Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Endocrine, Metabolic, and Immune Pathogenesis of Postmenopausal Osteoporosis. Is there a Therapeutic Role in Natural Products?

Author(s): Giuseppe Lisco, Domenico Triggiani, Vito Angelo Giagulli, Giovanni De Pergola, Edoardo Guastamacchia, Giuseppina Piazzolla, Emilio Jirillo* and Vincenzo Triggiani

Volume 23, Issue 10, 2023

Published on: 12 May, 2023

Page: [1278 - 1290] Pages: 13

DOI: 10.2174/1871530323666230330121301

Price: $65

Abstract

Background: Bone health relies on the equilibrium between resorption and new bone generation. Postmenopausal osteoporosis depends on estrogen deficiency which favorite bone resorption and elevated risk of fractures. Moreover, osteoporosis is characterized by a high release of proinflammatory cytokines suggesting the role of the immune system in the pathogenesis of this complex disease (immunoporosis).

Aims: To review the pathophysiology of osteoporosis from an endocrinological and immunological viewpoint and treatments with a specific focus on nutraceuticals.

Methods: PubMed/MEDLINE, Scopus, Google Scholar, and institutional web site were searched. Original articles and reviews were screened and selected by September 2022.

Results: The activation of the Gut Microbiota-Bone Axis contributes to bone health by releasing several metabolites, including short-chain fatty acids (SCFAs), that facilitate bone mineralization directly and indirectly by the induction of T regulatory cells, triggering anti-inflammatory pathways.

Conclusion: Treatments of postmenopausal osteoporosis are based on lifestyle changes, calcium and vitamin D supplementation, and anti-resorptive and anabolic agents, such as bisphosphonates, Denosumab, Teriparatide, Romosozumab. However, phytoestrogens, polyphenols, probiotics, and polyunsaturated fatty acids may improve bone health by several mechanisms, including anti-inflammatory properties. Specific clinical trials are needed to assess the efficacy/effectiveness of the possible anti-osteoporotic activity of natural products as add on to background treatment.

Graphical Abstract

[1]
Chen, X.; Wang, Z.; Duan, N.; Zhu, G.; Schwarz, E.M.; Xie, C. Osteoblast–osteoclast interactions. Connect. Tissue Res., 2018, 59(2), 99-107.
[http://dx.doi.org/10.1080/03008207.2017.1290085] [PMID: 28324674]
[2]
Kenkre, J.S.; Bassett, J.H.D. The bone remodelling cycle. Ann. Clin. Biochem., 2018, 55(3), 308-327.
[http://dx.doi.org/10.1177/0004563218759371] [PMID: 29368538]
[3]
Madel, M.B.; Ibáñez, L.; Wakkach, A.; de Vries, T.J.; Teti, A.; Apparailly, F.; Blin-Wakkach, C. Immune function and diversity of osteoclasts in normal and pathological conditions. Front. Immunol., 2019, 10, 1408.
[http://dx.doi.org/10.3389/fimmu.2019.01408] [PMID: 31275328]
[4]
Yasuda, H. Discovery of the RANKL/RANK/OPG system. J. Bone Miner. Metab., 2021, 39(1), 2-11.
[http://dx.doi.org/10.1007/s00774-020-01175-1] [PMID: 33389131]
[5]
Wee, N.K.Y.; Sims, N.A.; Morello, R. The osteocyte transcriptome: Discovering messages buried within bone. Curr. Osteoporos. Rep., 2021, 19(6), 604-615.
[http://dx.doi.org/10.1007/s11914-021-00708-5] [PMID: 34757588]
[6]
Clowes, J.A.; Riggs, B.L.; Khosla, S. The role of the immune system in the pathophysiology of osteoporosis. Immunol. Rev., 2005, 208(1), 207-227.
[http://dx.doi.org/10.1111/j.0105-2896.2005.00334.x] [PMID: 16313351]
[7]
Walsh, M.C.; Takegahara, N.; Kim, H.; Choi, Y. Updating osteoimmunology: Regulation of bone cells by innate and adaptive immunity. Nat. Rev. Rheumatol., 2018, 14(3), 146-156.
[http://dx.doi.org/10.1038/nrrheum.2017.213] [PMID: 29323344]
[8]
Udagawa, N.; Koide, M.; Nakamura, M.; Nakamichi, Y.; Yamashita, T.; Uehara, S.; Kobayashi, Y.; Furuya, Y.; Yasuda, H.; Fukuda, C.; Tsuda, E. Osteoclast differentiation by RANKL and OPG signaling pathways. J. Bone Miner. Metab., 2021, 39(1), 19-26.
[http://dx.doi.org/10.1007/s00774-020-01162-6] [PMID: 33079279]
[9]
Rachner, T.D.; Khosla, S.; Hofbauer, L.C. Osteoporosis: Now and the future. Lancet, 2011, 377(9773), 1276-1287.
[http://dx.doi.org/10.1016/S0140-6736(10)62349-5] [PMID: 21450337]
[10]
Langdahl, B.; Ferrari, S.; Dempster, D.W. Bone modeling and remodeling: Potential as therapeutic targets for the treatment of osteoporosis. Ther. Adv. Musculoskelet. Dis., 2016, 8(6), 225-235.
[http://dx.doi.org/10.1177/1759720X16670154] [PMID: 28255336]
[11]
Saxena, Y.; Routh, S.; Mukhopadhaya, A. Immunoporosis: Role of innate immune cells in osteoporosis. Front. Immunol., 2021, 12, 687037.
[http://dx.doi.org/10.3389/fimmu.2021.687037] [PMID: 34421899]
[12]
Inada, M.; Miyaura, C. Cytokines in bone diseases. Cytokine and postmenopausal osteoporosis. Clin. Calcium, 2010, 20(10), 1467-1472.
[PMID: 20890027]
[13]
Börjesson, A.E.; Lagerquist, M.K.; Windahl, S.H.; Ohlsson, C. The role of estrogen receptor α in the regulation of bone and growth plate cartilage. Cell. Mol. Life Sci., 2013, 70(21), 4023-4037.
[http://dx.doi.org/10.1007/s00018-013-1317-1] [PMID: 23516016]
[14]
Pacifici, R. Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J. Bone Miner. Res., 1996, 11(8), 1043-1051.
[http://dx.doi.org/10.1002/jbmr.5650110802] [PMID: 8854239]
[15]
Ralston, S.H. Analysis of gene expression in human bone biopsies by polymerase chain reaction: Evidence for enhanced cytokine expression in postmenopausal osteoporosis. J. Bone Miner. Res., 1994, 9(6), 883-890.
[http://dx.doi.org/10.1002/jbmr.5650090614] [PMID: 8079663]
[16]
Fischer, V.; Haffner-Luntzer, M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Semin. Cell Dev. Biol., 2022, 123, 14-21.
[http://dx.doi.org/10.1016/j.semcdb.2021.05.014] [PMID: 34024716]
[17]
Garnero, P.; Sornay-Rendu, E.; Chapuy, M.C.; Delmas, P.D. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J. Bone Miner. Res., 1996, 11(3), 337-349.
[http://dx.doi.org/10.1002/jbmr.5650110307] [PMID: 8852944]
[18]
Pacifici, R.; Rifas, L.; McCracken, R.; Vered, I.; McMurtry, C.; Avioli, L.V.; Peck, W.A. Ovarian steroid treatment blocks a postmenopausal increase in blood monocyte interleukin 1 release. Proc. Natl. Acad. Sci. USA, 1989, 86(7), 2398-2402.
[http://dx.doi.org/10.1073/pnas.86.7.2398] [PMID: 2522659]
[19]
Rogers, A.; Eastell, R. Effects of estrogen therapy of postmenopausal women on cytokines measured in peripheral blood. J. Bone Miner. Res., 1998, 13(10), 1577-1586.
[http://dx.doi.org/10.1359/jbmr.1998.13.10.1577] [PMID: 9783546]
[20]
Abildgaard, J.; Tingstedt, J.; Zhao, Y.; Hartling, H.J.; Pedersen, A.T.; Lindegaard, B.; Dam Nielsen, S. Increased systemic inflammation and altered distribution of T-cell subsets in postmenopausal women. PLoS One, 2020, 15(6), e0235174.
[http://dx.doi.org/10.1371/journal.pone.0235174] [PMID: 32574226]
[21]
Breuil, V.; Ticchioni, M.; Testa, J.; Roux, C.H.; Ferrari, P.; Breittmayer, J.P.; Albert-Sabonnadière, C.; Durant, J.; De Perreti, F.; Bernard, A.; Euller-Ziegler, L.; Carle, G.F. Immune changes in post-menopausal osteoporosis: The Immunos study. Osteoporos. Int., 2010, 21(5), 805-814.
[http://dx.doi.org/10.1007/s00198-009-1018-7] [PMID: 19876583]
[22]
Pietschmann, P.; Grisar, J.; Thien, R.; Willheim, M.; Kerschan-Schindl, K.; Preisinger, E.; Peterlik, M. Immune phenotype and intracellular cytokine production of peripheral blood mononuclear cells from postmenopausal patients with osteoporotic fractures. Exp. Gerontol., 2001, 36(10), 1749-1759.
[http://dx.doi.org/10.1016/S0531-5565(01)00125-5] [PMID: 11672994]
[23]
Fang, H.; Zhang, H.; Wang, Z.; Zhou, Z.; Li, Y.; Lu, L. Systemic immune-inflammation index acts as a novel diagnostic biomarker for postmenopausal osteoporosis and could predict the risk of osteoporotic fracture. J. Clin. Lab. Anal., 2020, 34(1), e23016.
[http://dx.doi.org/10.1002/jcla.23016] [PMID: 31423643]
[24]
Fallon, M.D.; Whyte, M.P.; Craig, R.B., Jr; Teitelbaum, S.L. Mast-cell proliferation in postmenopausal osteoporosis. Calcif. Tissue Int., 1983, 35(1), 29-31.
[http://dx.doi.org/10.1007/BF02405002] [PMID: 6839188]
[25]
Magrone, T.; Magrone, M.; Jirillo, E. Mast cells as a double-edged sword in immunity: Their function in health and disease. First of two parts. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(5), 654-669.
[http://dx.doi.org/10.2174/1871530319666191202120301] [PMID: 31789135]
[26]
Parveen, B.; Parveen, A.; Vohora, D. Biomarkers of osteoporosis: An update. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(7), 895-912.
[http://dx.doi.org/10.2174/1871530319666190204165207] [PMID: 30727928]
[27]
Ginaldi, L.; Di Benedetto, M.C.; De Martinis, M. Osteoporosis, inflammation and ageing. Immun. Ageing, 2005, 2(1), 14.
[http://dx.doi.org/10.1186/1742-4933-2-14] [PMID: 16271143]
[28]
Lei, Z.; Xiaoying, Z.; Xingguo, L. Ovariectomy-associated changes in bone mineral density and bone marrow haematopoiesis in rats. Int. J. Exp. Pathol., 2009, 90(5), 512-519.
[http://dx.doi.org/10.1111/j.1365-2613.2009.00661.x] [PMID: 19765105]
[29]
Roggia, C.; Gao, Y.; Cenci, S.; Weitzmann, M.N.; Toraldo, G.; Isaia, G.; Pacifici, R. Up-regulation of TNF-producing T cells in the bone marrow: A key mechanism by which estrogen deficiency induces bone loss in vivo. Proc. Natl. Acad. Sci. USA, 2001, 98(24), 13960-13965.
[http://dx.doi.org/10.1073/pnas.251534698] [PMID: 11717453]
[30]
Weitzmann, M.N.; Ofotokun, I. Physiological and pathophysiological bone turnover-role of the immune system. Nat. Rev. Endocrinol., 2016, 12(9), 518-532.
[http://dx.doi.org/10.1038/nrendo.2016.91] [PMID: 27312863]
[31]
Sun, Z.; Qu, J.; Xia, X.; Pan, Y.; Liu, X.; Liang, H.; Dou, H.; Hou, Y. 17β-Estradiol promotes LC3B-associated phagocytosis in trained immunity of female mice against sepsis. Int. J. Biol. Sci., 2021, 17(2), 460-474.
[http://dx.doi.org/10.7150/ijbs.53050] [PMID: 33613105]
[32]
Stubelius, A.; Andersson, A.; Islander, U.; Carlsten, H. Ovarian hormones in innate inflammation. Immunobiology, 2017, 222(8-9), 878-883.
[http://dx.doi.org/10.1016/j.imbio.2017.05.007] [PMID: 28554684]
[33]
Masuzawa, T.; Miyaura, C.; Onoe, Y.; Kusano, K.; Ohta, H.; Nozawa, S.; Suda, T. Estrogen deficiency stimulates B lymphopoiesis in mouse bone marrow. J. Clin. Invest., 1994, 94(3), 1090-1097.
[http://dx.doi.org/10.1172/JCI117424] [PMID: 8083350]
[34]
Onoe, Y.; Miyaura, C.; Ito, M.; Ohta, H.; Nozawa, S.; Suda, T. Comparative effects of estrogen and raloxifene on B lymphopoiesis and bone loss induced by sex steroid deficiency in mice. J. Bone Miner. Res., 2000, 15(3), 541-549.
[http://dx.doi.org/10.1359/jbmr.2000.15.3.541] [PMID: 10750569]
[35]
Arron, J.R.; Choi, Y. Bone versus immune system. Nature, 2000, 408(6812), 535-536.
[http://dx.doi.org/10.1038/35046196] [PMID: 11117729]
[36]
Srivastava, R.K.; Dar, H.Y.; Mishra, P.K. Immunoporosis: Immunology of osteoporosis—role of T cells. Front. Immunol., 2018, 9, 657.
[http://dx.doi.org/10.3389/fimmu.2018.00657] [PMID: 29675022]
[37]
Michalski, M.N.; McCauley, L.K. Macrophages and skeletal health. Pharmacol. Ther., 2017, 174, 43-54.
[http://dx.doi.org/10.1016/j.pharmthera.2017.02.017] [PMID: 28185913]
[38]
Murray, P.J. Macrophage polarization. Annu. Rev. Physiol., 2017, 79(1), 541-566.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034339] [PMID: 27813830]
[39]
Chang, M.K.; Raggatt, L.J.; Alexander, K.A.; Kuliwaba, J.S.; Fazzalari, N.L.; Schroder, K.; Maylin, E.R.; Ripoll, V.M.; Hume, D.A.; Pettit, A.R. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J. Immunol., 2008, 181(2), 1232-1244.
[http://dx.doi.org/10.4049/jimmunol.181.2.1232] [PMID: 18606677]
[40]
Loi, F.; Córdova, L.A.; Zhang, R.; Pajarinen, J.; Lin, T.; Goodman, S.B.; Yao, Z. The effects of immunomodulation by macrophage subsets on osteogenesis in vitro. Stem Cell Res. Ther., 2016, 7(1), 15.
[http://dx.doi.org/10.1186/s13287-016-0276-5] [PMID: 26801095]
[41]
Huang, R.; Wang, X.; Zhou, Y.; Xiao, Y. RANKL-induced M1 macrophages are involved in bone formation. Bone Res., 2017, 5(1), 17019.
[http://dx.doi.org/10.1038/boneres.2017.19] [PMID: 29263936]
[42]
Ponzetti, M.; Rucci, N. Updates on osteoimmunology: What’s new on the cross-talk between bone and immune system. Front. Endocrinol., 2019, 10, 236.
[http://dx.doi.org/10.3389/fendo.2019.00236] [PMID: 31057482]
[43]
Park-Min, K.H. Metabolic reprogramming in osteoclasts. Semin. Immunopathol., 2019, 41(5), 565-572.
[http://dx.doi.org/10.1007/s00281-019-00757-0] [PMID: 31552471]
[44]
Kim, J.M.; Jeong, D.; Kang, H.K.; Jung, S.Y.; Kang, S.S.; Min, B.M. Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL-stimulated osteoclast differentiation. Cell. Physiol. Biochem., 2007, 20(6), 935-946.
[http://dx.doi.org/10.1159/000110454] [PMID: 17982276]
[45]
Dou, C.; Ding, N.; Zhao, C.; Hou, T.; Kang, F.; Cao, Z.; Liu, C.; Bai, Y.; Dai, Q.; Ma, Q.; Luo, F.; Xu, J.; Dong, S. Estrogen deficiency-mediated m2 macrophage osteoclastogenesis contributes to M1/M2 ratio alteration in ovariectomized osteoporotic mice. J. Bone Miner. Res., 2018, 33(5), 899-908.
[http://dx.doi.org/10.1002/jbmr.3364] [PMID: 29281118]
[46]
Deng, F.Y.; Lei, S.F.; Zhang, Y.; Zhang, Y.L.; Zheng, Y.P.; Zhang, L.S.; Pan, R.; Wang, L.; Tian, Q.; Shen, H.; Zhao, M.; Wang Lundberg, Y.; Liu, Y.Z.; Papasian, C.J.; Deng, H. W. Peripheral blood monocyte-expressed ANXA2 gene is involved in pathogenesis of osteoporosis in humans. Mol. Cell. Proteomics, 2011, 10(11), M111.011700.
[http://dx.doi.org/10.1074/mcp.M111.011700]
[47]
Liu, Y.Z.; Dvornyk, V.; Lu, Y.; Shen, H.; Lappe, J.M.; Recker, R.R.; Deng, H.W. A novel pathophysiological mechanism for osteoporosis suggested by an in vivo gene expression study of circulating monocytes. J. Biol. Chem., 2005, 280(32), 29011-29016.
[http://dx.doi.org/10.1074/jbc.M501164200] [PMID: 15965235]
[48]
Chen, X.D.; Xiao, P.; Lei, S.F.; Liu, Y.Z.; Guo, Y.F.; Deng, F.Y.; Tan, L.J.; Zhu, X.Z.; Chen, F.R.; Recker, R.R.; Deng, H.W. Gene expression profiling in monocytes and SNP association suggest the importance of the STAT1 gene for osteoporosis in both Chinese and Caucasians. J. Bone Miner. Res., 2010, 25(2), 339-355.
[http://dx.doi.org/10.1359/jbmr.090724]
[49]
Daswani, B.; Gupta, M.K.; Gavali, S.; Desai, M.; Sathe, G.J.; Patil, A.; Parte, P.; Sirdeshmukh, R.; Khatkhatay, M.I. Monocyte proteomics reveals involvement of phosphorylated HSP27 in the pathogenesis of osteoporosis. Dis. Markers, 2015, 2015, 196589.
[http://dx.doi.org/10.1155/2015/196589] [PMID: 26063949]
[50]
Gillespie, M.T. Impact of cytokines and T lymphocytes upon osteoclast differentiation and function. Arthritis Res. Ther., 2007, 9(2), 103.
[http://dx.doi.org/10.1186/ar2141] [PMID: 17381830]
[51]
Sarkar, S.; Fox, D.A. Front Biosci. J Virtual Library, 2005, 10, 656-665.
[http://dx.doi.org/10.2741/1560]
[52]
Teng, Y.T.A. Protective and destructive immunity in the periodontium: Part 2--T-cell-mediated immunity in the periodontium. J. Dent. Res., 2006, 85(3), 209-219.
[http://dx.doi.org/10.1177/154405910608500302] [PMID: 16498066]
[53]
Maitra, R.; Follenzi, A.; Yaghoobian, A.; Montagna, C.; Merlin, S.; Cannizzo, E.S.; Hardin, J.A.; Cobelli, N.; Stanley, E.R.; Santambrogio, L. Dendritic cell-mediated in vivo bone resorption. J. Immunol., 2010, 185(3), 1485-1491.
[http://dx.doi.org/10.4049/jimmunol.0903560] [PMID: 20581147]
[54]
Wang, B.; Dong, Y.; Tian, Z.; Chen, Y.; Dong, S. The role of dendritic cells derived osteoclasts in bone destruction diseases. Genes Dis., 2021, 8(4), 401-411.
[http://dx.doi.org/10.1016/j.gendis.2020.03.009] [PMID: 34179305]
[55]
Narisawa, M.; Kubo, S.; Okada, Y.; Yamagata, K.; Nakayamada, S.; Sakata, K.; Yamaoka, K.; Tanaka, Y. Human dendritic cell-derived osteoclasts with high bone resorption capacity and T cell stimulation ability. Bone, 2021, 142, 115616.
[http://dx.doi.org/10.1016/j.bone.2020.115616] [PMID: 32866681]
[56]
Alnaeeli, M.; Penninger, J.M.; Teng, Y.T.A. Immune interactions with CD4+ T cells promote the development of functional osteoclasts from murine CD11c+ dendritic cells. J. Immunol., 2006, 177(5), 3314-3326.
[http://dx.doi.org/10.4049/jimmunol.177.5.3314] [PMID: 16920972]
[57]
Takayanagi, H.; Ogasawara, K.; Hida, S.; Chiba, T.; Murata, S.; Sato, K.; Takaoka, A.; Yokochi, T.; Oda, H.; Tanaka, K.; Nakamura, K.; Taniguchi, T. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature, 2000, 408(6812), 600-605.
[http://dx.doi.org/10.1038/35046102] [PMID: 11117749]
[58]
Hughes, D.E.; Dai, A.; Tiffee, J.C.; Li, H.H.; Mundy, G.R.; Boyce, B.F. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF–β. Nat. Med., 1996, 2(10), 1132-1136.
[http://dx.doi.org/10.1038/nm1096-1132] [PMID: 8837613]
[59]
Hajishengallis, G.; Moutsopoulos, N.M.; Hajishengallis, E.; Chavakis, T. Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin. Immunol., 2016, 28(2), 146-158.
[http://dx.doi.org/10.1016/j.smim.2016.02.002] [PMID: 26936034]
[60]
Poubelle, P.E.; Chakravarti, A.; Fernandes, M.J.; Doiron, K.; Marceau, A.A. Differential expression of RANK, RANK-L, and osteoprotegerin by synovial fluid neutrophils from patients with rheumatoid arthritis and by healthy human blood neutrophils. Arthritis Res. Ther., 2007, 9(2), R25.
[http://dx.doi.org/10.1186/ar2137] [PMID: 17341304]
[61]
Iking-Konert, C.; Ostendorf, B.; Sander, O.; Jost, M.; Wagner, C.; Joosten, L.; Schneider, M.; Hänsch, G.M. Transdifferentiation of polymorphonuclear neutrophils to dendritic-like cells at the site of inflammation in rheumatoid arthritis: Evidence for activation by T cells. Ann. Rheum. Dis., 2005, 64(10), 1436-1442.
[http://dx.doi.org/10.1136/ard.2004.034132] [PMID: 15778239]
[62]
Lesclous, P.; Guez, D.; Llorens, A.; Saffar, J.L. Time-course of mast cell accumulation in rat bone marrow after ovariectomy. Calcif. Tissue Int., 2001, 68(5), 297-303.
[http://dx.doi.org/10.1007/BF02390837] [PMID: 11683537]
[63]
Lesclous, P.; Saffar, J.L. Mast cells accumulate in rat bone marrow after ovariectomy. Cells Tissues Organs, 1999, 164(1), 23-29.
[http://dx.doi.org/10.1159/000016639] [PMID: 10940670]
[64]
Tyan, M.L. Effect of promethazine on lumbar vertebral bone mass in postmenopausal women. J. Intern. Med., 1993, 234(2), 143-148.
[http://dx.doi.org/10.1111/j.1365-2796.1993.tb00723.x] [PMID: 8340736]
[65]
Kroner, J.; Kovtun, A.; Kemmler, J.; Messmann, J.J.; Strauss, G.; Seitz, S.; Schinke, T.; Amling, M.; Kotrba, J.; Froebel, J.; Dudeck, J.; Dudeck, A.; Ignatius, A. Mast cells are critical regulators of bone fracture-induced inflammation and osteoclast formation and activity. J. Bone Miner. Res., 2017, 32(12), 2431-2444.
[http://dx.doi.org/10.1002/jbmr.3234] [PMID: 28777474]
[66]
Zaitsu, M.; Narita, S.I.; Lambert, K.C.; Grady, J.J.; Estes, D.M.; Curran, E.M.; Brooks, E.G.; Watson, C.S.; Goldblum, R.M.; Midoro-Horiuti, T. Estradiol activates mast cells via a non-genomic estrogen receptor-α and calcium influx. Mol. Immunol., 2007, 44(8), 1977-1985.
[http://dx.doi.org/10.1016/j.molimm.2006.09.030] [PMID: 17084457]
[67]
Rivellese, F.; Nerviani, A.; Rossi, F.W.; Marone, G.; Matucci-Cerinic, M.; de Paulis, A.; Pitzalis, C. Mast cells in rheumatoid arthritis: Friends or foes? Autoimmun. Rev., 2017, 16(6), 557-563.
[http://dx.doi.org/10.1016/j.autrev.2017.04.001] [PMID: 28411167]
[68]
Feyerabend, T.B.; Weiser, A.; Tietz, A.; Stassen, M.; Harris, N.; Kopf, M.; Radermacher, P.; Möller, P.; Benoist, C.; Mathis, D.; Fehling, H.J.; Rodewald, H.R. Cre-mediated cell ablation contests mast cell contribution in models of antibody- and T cell-mediated autoimmunity. Immunity, 2011, 35(5), 832-844.
[http://dx.doi.org/10.1016/j.immuni.2011.09.015] [PMID: 22101159]
[69]
de Lange-Brokaar, B.J.E.; Kloppenburg, M.; Andersen, S.N.; Dorjée, A.L.; Yusuf, E.; Herb-van Toorn, L.; Kroon, H.M.; Zuurmond, A.M.; Stojanovic-Susulic, V.; Bloem, J.L.; Nelissen, R.G.H.H.; Toes, R.E.M.; Ioan-Facsinay, A. Characterization of synovial mast cells in knee osteoarthritis: Association with clinical parameters. Osteoarthritis Cartilage, 2016, 24(4), 664-671.
[http://dx.doi.org/10.1016/j.joca.2015.11.011] [PMID: 26671522]
[70]
Wang, Q.; Lepus, C.M.; Raghu, H.; Reber, L.L.; Tsai, M.M.; Wong, H.H.; von Kaeppler, E.; Lingampalli, N.; Bloom, M.S.; Hu, N.; Elliott, E.E.; Oliviero, F.; Punzi, L.; Giori, N.J.; Goodman, S.B.; Chu, C.R.; Sokolove, J.; Fukuoka, Y.; Schwartz, L.B.; Galli, S.J.; Robinson, W.H. IgE-mediated mast cell activation promotes inflammation and cartilage destruction in osteoarthritis. ELife, 2019, 14, e39905.
[http://dx.doi.org/10.7554/eLife.39905]
[71]
Nakano, S.; Mishiro, T.; Takahara, S.; Yokoi, H.; Hamada, D.; Yukata, K.; Takata, Y.; Goto, T.; Egawa, H.; Yasuoka, S.; Furouchi, H.; Hirasaka, K.; Nikawa, T.; Yasui, N. Distinct expression of mast cell tryptase and protease activated receptor-2 in synovia of rheumatoid arthritis and osteoarthritis. Clin. Rheumatol., 2007, 26(8), 1284-1292.
[http://dx.doi.org/10.1007/s10067-006-0495-8] [PMID: 17205215]
[72]
Lee, H.; Kashiwakura, J.I.; Matsuda, A.; Watanabe, Y.; Sakamoto-Sasaki, T.; Matsumoto, K.; Hashimoto, N.; Saito, S.; Ohmori, K.; Nagaoka, M.; Tokuhashi, Y.; Ra, C.; Okayama, Y. Activation of human synovial mast cells from rheumatoid arthritis or osteoarthritis patients in response to aggregated IgG through Fcγ; receptor I and Fcγ; receptor II. Arthritis Rheum., 2013, 65(1), 109-119.
[http://dx.doi.org/10.1002/art.37741] [PMID: 23055095]
[73]
Lindholm, R.; Lindholm, S.; Liukko, P. Fracture healing and mast cells. I. The periosteal callus in rats. Acta Orthop. Scand., 1967, 38(1-4), 115-122.
[http://dx.doi.org/10.3109/17453676708989624] [PMID: 4166390]
[74]
Banovac, K.; Renfree, K.; Makowski, A.L.; Latta, L.L.; Altman, R.D. Fracture healing and mast cells. J. Orthop. Trauma, 1995, 9(6), 482-490.
[http://dx.doi.org/10.1097/00005131-199509060-00005] [PMID: 8592261]
[75]
de Matos, C.T.; Berg, L.; Michaëlsson, J.; Felländer-Tsai, L.; Kärre, K.; Söderström, K. Activating and inhibitory receptors on synovial fluid natural killer cells of arthritis patients: role of CD94/NKG2A in control of cytokine secretion. Immunology, 2007, 122(2), 291-301.
[http://dx.doi.org/10.1111/j.1365-2567.2007.02638.x] [PMID: 17521371]
[76]
Tak, P.P.; Kummer, J.A.; Hack, C.E.; Daha, M.R.; Smeets, T.J.M.; Erkelens, G.W.; Meinders, A.E.; Kluin, P.M.; Breedveld, F.C. Granzyme-positive cytotoxic cells are specifically increased in early rheumatoid synovial tissue. Arthritis Rheum., 1994, 37(12), 1735-1743.
[http://dx.doi.org/10.1002/art.1780371205] [PMID: 7986219]
[77]
McInnes, I.B.; Leung, B.P.; Sturrock, R.D.; Field, M.; Liew, F.Y. Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-α production in rheumatoid arthritis. Nat. Med., 1997, 3(2), 189-195.
[http://dx.doi.org/10.1038/nm0297-189] [PMID: 9018238]
[78]
Kurachi, T.; Morita, I.; Murota, S. Involvement of adhesion molecules LFA-1 and ICAM-1 in osteoclast development. Biochim. Biophys. Acta Mol. Cell Res., 1993, 1178(3), 259-266.
[http://dx.doi.org/10.1016/0167-4889(93)90202-Z] [PMID: 7779165]
[79]
Feng, S.; Madsen, S.H.; Viller, N.N.; Neutzsky-Wulff, A.V.; Geisler, C.; Karlsson, L.; Söderström, K. Interleukin-15-activated natural killer cells kill autologous osteoclasts via LFA-1, DNAM-1 and TRAIL, and inhibit osteoclast-mediated bone erosion in vitro. Immunology, 2015, 145(3), 367-379.
[http://dx.doi.org/10.1111/imm.12449] [PMID: 25684021]
[80]
Magrone, T.; Jirillo, E. The Tolerant immune system: Biological significance and clinical implications of T cell tolerance. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(5), 580-593.
[http://dx.doi.org/10.2174/1871530319666181211161721] [PMID: 30539706]
[81]
Dar, H.Y.; Azam, Z.; Anupam, R.; Mondal, R.K.; Srivastava, R.K. Osteoimmunology: The Nexus between bone and immune system. Front. Biosci., 2018, 23(3), 464-492.
[PMID: 28930556]
[82]
Taylor, A.; Verhagen, J.; Blaser, K.; Akdis, M.; Akdis, C.A. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: The role of T regulatory cells. Immunology, 2006, 117(4), 433-442.
[http://dx.doi.org/10.1111/j.1365-2567.2006.02321.x] [PMID: 16556256]
[83]
Runyan, C.E.; Liu, Z.; Schnaper, H.W. Phosphatidylinositol 3-kinase and Rab5 GTPase inversely regulate the Smad anchor for receptor activation (SARA) protein independently of transforming growth factor-β1. J. Biol. Chem., 2012, 287(43), 35815-35824.
[http://dx.doi.org/10.1074/jbc.M112.380493] [PMID: 22942286]
[84]
Zhao, L.; Jiang, S.; Hantash, B.M. Transforming growth factor beta1 induces osteogenic differentiation of murine bone marrow stromal cells. Tissue Eng. Part A, 2010, 16(2), 725-733.
[http://dx.doi.org/10.1089/ten.tea.2009.0495] [PMID: 19769530]
[85]
Oh, S.; Rankin, A.L.; Caton, A.J. CD4 + CD25 + regulatory T cells in autoimmune arthritis. Immunol. Rev., 2010, 233(1), 97-111.
[http://dx.doi.org/10.1111/j.0105-2896.2009.00848.x] [PMID: 20192995]
[86]
Wang, Y.; Zhang, W.; Lim, S.M.; Xu, L.; Jin, J.O. Interleukin-10-producing B cells help suppress ovariectomy-mediated osteoporosis. Immune Netw., 2020, 20(6), e50.
[http://dx.doi.org/10.4110/in.2020.20.e50] [PMID: 33425435]
[87]
Zhu, L.; Hua, F.; Ding, W.; Ding, K.; Zhang, Y.; Xu, C. The correlation between the Th17/Treg cell balance and bone health. Immun. Ageing, 2020, 17(1), 30.
[http://dx.doi.org/10.1186/s12979-020-00202-z] [PMID: 33072163]
[88]
Takayanagi, H. Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol., 2007, 7(4), 292-304.
[http://dx.doi.org/10.1038/nri2062] [PMID: 17380158]
[89]
Raphael, I.; Nalawade, S.; Eagar, T.N.; Forsthuber, T.G. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine, 2015, 74(1), 5-17.
[http://dx.doi.org/10.1016/j.cyto.2014.09.011] [PMID: 25458968]
[90]
Bandyopadhyay, S.; Lion, J.M.; Mentaverri, R.; Ricupero, D.A.; Kamel, S.; Romero, J.R.; Chattopadhyay, N. Attenuation of osteoclastogenesis and osteoclast function by apigenin. Biochem. Pharmacol., 2006, 72(2), 184-197.
[http://dx.doi.org/10.1016/j.bcp.2006.04.018] [PMID: 16750176]
[91]
Xiong, J.; Piemontese, M.; Thostenson, J.D.; Weinstein, R.S.; Manolagas, S.C.; O’Brien, C.A. Osteocyte-derived RANKL is a critical mediator of the increased bone resorption caused by dietary calcium deficiency. Bone, 2014, 66, 146-154.
[http://dx.doi.org/10.1016/j.bone.2014.06.006] [PMID: 24933342]
[92]
Tan, C.Y.; Ramirez, Z.E.; Surana, N.K. A modern-world view of host–microbiota–pathogen interactions. J. Immunol., 2021, 207(7), 1710-1718.
[http://dx.doi.org/10.4049/jimmunol.2100215] [PMID: 34544813]
[93]
Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ, 2018, 361, k2179.
[http://dx.doi.org/10.1136/bmj.k2179] [PMID: 29899036]
[94]
Schwarzer, M.; Makki, K.; Storelli, G.; Machuca-Gayet, I.; Srutkova, D.; Hermanova, P.; Martino, M.E.; Balmand, S.; Hudcovic, T.; Heddi, A.; Rieusset, J.; Kozakova, H.; Vidal, H.; Leulier, F. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science, 2016, 351(6275), 854-857.
[http://dx.doi.org/10.1126/science.aad8588] [PMID: 26912894]
[95]
Yan, J.; Herzog, J.W.; Tsang, K.; Brennan, C.A.; Bower, M.A.; Garrett, W.S.; Sartor, B.R.; Aliprantis, A.O.; Charles, J.F. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc. Natl. Acad. Sci. USA, 2016, 113(47), E7554-E7563.
[http://dx.doi.org/10.1073/pnas.1607235113] [PMID: 27821775]
[96]
Guss, J.D.; Horsfield, M.W.; Fontenele, F.F.; Sandoval, T.N.; Luna, M.; Apoorva, F.; Lima, S.F.; Bicalho, R.C.; Singh, A.; Ley, R.E.; van der Meulen, M.C.H.; Goldring, S.R.; Hernandez, C.J. Alterations to the gut microbiome impair bone strength and tissue material properties. J. Bone Miner. Res., 2017, 32(6), 1343-1353.
[http://dx.doi.org/10.1002/jbmr.3114] [PMID: 28244143]
[97]
Bishai, J.D.; Palm, N.W. Small molecule metabolites at the host–microbiota interface. J. Immunol., 2021, 207(7), 1725-1733.
[http://dx.doi.org/10.4049/jimmunol.2100528] [PMID: 34544815]
[98]
Scholz-Ahrens, K.E.; Ade, P.; Marten, B.; Weber, P.; Timm, W.; Asil, Y.; Glüer, C.C.; Schrezenmeir, J. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J. Nutr., 2007, 137(3)(Suppl. 2), 838S-846S.
[http://dx.doi.org/10.1093/jn/137.3.838S] [PMID: 17311984]
[99]
Wallace, T.C.; Marzorati, M.; Spence, L.; Weaver, C.M.; Williamson, P.S. New frontiers in fibers: Innovative and emerging research on the gut microbiome and bone health. J. Am. Coll. Nutr., 2017, 36(3), 218-222.
[http://dx.doi.org/10.1080/07315724.2016.1257961] [PMID: 28318400]
[100]
Klag, K.A.; Round, J.L. Microbiota-immune interactions regulate metabolic disease. J. Immunol., 2021, 207(7), 1719-1724.
[http://dx.doi.org/10.4049/jimmunol.2100419] [PMID: 34544814]
[101]
Jones, M.L.; Martoni, C.J.; Prakash, S. Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: A post hoc analysis of a randomized controlled trial. J. Clin. Endocrinol. Metab., 2013, 98(7), 2944-2951.
[http://dx.doi.org/10.1210/jc.2012-4262] [PMID: 23609838]
[102]
Castaneda, M.; Strong, J.M.; Alabi, D.A.; Hernandez, C.J. The gut microbiome and bone strength. Curr. Osteoporos. Rep., 2020, 18(6), 677-683.
[http://dx.doi.org/10.1007/s11914-020-00627-x] [PMID: 33030683]
[103]
LeBlanc, J.G.; Milani, C.; de Giori, G.S.; Sesma, F.; van Sinderen, D.; Ventura, M. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol., 2013, 24(2), 160-168.
[http://dx.doi.org/10.1016/j.copbio.2012.08.005] [PMID: 22940212]
[104]
Gaudino, S.J.; Huang, H.; Jean-Pierre, M.; Joshi, P.; Beaupre, M.; Kempen, C.; Wong, H.T.; Kumar, P. Cutting Edge: Intestinal IL-17A receptor signaling specifically regulates high-fat diet–mediated, microbiota-driven metabolic disorders. J. Immunol., 2021, 207(8), 1959-1963.
[http://dx.doi.org/10.4049/jimmunol.2000986] [PMID: 34544802]
[105]
Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(8), 461-478.
[http://dx.doi.org/10.1038/s41575-019-0157-3] [PMID: 31123355]
[106]
Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; Takahashi, M.; Fukuda, N.N.; Murakami, S.; Miyauchi, E.; Hino, S.; Atarashi, K.; Onawa, S.; Fujimura, Y.; Lockett, T.; Clarke, J.M.; Topping, D.L.; Tomita, M.; Hori, S.; Ohara, O.; Morita, T.; Koseki, H.; Kikuchi, J.; Honda, K.; Hase, K.; Ohno, H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 2013, 504(7480), 446-450.
[http://dx.doi.org/10.1038/nature12721] [PMID: 24226770]
[107]
Asarat, M.; Apostolopoulos, V.; Vasiljevic, T.; Donkor, O. Short-chain fatty acids regulate cytokines and Th17/Treg cells in human peripheral blood mononuclear cells in vitro. Immunol. Invest., 2016, 45(3), 205-222.
[http://dx.doi.org/10.3109/08820139.2015.1122613] [PMID: 27018846]
[108]
Luu, M.; Pautz, S.; Kohl, V.; Singh, R.; Romero, R.; Lucas, S.; Hofmann, J.; Raifer, H.; Vachharajani, N.; Carrascosa, L.C.; Lamp, B.; Nist, A.; Stiewe, T.; Shaul, Y.; Adhikary, T.; Zaiss, M.M.; Lauth, M.; Steinhoff, U.; Visekruna, A. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Commun., 2019, 10(1), 760.
[http://dx.doi.org/10.1038/s41467-019-08711-2] [PMID: 30770822]
[109]
Kim, D.S.; Kwon, J.E.; Lee, S.H.; Kim, E.K.; Ryu, J.G.; Jung, K.A.; Choi, J.W.; Park, M.J.; Moon, Y.M.; Park, S.H.; Cho, M.L.; Kwok, S.K. Attenuation of rheumatoid inflammation by sodium butyrate through reciprocal targeting of HDAC2 in osteoclasts and HDAC8 in T cells. Front. Immunol., 2018, 9, 1525.
[http://dx.doi.org/10.3389/fimmu.2018.01525] [PMID: 30034392]
[110]
Montalvany-Antonucci, C.C.; Duffles, L.F.; de Arruda, J.A.A.; Zicker, M.C.; de Oliveira, S.; Macari, S.; Garlet, G.P.; Madeira, M.F.M.; Fukada, S.Y.; Andrade, I., Jr; Teixeira, M.M.; Mackay, C.; Vieira, A.T.; Vinolo, M.A.; Silva, T.A. Short-chain fatty acids and FFAR2 as suppressors of bone resorption. Bone, 2019, 125, 112-121.
[http://dx.doi.org/10.1016/j.bone.2019.05.016] [PMID: 31100533]
[111]
Lucas, S.; Omata, Y.; Hofmann, J.; Böttcher, M.; Iljazovic, A.; Sarter, K.; Albrecht, O.; Schulz, O.; Krishnacoumar, B.; Krönke, G.; Herrmann, M.; Mougiakakos, D.; Strowig, T.; Schett, G.; Zaiss, M.M. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat. Commun., 2018, 9(1), 55.
[http://dx.doi.org/10.1038/s41467-017-02490-4] [PMID: 29302038]
[112]
Katono, T.; Kawato, T.; Tanabe, N.; Suzuki, N.; Iida, T.; Morozumi, A.; Ochiai, K.; Maeno, M. Sodium butyrate stimulates mineralized nodule formation and osteoprotegerin expression by human osteoblasts. Arch. Oral Biol., 2008, 53(10), 903-909.
[http://dx.doi.org/10.1016/j.archoralbio.2008.02.016] [PMID: 18406397]
[113]
Tyagi, A.M.; Yu, M.; Darby, T.M.; Vaccaro, C.; Li, J.Y.; Owens, J.A.; Hsu, E.; Adams, J.; Weitzmann, M.N.; Jones, R.M.; Pacifici, R. The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression. Immunity, 2018, 49(6), 1116-1131.e7.
[http://dx.doi.org/10.1016/j.immuni.2018.10.013] [PMID: 30446387]
[114]
Chevalier, C.; Kieser, S. Çolakoğlu, M.; Hadadi, N.; Brun, J.; Rigo, D.; Suárez-Zamorano, N.; Spiljar, M.; Fabbiano, S.; Busse, B.; Ivanišević; J.; Macpherson, A.; Bonnet, N.; Trajkovski, M. Warmth prevents bone loss through the gut microbiota. Cell Metab., 2020, 32(4), 575-590.e7.
[http://dx.doi.org/10.1016/j.cmet.2020.08.012] [PMID: 32916104]
[115]
Pirnes-Karhu, S.; Määttä, J.; Finnilä, M.; Alhonen, L.; Uimari, A. Overexpression of spermidine/spermine N 1-acetyltransferase impairs osteoblastogenesis and alters mouse bone phenotype. Transgenic Res., 2015, 24(2), 253-265.
[http://dx.doi.org/10.1007/s11248-014-9836-6] [PMID: 25231394]
[116]
Liu, Y.; Guo, Y.L.; Meng, S.; Gao, H.; Sui, L.J.; Jin, S.; Li, Y.; Fan, S.G. Gut microbiota–dependent Trimethylamine N-Oxide are related with hip fracture in postmenopausal women: a matched case-control study. Aging, 2020, 12(11), 10633-10641.
[http://dx.doi.org/10.18632/aging.103283] [PMID: 32482913]
[117]
Kalaska, B.; Pawlak, K.; Domaniewski, T.; Oksztulska-Kolanek, E.; Znorko, B.; Roszczenko, A.; Rogalska, J.; Brzoska, M.M.; Lipowicz, P.; Doroszko, M.; Pryczynicz, A.; Pawlak, D. Elevated levels of peripheral kynurenine decrease bone strength in rats with chronic kidney disease. Front. Physiol., 2017, 8, 836.
[http://dx.doi.org/10.3389/fphys.2017.00836] [PMID: 29163188]
[118]
Michalowska, M.; Znorko, B.; Kaminski, T.; Oksztulska-Kolanek, E.; Pawlak, D. New insights into tryptophan and its metabolites in the regulation of bone metabolism. J. Physiol. Pharmacol., 2015, 66(6), 779-791.
[PMID: 26769827]
[119]
Cesareo, R.; Attanasio, R.; Caputo, M.; Castello, R.; Chiodini, I.; Falchetti, A.; Guglielmi, R.; Papini, E.; Santonati, A.; Scillitani, A.; Toscano, V.; Triggiani, V.; Vescini, F.; Zini, M. Italian Association of Clinical Endocrinologists (AME) and Italian Chapter of the American Association of Clinical Endocrinologists (AACE) position statement: Clinical management of vitamin D Deficiency in adults. Nutrients, 2018, 10(5), 546.
[http://dx.doi.org/10.3390/nu10050546] [PMID: 29702603]
[120]
Vescini, F.; Attanasio, R.; Balestrieri, A.; Bandeira, F.; Bonadonna, S.; Camozzi, V.; Cassibba, S.; Cesareo, R.; Chiodini, I.; Francucci, C.M.; Gianotti, L.; Grimaldi, F.; Guglielmi, R.; Madeo, B.; Marcocci, C.; Palermo, A.; Scillitani, A.; Vignali, E.; Rochira, V.; Zini, M. Italian association of clinical endocrinologists (AME) position statement: Drug therapy of osteoporosis. J. Endocrinol. Invest., 2016, 39(7), 807-834.
[http://dx.doi.org/10.1007/s40618-016-0434-8] [PMID: 26969462]
[121]
Gupta, T.; Das, N.; Imran, S. The prevention and therapy of osteoporosis: A review on emerging trends from hormonal therapy to synthetic drugs to plant-based bioactives. J. Diet. Suppl., 2019, 16(6), 699-713.
[http://dx.doi.org/10.1080/19390211.2018.1472715] [PMID: 29985715]
[122]
Pazianas, M.; van der Geest, S.; Miller, P. Bisphosphonates and bone quality. Bonekey Rep., 2014, 3, 529.
[http://dx.doi.org/10.1038/bonekey.2014.24] [PMID: 24876930]
[123]
Kim, J.; Lee, D.H.; Dziak, R.; Ciancio, S. Bisphosphonate-related osteonecrosis of the jaw: Current clinical significance and treatment strategy review. Am. J. Dent., 2020, 33(3), 115-128.
[PMID: 32470236]
[124]
Jain, T.P.; Thorn, M. Atypical femoral fractures related to bisphosphonate therapy. Indian J. Radiol. Imaging, 2012, 22(3), 178-181.
[http://dx.doi.org/10.4103/0971-3026.107178] [PMID: 23599564]
[125]
Kling, J.M.; Clarke, B.L.; Sandhu, N.P. Osteoporosis prevention, screening, and treatment: A review. J. Womens Health, 2014, 23(7), 563-572.
[http://dx.doi.org/10.1089/jwh.2013.4611] [PMID: 24766381]
[126]
Cummings, S.R.; Martin, J.S.; McClung, M.R.; Siris, E.S.; Eastell, R.; Reid, I.R.; Delmas, P.; Zoog, H.B.; Austin, M.; Wang, A.; Kutilek, S.; Adami, S.; Zanchetta, J.; Libanati, C.; Siddhanti, S.; Christiansen, C. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med., 2009, 361(8), 756-765.
[http://dx.doi.org/10.1056/NEJMoa0809493] [PMID: 19671655]
[127]
Diker-Cohen, T.; Rosenberg, D.; Avni, T.; Shepshelovich, D.; Tsvetov, G.; Gafter-Gvili, A. Risk for infections during treatment with denosumab for osteoporosis: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab., 2020, 105(5), 1641-1658.
[http://dx.doi.org/10.1210/clinem/dgz322] [PMID: 31899506]
[128]
Tripto-Shkolnik, L.; Rouach, V.; Marcus, Y.; Rotman-Pikielny, P.; Benbassat, C.; Vered, I. Vertebral fractures following denosumab discontinuation in patients with prolonged exposure to bisphosphonates. Calcif. Tissue Int., 2018, 103(1), 44-49.
[http://dx.doi.org/10.1007/s00223-018-0389-1] [PMID: 29396698]
[129]
Hodsman, A.B.; Bauer, D.C.; Dempster, D.W.; Dian, L.; Hanley, D.A.; Harris, S.T.; Kendler, D.L.; McClung, M.R.; Miller, P.D.; Olszynski, W.P.; Orwoll, E.; Yuen, C.K. Parathyroid hormone and teriparatide for the treatment of osteoporosis: A review of the evidence and suggested guidelines for its use. Endocr. Rev., 2005, 26(5), 688-703.
[http://dx.doi.org/10.1210/er.2004-0006] [PMID: 15769903]
[130]
Lindsay, R.; Krege, J.H.; Marin, F.; Jin, L.; Stepan, J.J. Teriparatide for osteoporosis: Importance of the full course. Osteoporos. Int., 2016, 27(8), 2395-2410.
[http://dx.doi.org/10.1007/s00198-016-3534-6] [PMID: 26902094]
[131]
Lim, S.Y.; Bolster, M. Profile of romosozumab and its potential in the management of osteoporosis. Drug Des. Devel. Ther., 2017, 11, 1221-1231.
[http://dx.doi.org/10.2147/DDDT.S127568] [PMID: 28458516]
[132]
Fixen, C.; Tunoa, J. Romosozumab: A review of efficacy, safety, and cardiovascular risk. Curr. Osteoporos. Rep., 2021, 19(1), 15-22.
[http://dx.doi.org/10.1007/s11914-020-00652-w] [PMID: 33409990]
[133]
Brandenburg, V.M.; Verhulst, A.; Babler, A.; D’Haese, P.C.; Evenepoel, P.; Kaesler, N. Sclerostin in chronic kidney disease–mineral bone disorder think first before you block it! Nephrol. Dial. Transplant., 2019, 34(3), 408-414.
[http://dx.doi.org/10.1093/ndt/gfy129] [PMID: 29846712]
[134]
Edwards, W.B.; Simonian, N.; Haider, I.T.; Anschel, A.S.; Chen, D.; Gordon, K.E.; Gregory, E.K.; Kim, K.H.; Parachuri, R.; Troy, K.L.; Schnitzer, T.J. Effects of teriparatide and vibration on bone mass and bone strength in people with bone loss and spinal cord injury: A randomized, controlled trial. J. Bone Miner. Res., 2018, 33(10), 1729-1740.
[http://dx.doi.org/10.1002/jbmr.3525] [PMID: 29905973]
[135]
Tsai, J.N.; Nishiyama, K.K.; Lin, D.; Yuan, A.; Lee, H.; Bouxsein, M.L.; Leder, B.Z. Effects of denosumab and teriparatide transitions on bone microarchitecture and estimated strength: the DATA-Switch HR-pQCT study. J. Bone Miner. Res., 2017, 32(10), 2001-2009.
[http://dx.doi.org/10.1002/jbmr.3198] [PMID: 28608571]
[136]
Eastell, R.; O’Neill, T.W.; Hofbauer, L.C.; Langdahl, B.; Reid, I.R.; Gold, D.T.; Cummings, S.R. Postmenopausal osteoporosis. Nat. Rev. Dis. Primers, 2016, 2(1), 16069.
[http://dx.doi.org/10.1038/nrdp.2016.69] [PMID: 27681935]
[137]
Charatcharoenwitthaya, N.; Khosla, S.; Atkinson, E.J.; McCready, L.K.; Riggs, B.L. Effect of blockade of TNF-alpha and interleukin-1 action on bone resorption in early postmenopausal women. J. Bone Miner. Res., 2007, 22(5), 724-729.
[http://dx.doi.org/10.1359/jbmr.070207] [PMID: 17295604]
[138]
Wu, D.; Cline-Smith, A.; Shashkova, E.; Perla, A.; Katyal, A.; Aurora, R. T-Cell mediated inflammation in postmenopausal osteoporosis. Front. Immunol., 2021, 12, 687551.
[http://dx.doi.org/10.3389/fimmu.2021.687551] [PMID: 34276675]
[139]
Macías, I.; Alcorta-Sevillano, N.; Rodríguez, C.I.; Infante, A. Osteoporosis and the potential of cell-based therapeutic strategies. Int. J. Mol. Sci., 2020, 21(5), 1653.
[http://dx.doi.org/10.3390/ijms21051653] [PMID: 32121265]
[140]
Taku, K.; Melby, M.K.; Nishi, N.; Omori, T.; Kurzer, M.S. Soy isoflavones for osteoporosis: An evidence-based approach. Maturitas, 2011, 70(4), 333-338.
[http://dx.doi.org/10.1016/j.maturitas.2011.09.001] [PMID: 21958941]
[141]
Zhang, Y.; Li, Q.; Li, X.; Wan, H.Y.; Wong, M.S. Erythrina variegata extract exerts osteoprotective effects by suppression of the process of bone resorption. Br. J. Nutr., 2010, 104(7), 965-971.
[http://dx.doi.org/10.1017/S0007114510001789] [PMID: 20487580]
[142]
Bitto, A.; Burnett, B.P.; Polito, F.; Marini, H.; Levy, R.M.; Armbruster, M.A.; Minutoli, L.; Di Stefano, V.; Irrera, N.; Antoci, S.; Granese, R.; Squadrito, F.; Altavilla, D. Effects of genistein aglycone in osteoporotic, ovariectomized rats: A comparison with alendronate, raloxifene and oestradiol. Br. J. Pharmacol., 2008, 155(6), 896-905.
[http://dx.doi.org/10.1038/bjp.2008.305] [PMID: 18695641]
[143]
Ming, L.G.; Chen, K.M.; Xian, C.J. Functions and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J. Cell. Physiol., 2013, 228(3), 513-521.
[http://dx.doi.org/10.1002/jcp.24158] [PMID: 22777826]
[144]
Marotta, F.; Marotta, F.; Naito, Y.; Gumaste, U.; Jain, S.; Tsuchiya, J.; Minelli, E. Effect of an isoflavones-containing red clover preparation and alkaline supplementation on bone metabolism in ovariectomized rats. Clin. Interv. Aging, 2009, 4, 91-100.
[http://dx.doi.org/10.2147/CIA.S4164] [PMID: 19503771]
[145]
Park, C.; Weaver, C. Vitamin D interactions with soy isoflavones on bone after menopause: A review. Nutrients, 2012, 4(11), 1610-1621.
[http://dx.doi.org/10.3390/nu4111610] [PMID: 23201836]
[146]
Bellavia, D.; Caradonna, F.; Dimarco, E.; Costa, V.; Carina, V.; De Luca, A.; Raimondi, L.; Fini, M.; Gentile, C.; Giavaresi, G. Non-flavonoid polyphenols in osteoporosis: Preclinical evidence. Trends Endocrinol. Metab., 2021, 32(7), 515-529.
[http://dx.doi.org/10.1016/j.tem.2021.03.008] [PMID: 33895073]
[147]
Alshehri, M.M.; Sharifi-Rad, J.; Herrera-Bravo, J.; Jara, E.L.; Salazar, L.A.; Kregiel, D.; Uprety, Y.; Akram, M.; Iqbal, M.; Martorell, M.; Torrens-Mas, M.; Pons, D.G. Daştan, S.D.; Cruz-Martins, N.; Ozdemir, F.A.; Kumar, M.; Cho, W.C. Therapeutic potential of isoflavones with an emphasis on daidzein. Oxid. Med. Cell. Longev., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/6331630] [PMID: 34539970]
[148]
Tanaka, T.; Onuma, H.; Shigihara, T.; Kimura, E.; Fukuta, Y.; Shirasaka, N.; Moriyama, T.; Homma, Y. Anti-osteoporotic effects of syringic acid and vanilic acid in the extracts of waste beds after mushroom cultivation. J. Biosci. Bioeng., 2019, 128(5), 622-629.
[http://dx.doi.org/10.1016/j.jbiosc.2019.04.021] [PMID: 31186185]
[149]
Fei, W.Y.; Huo, Q.; Zhao, P.Q.; Qin, L.J.; Li, T. Magnolol prevents ovariectomy induced bone loss by suppressing osteoclastogenesis via inhibition of the nuclear factor -κB and mitogen activated protein kinase pathways. Int. J. Mol. Med., 2019, 43(4), 1669-1678.
[http://dx.doi.org/10.3892/ijmm.2019.4099] [PMID: 30816431]
[150]
Kim, S.C.; Kim, H.J.; Park, G.E.; Pandey, R.P.; Lee, J.; Sohng, J.K.; Park, Y.I. Trilobatin ameliorates bone loss via suppression of osteoclast cell differentiation and bone resorptive function in vitro and in vivo. Life Sci., 2021, 270, 119074.
[http://dx.doi.org/10.1016/j.lfs.2021.119074] [PMID: 33497739]
[151]
Li, X.; Tang, Q.; Tang, H.; Chen, W. Identifying antioxidant proteins by combining multiple methods. Front. Bioeng. Biotechnol., 2020, 8, 858.
[http://dx.doi.org/10.3389/fbioe.2020.00858] [PMID: 32793581]
[152]
Ozaki, K.; Kawata, Y.; Amano, S.; Hanazawa, S. Stimulatory effect of curcumin on osteoclast apoptosis. Biochem. Pharmacol., 2000, 59(12), 1577-1581.
[http://dx.doi.org/10.1016/S0006-2952(00)00277-X] [PMID: 10799655]
[153]
Bharti, A.C.; Takada, Y.; Aggarwal, B.B. Curcumin (diferuloylmethane) inhibits receptor activator of NF-kappa B ligand-induced NF-kappa B activation in osteoclast precursors and suppresses osteoclastogenesis. J. Immunol., 2004, 172(10), 5940-5947.
[http://dx.doi.org/10.4049/jimmunol.172.10.5940] [PMID: 15128775]
[154]
Magrone, T.; Magrone, M.; Russo, M.A.; Jirillo, E. Recent advances on the anti-inflammatory and antioxidant properties of red grape polyphenols: In vitro and in vivo studies. Antioxidants, 2019, 9(1), 35.
[http://dx.doi.org/10.3390/antiox9010035] [PMID: 31906123]
[155]
Magrone, T.; Haslberger, A.; Jirillo, E.; Serafini, M. Editorial: Immunonutrient supplementation. Front. Nutr., 2019, 6, 182.
[http://dx.doi.org/10.3389/fnut.2019.00182] [PMID: 31850361]
[156]
Castellani, S.; Trapani, A.; Spagnoletta, A.; di Toma, L.; Magrone, T.; Di Gioia, S.; Mandracchia, D.; Trapani, G.; Jirillo, E.; Conese, M. Nanoparticle delivery of grape seed-derived proanthocyanidins to airway epithelial cells dampens oxidative stress and inflammation. J. Transl. Med., 2018, 16(1), 140.
[http://dx.doi.org/10.1186/s12967-018-1509-4] [PMID: 29792199]
[157]
Magrone, T.; Tafaro, A.; Jirillo, F.; Amati, L.; Jirillo, E.; Covelli, V. Elicitation of immune responsiveness against antigenic challenge in age-related diseases: Effects of red wine polyphenols. Curr. Pharm. Des., 2008, 14(26), 2749-2757.
[http://dx.doi.org/10.2174/138161208786264043] [PMID: 18991693]
[158]
Magrone, T.; Marzulli, G.; Jirillo, E. Immunopathogenesis of neurodegenerative diseases: Current therapeutic models of neuroprotection with special reference to natural products. Curr. Pharm. Des., 2012, 18(1), 34-42.
[http://dx.doi.org/10.2174/138161212798919057] [PMID: 22211682]
[159]
Graef, J.L.; Rendina-Ruedy, E.; Crockett, E.K.; Ouyang, P.; Wu, L.; King, J.B.; Cichewicz, R.H.; Lin, D.; Lucas, E.A.; Smith, B.J. Osteoclast differentiation is downregulated by select polyphenolic fractions from dried plum via suppression of MAPKs and Nfatc1 in Mouse C57BL/6 primary bone marrow cells. Curr. Dev. Nutr., 2017, 1(10), e000406.
[http://dx.doi.org/10.3945/cdn.117.000406] [PMID: 29955675]
[160]
Shen, C.L.; Yeh, J.K.; Stoecker, B.J.; Chyu, M.C.; Wang, J.S. Green tea polyphenols mitigate deterioration of bone microarchitecture in middle-aged female rats. Bone, 2009, 44(4), 684-690.
[http://dx.doi.org/10.1016/j.bone.2008.11.018] [PMID: 19118658]
[161]
Oka, Y.; Iwai, S.; Amano, H.; Irie, Y.; Yatomi, K.; Ryu, K.; Yamada, S.; Inagaki, K.; Oguchi, K. Tea polyphenols inhibit rat osteoclast formation and differentiation. J. Pharmacol. Sci., 2012, 118(1), 55-64.
[http://dx.doi.org/10.1254/jphs.11082FP]
[162]
Han, Y.; Pei, D.; Li, W.; Luo, B.; Jiang, Q. Epigallocatechin gallate attenuates tumor necrosis factor (TNF)-α-induced inhibition of osteoblastic differentiation by up-regulating lncRNA TUG1 in osteoporosis. Bioengineered, 2022, 13(4), 8950-8961.
[http://dx.doi.org/10.1080/21655979.2022.2056825] [PMID: 35358011]
[163]
Hubert, P.; Lee, S.; Lee, S.K.; Chun, O. Dietary polyphenols, berries, and age-related bone loss: A review based on human, animal, and cell studies. Antioxidants, 2014, 3(1), 144-158.
[http://dx.doi.org/10.3390/antiox3010144] [PMID: 26784669]
[164]
Devareddy, L.; Hooshmand, S.; Collins, J.K.; Lucas, E.A.; Chai, S.C.; Arjmandi, B.H. Blueberry prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis. J. Nutr. Biochem., 2008, 19(10), 694-699.
[http://dx.doi.org/10.1016/j.jnutbio.2007.09.004] [PMID: 18328688]
[165]
Puel, C.; Quintin, A.; Mathey, J.; Obled, C.; Davicco, M.J.; Lebecque, P.; Kati-Coulibaly, S.; Horcajada, M.N.; Coxam, V. Prevention of bone loss by phloridzin, an apple polyphenol, in ovariectomized rats under inflammation conditions. Calcif. Tissue Int., 2005, 77(5), 311-318.
[http://dx.doi.org/10.1007/s00223-005-0060-5] [PMID: 16307390]
[166]
Kim, J.L.; Kang, M.K.; Gong, J.H.; Park, S.H.; Han, S.Y.; Kang, Y.H. Novel antiosteoclastogenic activity of phloretin antagonizing RANKL-induced osteoclast differentiation of murine macrophages. Mol. Nutr. Food Res., 2012, 56(8), 1223-1233.
[http://dx.doi.org/10.1002/mnfr.201100831] [PMID: 22700286]
[167]
Malmir, H.; Ejtahed, H.S.; Soroush, A.R.; Mortazavian, A.M.; Fahimfar, N.; Ostovar, A.; Esmaillzadeh, A.; Larijani, B.; Hasani-Ranjbar, S. Probiotics as a new regulator for bone health: A systematic review and meta-analysis. Evid. Based Complement. Alternat. Med., 2021, 2021, 3582989.
[http://dx.doi.org/10.1155/2021/3582989] [PMID: 34394379]
[168]
Sergeev, I.N.; Aljutaily, T.; Walton, G.; Huarte, E. Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity. Nutrients, 2020, 12(1), 222.
[http://dx.doi.org/10.3390/nu12010222] [PMID: 31952249]
[169]
Yan, J.; Takakura, A.; Zandi-Nejad, K.; Charles, J.F. Mechanisms of gut microbiota-mediated bone remodeling. Gut Microbes, 2018, 9(1), 84-92.
[http://dx.doi.org/10.1080/19490976.2017.1371893] [PMID: 28961041]
[170]
Li, X.; Li, X.; Shang, Q.; Gao, Z.; Hao, F.; Guo, H.; Guo, C. Fecal microbiota transplantation (FMT) could reverse the severity of experimental necrotizing enterocolitis (NEC) via oxidative stress modulation. Free Radic. Biol. Med., 2017, 108, 32-43.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.03.011] [PMID: 28323128]
[171]
Kalyanaraman, H.; Schall, N.; Pilz, R.B. Nitric oxide and cyclic GMP functions in bone. Nitric Oxide, 2018, 76, 62-70.
[http://dx.doi.org/10.1016/j.niox.2018.03.007] [PMID: 29550520]
[172]
Siddiqui, R.; Makhlouf, Z.; Alharbi, A.M.; Alfahemi, H.; Khan, N.A. The gut microbiome and female health. Biology, 2022, 11(11), 1683.
[http://dx.doi.org/10.3390/biology11111683] [PMID: 36421397]
[173]
Locatelli, V.; Bianchi, V.E. Effect of GH/IGF-1 on bone metabolism and osteoporsosis. Int. J. Endocrinol., 2014, 2014, 235060.
[http://dx.doi.org/10.1155/2014/235060] [PMID: 25147565]
[174]
Hao, M.; Wang, G.; Zuo, X.; Qu, C.; Yao, B.; Wang, D. Gut microbiota: An overlooked factor that plays a significant role in osteoporosis. J. Int. Med. Res., 2019, 47(9), 4095-4103.
[http://dx.doi.org/10.1177/0300060519860027] [PMID: 31436117]
[175]
Martyniak, K.; Wei, F.; Ballesteros, A.; Meckmongkol, T.; Calder, A.; Gilbertson, T.; Orlovskaya, N.; Coathup, M.J. Do polyunsaturated fatty acids protect against bone loss in our aging and osteoporotic population? Bone, 2021, 143, 115736.
[http://dx.doi.org/10.1016/j.bone.2020.115736] [PMID: 33171312]
[176]
Das, U.N. Essential fatty acids and osteoporosis. Nutrition, 2000, 16(5), 386-390.
[http://dx.doi.org/10.1016/S0899-9007(00)00262-8] [PMID: 10793310]
[177]
Serhan, C.N.; Jain, A.; Marleau, S.; Clish, C.; Kantarci, A.; Behbehani, B.; Colgan, S.P.; Stahl, G.L.; Merched, A.; Petasis, N.A.; Chan, L.; Van Dyke, T.E. Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. J. Immunol., 2003, 171(12), 6856-6865.
[http://dx.doi.org/10.4049/jimmunol.171.12.6856] [PMID: 14662892]
[178]
Hasturk, H.; Kantarci, A.; Ohira, T.; Arita, M.; Ebrahimi, N.; Chiang, N.; Petasis, N.A.; Levy, B.D.; Serhan, C.N.; Van Dyke, T.E. RvE1 protects from local inflammation and osteoclastmediated bone destruction in periodontitis. FASEB J., 2006, 20(2), 401-403.
[http://dx.doi.org/10.1096/fj.05-4724fje] [PMID: 16373400]
[179]
Herrera, B.S.; Ohira, T.; Gao, L.; Omori, K.; Yang, R.; Zhu, M.; Muscara, M.N.; Serhan, C.N.; Van Dyke, T.E.; Gyurko, R. An endogenous regulator of inflammation, resolvin E1, modulates osteoclast differentiation and bone resorption. Br. J. Pharmacol., 2008, 155(8), 1214-1223.
[http://dx.doi.org/10.1038/bjp.2008.367] [PMID: 18806821]
[180]
Boeyens, J.; Deepak, V.; Chua, W.H.; Kruger, M.; Joubert, A.; Coetzee, M. Effects of ω3- and ω6-polyunsaturated fatty acids on RANKL-induced osteoclast differentiation of RAW264.7 cells: A comparative in vitro study. Nutrients, 2014, 6(7), 2584-2601.
[http://dx.doi.org/10.3390/nu6072584] [PMID: 25010555]
[181]
Li, Y.; Seifert, M.F.; Ney, D.M.; Grahn, M.; Grant, A.L.; Allen, K.G.D.; Watkins, B.A. Dietary conjugated linoleic acids alter serum IGF-I and IGF binding protein concentrations and reduce bone formation in rats fed (n-6) or (n-3) fatty acids. J. Bone Miner. Res., 1999, 14(7), 1153-1162.
[http://dx.doi.org/10.1359/jbmr.1999.14.7.1153] [PMID: 10404015]
[182]
Watkins, B.A.; Hutchins, H.; Li, Y.; Seifert, M.F. The endocannabinoid signaling system: a marriage of PUFA and musculoskeletal health. J. Nutr. Biochem., 2010, 21(12), 1141-1152.
[http://dx.doi.org/10.1016/j.jnutbio.2010.04.011] [PMID: 20934863]
[183]
Farahnak, Z.; Freundorfer, M.T.; Lavery, P.; Weiler, H.A. Dietary docosahexaenoic acid contributes to increased bone mineral accretion and strength in young female Sprague-Dawley rats. Prostaglandins Leukot. Essent. Fatty Acids, 2019, 144, 32-39.
[http://dx.doi.org/10.1016/j.plefa.2019.04.005] [PMID: 31088624]
[184]
Ribeiro, D.C.; Pereira, A.D.A.; de Santana, F.C.; Mancini-Filho, J.; da Silva, E.M.; da Costa, C.A.S.; Boaventura, G.T. Incorporation of flaxseed flour as a dietary source for ALA increases bone density and strength in post-partum female rats. Lipids, 2017, 52(4), 327-333.
[http://dx.doi.org/10.1007/s11745-017-4245-2] [PMID: 28324248]
[185]
da Costa, C.A.S.; da Silva, P.C.A.; Ribeiro, D.C.; Pereira, A.D.A.; dos Santos, A.S.; de Abreu, M.D.C.; Pessoa, L.R.; Boueri, B.F.C.; Pessanha, C.R.; do Nascimento-Saba, C.C.A.; da Silva, E.M.; Boaventura, G.T. Effects of diet containing flaxseed flour (Linum usitatissimum) on body adiposity and bone health in young male rats. Food Funct., 2016, 7(2), 698-703.
[http://dx.doi.org/10.1039/C5FO01598G] [PMID: 26822538]
[186]
Yue, H.; Bo, Y.; Tian, Y.; Mao, L.; Xue, C.; Dong, P.; Wang, J. Docosahexaenoic acid-enriched phosphatidylcholine exerted superior effects to triglyceride in ameliorating obesity-induced osteoporosis through up-regulating the Wnt/β-catenin pathway. J. Agric. Food Chem., 2022, 70(43), 13904-13912.
[http://dx.doi.org/10.1021/acs.jafc.2c06081] [PMID: 36260738]
[187]
Chen, F.; Wang, Y.; Wang, H.; Dong, Z.; Wang, Y.; Zhang, M.; Li, J.; Shao, S.; Yu, C.; Huan, Z.; Xu, J. Flaxseed oil ameliorated high-fat-diet-induced bone loss in rats by promoting osteoblastic function in rat primary osteoblasts. Nutr. Metab., 2019, 16(1), 71.
[http://dx.doi.org/10.1186/s12986-019-0393-0] [PMID: 31636691]
[188]
Orchard, T.S.; Pan, X.; Cheek, F.; Ing, S.W.; Jackson, R.D. A systematic review of omega-3 fatty acids and osteoporosis. Br. J. Nutr., 2012, 107(2), S253-S260.
[http://dx.doi.org/10.1017/S0007114512001638]
[189]
Högström, M.; Nordström, P.; Nordström, A. n−3 Fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: The NO2 Study. Am. J. Clin. Nutr., 2007, 85(3), 803-807.
[http://dx.doi.org/10.1093/ajcn/85.3.803] [PMID: 17344503]
[190]
Kruger, M.C.; Coetzer, H.; de Winter, R.; Gericke, G.; van Papendorp, D.H. Calcium, gamma-linolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis. Aging Clin. Exp. Res., 1998, 10(5), 385-394.
[http://dx.doi.org/10.1007/BF03339885] [PMID: 9932142]
[191]
Griel, A.E.; Kris-Etherton, P.M.; Hilpert, K.F.; Zhao, G.; West, S.G.; Corwin, R.L. An increase in dietary n-3 fatty acids decreases a marker of bone resorption in humans. Nutr. J., 2007, 6(1), 2.
[http://dx.doi.org/10.1186/1475-2891-6-2] [PMID: 17227589]
[192]
Pischon, T.; Hankinson, S.E.; Hotamisligil, G.S.; Rifai, N.; Willett, W.C.; Rimm, E.B. Habitual dietary intake of n-3 and n-6 fatty acids in relation to inflammatory markers among US men and women. Circulation, 2003, 108(2), 155-160.
[http://dx.doi.org/10.1161/01.CIR.0000079224.46084.C2] [PMID: 12821543]
[193]
Moon, H.J.; Kim, T.H.; Byun, D.W.; Park, Y. Positive correlation between erythrocyte levels of n-3 polyunsaturated fatty acids and bone mass in postmenopausal Korean women with osteoporosis. Ann. Nutr. Metab., 2012, 60(2), 146-153.
[http://dx.doi.org/10.1159/000337302] [PMID: 22507833]
[194]
Abdelhamid, A.; Hooper, L.; Sivakaran, R.; Hayhoe, R.P.G.; Welch, A.; Group, P. The relationship between Omega-3, Omega-6 and total polyunsaturated fat and musculoskeletal health and functional status in adults: A systematic review and meta-analysis of RCTs. Calcif. Tissue Int., 2019, 105(4), 353-372.
[http://dx.doi.org/10.1007/s00223-019-00584-3] [PMID: 31346665]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy