. A randomized controlled trial of the effects of n-3 fatty acids on resolvins in chronic kidney disease. Clin Nutr 2016; 35(2): 331-6.
[http://dx.doi.org/10.1016/j.clnu.2015.04.004] [PMID: 25908532]
[50]
Kalinski P. Regulation of immune responses by prostaglandin E2. J Immunol 2012; 188(1): 21-8.
[http://dx.doi.org/10.4049/jimmunol.1101029] [PMID: 22187483]
[51]
Luu NT, Madden J, Calder PC, et al. Comparison of the pro-inflammatory potential of monocytes from healthy adults and those with peripheral arterial disease using an in vitro culture model. Atherosclerosis 2007; 193(2): 259-68.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.08.050] [PMID: 16982061]
[52]
Miles EA, Thies F, Wallace FA, et al. Influence of age and dietary fish oil on plasma soluble adhesion molecule concentrations. Clin Sci 2001; 100(1): 91-100.
[http://dx.doi.org/10.1042/CS20000198] [PMID: 11115423]
[53]
Bannenberg G, Serhan CN. Specialized pro-resolving lipid mediators in the inflammatory response: An update. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801(12): 1260-73.
[http://dx.doi.org/10.1016/j.bbalip.2010.08.002] [PMID: 20708099]
[54]
Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 2008; 8(5): 349-61.
[http://dx.doi.org/10.1038/nri2294] [PMID: 18437155]
[55]
Serhan CN, Chiang N. Resolution phase lipid mediators of inflammation: agonists of resolution. Curr Opin Pharmacol 2013; 13(4): 632-40.
[http://dx.doi.org/10.1016/j.coph.2013.05.012] [PMID: 23747022]
[56]
Sweeney SE, Firestein GS. Rheumatoid arthritis: regulation of synovial inflammation. Int J Biochem Cell Biol 2004; 36(3): 372-8.
[http://dx.doi.org/10.1016/S1357-2725(03)00259-0] [PMID: 14687914]
[57]
Volker DH, FitzGerald PEB, Garg ML. The eicosapentaenoic to docosahexaenoic acid ratio of diets affects the pathogenesis of arthritis in Lew/SSN rats. J Nutr 2000; 130(3): 559-65.
[http://dx.doi.org/10.1093/jn/130.3.559] [PMID: 10702585]
[58]
Ierna M, Kerr A, Scales H, Berge K, Griinari M. Supplementation of diet with krill oil protects against experimental rheumatoid arthritis. BMC Musculoskelet Disord 2010; 11(1): 136.
[http://dx.doi.org/10.1186/1471-2474-11-136] [PMID: 20587038]
[59]
Kremer JM, Lawrence DA, Petrillo GF, et al. Effects of high-dose fish oil on rheumatoid arthritis after stopping nonsteroidal antiinflammatory drugs clinical and immune correlates. Arthritis Rheum 1995; 38(8): 1107-14.
[http://dx.doi.org/10.1002/art.1780380813] [PMID: 7639807]
[60]
Espersen GT, nGrunnet N, Lervang HH, et al. Decreased Interleukin-1 beta levels in plasma from rheumatoid arthritis patients after dietary supplementation with n-3 polyunsaturated fatty acids. Clin Rheumatol 1992; 11(3): 393-5.
[http://dx.doi.org/10.1007/BF02207200] [PMID: 1458789]
[61]
Kolahi S, Ghorbanihaghjo A, Alizadeh S, et al. Fish oil supplementation decreases serum soluble receptor activator of nuclear factor-kappa B ligand/osteoprotegerin ratio in female patients with rheumatoid arthritis. Clin Biochem 2010; 43(6): 576-80.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.12.011] [PMID: 20034487]
[62]
Bilal S, Haworth O, Wu L, Weylandt KH, Levy BD, Kang JX. Fat-1 transgenic mice with elevated omega-3 fatty acids are protected from allergic airway responses. Biochim Biophys Acta Mol Basis Dis 2011; 1812(9): 1164-9.
[http://dx.doi.org/10.1016/j.bbadis.2011.05.002] [PMID: 21616147]
[63]
Masoodi M, Pearl DS, Eiden M, et al. Altered colonic mucosal Polyunsaturated Fatty Acid (PUFA) derived lipid mediators in ulcerative colitis: new insight into relationship with disease activity and pathophysiology. PLoS One 2013; 8(10): e76532.
[http://dx.doi.org/10.1371/journal.pone.0076532] [PMID: 24204637]
[64]
Sharon P, Stenson WF. Enhanced synthesis of leukotriene B4 by colonic mucosa in inflammatory bowel disease. Gastroenterology 1984; 86(3): 453-60.
[http://dx.doi.org/10.1016/S0016-5085(84)80015-3] [PMID: 6319219]
[65]
Chapkin RS, Davidson LA, Ly L, Weeks BR, Lupton JR, McMurray DN. Immunomodulatory effects of (n-3) fatty acids: putative link to inflammation and colon cancer. J Nutr 2007; 137(1) (Suppl.): 200S-4S.
[http://dx.doi.org/10.1093/jn/137.1.200S] [PMID: 17182826]
[66]
Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 2001; 294(5548): 1871-5.
[http://dx.doi.org/10.1126/science.294.5548.1871] [PMID: 11729303]
[67]
Jacobsen C. Omega-3s in food emulsions: Overview and case studies. Agro Food Ind Hi-Tech 2008; 19: 9-13.
[68]
Lamprecht A, Schäfer U, Lehr CM. Influences of process parameters on preparation of microparticle used as a carrier system for O - 3 unsaturated fatty acid ethyl esters used in supplementary nutrition. J Microencapsul 2001; 18(3): 347-57.
[http://dx.doi.org/10.1080/02652040010000433] [PMID: 11308225]
[69]
(a) ) Iso H, Kobayashi M, Ishihara J, et al. Intake of fish and n-3 fatty acids and risk of coronary heart disease among Japanese: The Japan Public Health Center-Based (JPHC) Study Cohort I. Circulation 2006; 113(2): 195-202.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.581355] [PMID: 16401768];
(b) ) Comunian TA, Favaro-Trindade CS. Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A review. Food Hydrocoll 2016; 61: 442-57.
[http://dx.doi.org/10.1016/j.foodhyd.2016.06.003]
[70]
Barrow CJ, Nolan C, Holub BJ. Bioequivalence of encapsulated and microencapsulated fish-oil supplementation. J Funct Foods 2009; 1(1): 38-43.
[http://dx.doi.org/10.1016/j.jff.2008.09.006]
[71]
Salminen H, Aulbach S, Leuenberger BH, Tedeschi C, Weiss J. Influence of surfactant composition on physical and oxidative stability of Quillaja saponin-stabilized lipid particles with encapsulated ω-3 fish oil. Colloids Surf B Biointerfaces 2014; 122: 46-55.
[http://dx.doi.org/10.1016/j.colsurfb.2014.06.045] [PMID: 25016544]
[72]
Marsanasco M, Piotrkowski B, Calabró V, del Valle Alonso S, Chiaramoni NS. Bioactive constituents in liposomes incorporated in orange juice as new functional food: Thermal stability, rheological and organoleptic properties. J Food Sci Technol 2015; 52(12): 7828-38.
[http://dx.doi.org/10.1007/s13197-015-1924-y] [PMID: 26604355]
[73]
Cao N, Fu Y, He J. Mechanical properties of gelatin films cross-linked, respectively, by ferulic acid and tannin acid. Food Hydrocoll 2007; 21(4): 575-84.
[http://dx.doi.org/10.1016/j.foodhyd.2006.07.001]
[74]
Misra S, Pandey P, Mishra HN. Novel approaches for co-encapsulation of probiotic bacteria with bioactive compounds, their health benefits and functional food product development: A review. Trends Food Sci Technol 2021; 109: 340-51.
[http://dx.doi.org/10.1016/j.tifs.2021.01.039]
[75]
Meng X, Pan Q, Liu Y. Preparation and properties of phytosterols with hydroxypropyl β-cyclodextrin inclusion complexes. Eur Food Res Technol 2012; 235(6): 1039-47.
[http://dx.doi.org/10.1007/s00217-012-1833-5]
[76]
Xiao Z, Liu W, Zhu G, Zhou R, Niu Y. A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology. J Sci Food Agric 2014; 94(8): 1482-94.
[http://dx.doi.org/10.1002/jsfa.6491] [PMID: 24282124]
[77]
Suave J, Dall’Agnol E, Pezzin A, Silva D, Meier M, Soldi V. Microencapsulation: Innovation in different areas. Saúde Ambien Mag/Health Environ J 2006; 7: 12-20.
[78]
Okuro PK, Thomazini M, Balieiro JCC, Liberal RDCO, Fávaro-Trindade CS. Co- encapsulation of Lactobacillus acidophilus with inulin or polydextrose in solid lipid microparticles provides protection and improves stability. Food Res Int 2013; 53(1): 96-103.
[http://dx.doi.org/10.1016/j.foodres.2013.03.042]
[79]
Comunian TA, Boillon MRG, Thomazini M, Nogueira MS, de Castro IA, Favaro-Trindade CS. Protection of echium oil by microencapsulation with phenolic compounds. Food Res Int 2016; 88(Pt A): 114-21.
[http://dx.doi.org/10.1016/j.foodres.2016.03.008] [PMID: 28847390]
[80]
Chen Q, Zhong F, Wen J, McGillivray D, Quek SY. Properties and stability of spray-dried and freeze-dried microcapsules co-encapsulated with fish oil, phytosterol esters, and limonene. Dry Technol 2013; 31(6): 707-16.
[http://dx.doi.org/10.1080/07373937.2012.755541]
[81]
Zhu C, Wang L, Zhu J, et al. OGR1 negatively regulates β-casein and triglyceride synthesis and cell proliferation via the PI3K/AKT/mTOR signaling pathway in goat mammary epithelial cells. Anim Biotechnol 2020; 1-10.
[PMID: 32167419]
[82]
Gulotta A, Saberi AH, Nicoli MC, McClements DJ. Nanoemulsion-based delivery systems for polyunsaturated (ω-3) oils: formation using a spontaneous emulsification method. J Agric Food Chem 2014; 62(7): 1720-5.
[http://dx.doi.org/10.1021/jf4054808] [PMID: 24475908]
[83]
Jamali SN, Assadpour E, Jafari SM. Formulation and application of nanoemulsions for nutraceuticals and phytochemicals. Curr Med Chem 2020; 27(18): 3079-95.
[http://dx.doi.org/10.2174/0929867326666190620102820] [PMID: 31218952]
[84]
Walker RM, Decker EA, McClements DJ. Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: Effect of surfactant concentration and particle size. J Food Eng 2015; 164: 10-20.
[http://dx.doi.org/10.1016/j.jfoodeng.2015.04.028]
[85]
Libinaki R, Gavin P. Changes in bioavailability of omega-3 (dha) through alpha-tocopheryl phosphate mixture (TPM) after oral administration in rats. Nutrients 2017; 9(9): 1042.
[http://dx.doi.org/10.3390/nu9091042] [PMID: 28930161]
[86]
Abbasi F, Samadi F, Jafari SM, Ramezanpour S, Shams Shargh M. Ultrasound-assisted preparation of flaxseed oil nanoemulsions coated with alginate-whey protein for targeted delivery of omega-3 fatty acids into the lower sections of gastrointestinal tract to enrich broiler meat. Ultrason Sonochem 2019; 50: 208-17.
[http://dx.doi.org/10.1016/j.ultsonch.2018.09.014] [PMID: 30249371]
[87]
Alwadei M, Kazi M, Alanazi FK. Novel oral dosage regimen based on self-nanoemulsifying drug delivery systems for codelivery of phytochemicals – Curcumin and thymoquinone. Saudi Pharm J 2019; 27(6): 866-76.
[http://dx.doi.org/10.1016/j.jsps.2019.05.008] [PMID: 31516329]
[88]
Ahmad J, Kohli K, Mir S, Amin S. Self-emulsifying nano carriers for improved oral bioavailability of lipophilic drugs. Rev Adv Sci and Eng 2012; 1(2): 134-47.
[http://dx.doi.org/10.1166/rase.2012.1009]
[89]
Baloch J, Sohail MF, Sarwar HS, et al. Self-nanoemulsifying drug delivery system (SNEDDS) for improved oral bioavailability of chlorpromazine: In vitro and in vivo evaluation. Medicina 2019.
[90]
Puri R, Mahajan M, Sahajpal NS, Singh H, Singh H, Jain SK. Self-nanoemulsifying drug delivery system of docosahexanoic acid: development, in vitro, in vivo characterization. Drug Dev Ind Pharm 2016; 42(7): 1032-41.
[http://dx.doi.org/10.3109/03639045.2015.1107089] [PMID: 26559059]
[91]
Alhakamy NA, Aldawsari HM, Hosny KM, et al. Formulation design and pharmacokinetic evaluation of docosahexaenoic acid containing self-nanoemulsifying drug delivery system for oral administration. Nanomaterials and Nanotechnology 2020; 10
[http://dx.doi.org/10.1177/1847980420950988]
[92]
Reynolds L, Mulik RS, Wen X, Dilip A, Corbin IR. Low-density lipoprotein-mediated delivery of docosahexaenoic acid selectively kills murine liver cancer cells. Nanomedicine 2014; 9(14): 2123-41.
[http://dx.doi.org/10.2217/nnm.13.187] [PMID: 24397600]
[93]
Wen X, Reynolds L, Mulik RS, et al. Hepatic arterial infusion of low-density lipoprotein docosahexaenoic acid nanoparticles selectively disrupts redox balance in hepatoma cells and reduces growth of orthotopic liver tumors in rats. Gastroenterology 2016; 150(2): 488-98.
[http://dx.doi.org/10.1053/j.gastro.2015.10.008] [PMID: 26484708]
[94]
Moss LR, Mulik RS, Van Treuren T, Kim SY, Corbin IR. Investigation into the distinct subcellular effects of docosahexaenoic acid loaded low-density lipoprotein nanoparticles in normal and malignant murine liver cells. Biochim Biophys Acta, Gen Subj 2016; 1860(11): 2363-76.
[http://dx.doi.org/10.1016/j.bbagen.2016.07.004] [PMID: 27418237]
[95]
Zu Y, Hu Y, Yu X, Jiang S. Docetaxel-loaded bovine serum albumin nanoparticles conjugated docosahexaenoic acid for inhibiting lung cancer metastasis to bone. Anticancer Agents Med Chem 2017; 17(4): 542-51.
[http://dx.doi.org/10.2174/1871520616666160817143656] [PMID: 27539313]
[96]
Guerzoni LPB, Nicolas V, Angelova A. In vitro modulation of TrkB receptor signaling upon sequential delivery of curcumin-DHA loaded carriers towards promoting neuronal survival. Pharm Res 2017; 34(2): 492-505.
[http://dx.doi.org/10.1007/s11095-016-2080-4] [PMID: 27995523]
[97]
Rasheed S, Rehman K, Akash MSH. An insight into the risk factors of brain tumors and their therapeutic interventions. Biomed Pharmacother 2021; 143: 112119.
[http://dx.doi.org/10.1016/j.biopha.2021.112119] [PMID: 34474351]
[98]
Khan AA, Alanazi AM, Jabeen M, Hassan I, Bhat MA. Targeted nano-delivery of novel omega-3 conjugate against hepatocellular carcinoma: Regulating COX-2/bcl-2 expression in an animal model. Biomed Pharmacother 2016; 81: 394-401.
[http://dx.doi.org/10.1016/j.biopha.2016.04.033] [PMID: 27261618]
[99]
Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front Mol Biosci 2020; 7: 587997.
[http://dx.doi.org/10.3389/fmolb.2020.587997] [PMID: 33195435]
[100]
Rajpoot K. Solid lipid nanoparticles: A promising nanomaterial in drug delivery. Curr Pharm Des 2019; 25(37): 3943-59.
[http://dx.doi.org/10.2174/1381612825666190903155321] [PMID: 31481000]
[101]
Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin Ther Pat 2020; 30(3): 179-94.
[http://dx.doi.org/10.1080/13543776.2020.1720649] [PMID: 32003260]
[102]
Mussi SV, Silva RC, Oliveira MC, Lucci CM, Azevedo RB, Ferreira LAM. New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles. Eur J Pharm Sci 2013; 48(1-2): 282-90.
[http://dx.doi.org/10.1016/j.ejps.2012.10.025] [PMID: 23178339]
[103]
Serini S, Cassano R, Corsetto P, Rizzo A, Calviello G, Trombino S. Omega-3 PUFA loaded in resveratrol-based solid lipid nanoparticles: Physicochemical properties and antineoplastic activities in human colorectal cancer cells in vitro. Int J Mol Sci 2018; 19(2): 586.
[http://dx.doi.org/10.3390/ijms19020586] [PMID: 29462928]
[104]
Cassano R, Mellace S, Marrelli M, Conforti F, Trombino S. α-Tocopheryl linolenate solid lipid nanoparticles for the encapsulation, protection, and release of the omega-3 polyunsaturated fatty acid: In vitro anti-melanoma activity evaluation. Colloids Surf B Biointerfaces 2017; 151: 128-33.
[http://dx.doi.org/10.1016/j.colsurfb.2016.11.043] [PMID: 27988473]
[105]
Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 2002; 242(1-2): 121-8.
[http://dx.doi.org/10.1016/S0378-5173(02)00180-1] [PMID: 12176234]
[106]
Jores K, Haberland A, Wartewig S, Mäder K, Mehnert W. Solid lipid nanoparticles (SLN) and oil-loaded SLN studied by spectrofluorometry and Raman spectroscopy. Pharm Res 2005; 22(11): 1887-97.
[http://dx.doi.org/10.1007/s11095-005-7148-5] [PMID: 16132349]
[107]
Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 2010; 25(15): 2649-53.
[http://dx.doi.org/10.1002/mds.23429] [PMID: 21069833]
[108]
Hida T, Kozaki K, Muramatsu H, et al. Cyclooxygenase-2 inhibitor induces apoptosis and enhances cytotoxicity of various anticancer agents in non-small cell lung cancer cell lines. Clin Cancer Res 2000; 6(5): 2006-11.
[PMID: 10815926]
[109]
Sreedhar R, Kumar VS, Bhaskaran Pillai AK, Mangalathillam S. Omega-3 fatty acid based nanolipid formulation of atorvastatin for treating hyperlipidemia. Adv Pharm Bull 2019; 9(2): 271-80.
[http://dx.doi.org/10.15171/apb.2019.031] [PMID: 31380253]
[110]
Garg G, Saraf S, Saraf S. Cubosomes: An overview. Biol Pharm Bull 2007; 30(2): 350-3.
[http://dx.doi.org/10.1248/bpb.30.350] [PMID: 17268078]
[111]
Angelova A, Drechsler M, Garamus VM, Angelov B. Liquid Crystalline Nanostructures as PEGylated Reservoirs of Omega-3 Polyunsaturated Fatty Acids: Structural Insights toward Delivery Formulations against Neurodegenerative Disorders. ACS Omega 2018; 3(3): 3235-47.
[http://dx.doi.org/10.1021/acsomega.7b01935] [PMID: 30023865]
[112]
Borné J, Nylander T, Khan A. Effect of lipase on monoolein-based cubic phase dispersion (cubosomes) and vesicles. J Phys Chem B 2002; 106(40): 10492-500.
[http://dx.doi.org/10.1021/jp021023y]
[113]
Dupertuis YM, Boulens N, Angibaud E, et al. Antitumor effect of 5-fluorouracil-loaded liposomes containing n-3 polyunsaturated fatty acids in two different colorectal cancer cell lines. AAPS PharmSciTech 2021; 22(1): 36.
[http://dx.doi.org/10.1208/s12249-020-01897-5] [PMID: 33404935]
[114]
Kim JH, Hong SS, Lee M, et al. Krill oil-incorporated liposomes as an effective nanovehicle to ameliorate the inflammatory responses Of DSS-induced colitis. Int J Nanomedicine 2019; 14: 8305-20.
[http://dx.doi.org/10.2147/IJN.S220053] [PMID: 31806959]
[115]
Malaplate C, Poerio A, Huguet M, et al. Neurotrophic effect of fish-lecithin based nanoliposomes on cortical neurons. Mar Drugs 2019; 17(7): 406.
[http://dx.doi.org/10.3390/md17070406] [PMID: 31323972]
[116]
Wang Y, Fan P, Zhu L, et al. Enhanced in vitro antitumor efficacy of a polyunsaturated fatty acid-conjugated pH-responsive self- assembled ion-pairing liposome-encapsulated prodrug. Nanotechnology 2020; 31(15): 155101.
[http://dx.doi.org/10.1088/1361-6528/ab62d1] [PMID: 31846941]
[117]
Chang M, Zhang T, Han X, et al. Comparative analysis of EPA/DHA-PL forage and liposomes in orotic acid-induced nonalcoholic fatty liver rats and their related mechanisms. J Agric Food Chem 2018; 66(6): 1408-18.
[http://dx.doi.org/10.1021/acs.jafc.7b05173] [PMID: 29345914]
[118]
Kim MW, Niidome T, Lee R. Glycol chitosan-docosahexaenoic acid liposomes for drug delivery: Synergistic effect of doxorubicin-rapamycin in drug-resistant breast cancer. Mar Drugs 2019; 17(10): 581.
[http://dx.doi.org/10.3390/md17100581] [PMID: 31614820]
[119]
Subramony JA. Apomorphine in dopaminergic therapy. Mol Pharm 2006; 3(4): 380-5.
[http://dx.doi.org/10.1021/mp060012c] [PMID: 16889431]
[120]
Khan S, Ganguli M, Aditya A, Khan S, Baboota S, Ali J. Improved in vivo performance and immunomodulatory effect of novel Omega-3 fatty acid based Tacrolimus nanostructured lipid carrier. J Drug Deliv Sci Technol 2019; 52: 138-49.
[http://dx.doi.org/10.1016/j.jddst.2019.04.019]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy