Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Therapeutic Assessment of Crystalloid Fluid Resuscitation in Experimental Military Injury

Author(s): Manrui Li, Feng Wang, Xiameng Chen, Shuqiang Cao, Yizhi Zhou, Xiaofeng Ou, Min He, Hanzi Cai, Wei Dai, Dangfeng Yuan, Li Zeng, Lei Ni, Jingyong Li, Yang Zhou, Weibo Liang*, Xiaoqi Xie* and Jihong Zhou*

Volume 25, Issue 1, 2024

Published on: 30 May, 2023

Page: [93 - 101] Pages: 9

DOI: 10.2174/1389201024666230330100423

Price: $65

Abstract

Background: A significant part of blast injury is accompanied by hemorrhagic shock (BS), while research on its fluid resuscitation strategies have not been reported. Although blood products are usually recommended in most resuscitation cases, they are less available in certain conditions. To this end, here, we focused on a widely used and more accessible fluid type- crystalloid fluid, in BS treatment.

Methods: We conducted studies in rats comparing the therapeutic effects of 3 different crystalloid solutions at different time points after BS, and explored the underlying mechanisms. Generally, the survival rates gradually dropped along with the time when fluid resuscitation was given.

Results: Among different types of solution, the hypertonic saline (HS) group showed the highest survival rates. The lactated Ringer’s solution (LR) only displayed lifesaving effect at 0.5 h resuscitation time point. Moreover, it is worth noting that the survival rates of the normal saline (NS) group at all the time points were lower than the non-treatment control. Mechanism study in rats indicated that the therapeutic differences may be caused by varied degrees of pulmonary edema and inflammatory responses under different crystalloid fluid resuscitation.

Conclusion: In conclusion, we assessed the effects and investigated the mechanisms of different crystalloid fluid resuscitation strategies for BS for the first time, which potentially contributes to the establishment of guidance for crystalloid fluid resuscitation of BS patients.

Graphical Abstract

[1]
Kirkman, E.; Watts, S.; Cooper, G. Blast injury research models. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2011, 366(1562), 144-159.
[http://dx.doi.org/10.1098/rstb.2010.0240] [PMID: 21149352]
[2]
Mathews, Z.R.; Koyfman, A. Blast injuries. J. Emerg. Med., 2015, 49(4), 573-587.
[http://dx.doi.org/10.1016/j.jemermed.2015.03.013] [PMID: 26072319]
[3]
Gavin, F.J. Blasts from the past: Proliferation lessons from the 1960s. Int. Secur., 2005, 29(3), 100-135.
[http://dx.doi.org/10.1162/0162288043467504]
[4]
Zhao, Y.; Zhou, Y.G. The past and present of blast injury research in China. Chin. J. Traumatol., 2015, 18(4), 194-200.
[http://dx.doi.org/10.1016/j.cjtee.2015.11.001] [PMID: 26764539]
[5]
Bochicchio, G.V.; Lumpkins, K.; O’Connor, J.; Simard, M.; Schaub, S.; Conway, A.; Bochicchio, K.; Scalea, T.M. Blast injury in a civilian trauma setting is associated with a delay in diagnosis of traumatic brain injury. Am. Surg., 2008, 74(3), 267-270.
[http://dx.doi.org/10.1177/000313480807400319] [PMID: 18376697]
[6]
Schmidt, B.M.; Rezende-Neto, J.B.; Andrade, M.V.; Winter, P.C.; Carvalho, Jr, M.G.; Lisboa, T.A.; Rizoli, S.B.; Cunha-Melo, J.R. Permissive hypotension does not reduce regional organ perfusion compared to normotensive resuscitation: Animal study with fluorescent microspheres. World J. Emerg. Surg., 2012, 7(Suppl 1), S9.
[http://dx.doi.org/10.1186/1749-7922-7-S1-S9]
[7]
Lang, T.; Schwoebel, V.; Diène, E.; Bauvin, E.; Garrigue, E.; Lapierre-Duval, K.; Guinard, A.; Cassadou, S. Assessing post-disaster consequences for health at the population level: Experience from the AZF factory explosion in Toulouse. J. Epidemiol. Community Health, 2007, 61(2), 103-107.
[http://dx.doi.org/10.1136/jech.2005.043331] [PMID: 17234867]
[8]
Dickey, N.W.; Butler, F.K.; Jenkins, D. Battlefield trauma care research, development, test and evaluation priorities.Defense Health Agency/Defense Health Board Falls Church: United States 2011.
[9]
Moore, E.E.; Moore, H.B.; Kornblith, L.Z.; Neal, M.D.; Hoffman, M.; Mutch, N.J.; Schöchl, H.; Hunt, B.J.; Sauaia, A. Trauma-induced coagulopathy. Nat. Rev. Dis. Primers, 2021, 7(1), 30.
[http://dx.doi.org/10.1038/s41572-021-00264-3] [PMID: 33927200]
[10]
Brill, J.B.; Cotton, B.A.; Lawless, R.A. Plasma transfusion. In: Trauma Induced Coagulopathy; Springer: New York City, US, 2021, pp. 353-371.
[http://dx.doi.org/10.1007/978-3-030-53606-0_21]
[11]
Murdock, A.D.; Berséus, O.; Hervig, T.; Strandenes, G.; Lunde, T.H. Whole blood. Shock, 2014, 41(S1), 62-69.
[http://dx.doi.org/10.1097/SHK.0000000000000134] [PMID: 24662782]
[12]
Krausz, M.M. Initial resuscitation of hemorrhagic shock. World J. Emerg. Surg., 2006, 1(1), 14.
[http://dx.doi.org/10.1186/1749-7922-1-14] [PMID: 16759354]
[13]
Epstein, E.M.; Waseem, M. Crystalloid fluids; StatPearls: Treasure Island, FL, 2020.
[14]
Huβmann, B.; Lefering, R.; Taeger, G.; Waydhas, C.; Ruchholtz, S.; Lendemans, S. Influence of prehospital fluid resuscitation on patients with multiple injuries in hemorrhagic shock in patients from the DGU trauma registry. J. Emerg. Trauma Shock, 2011, 4(4), 465-471.
[http://dx.doi.org/10.4103/0974-2700.86630] [PMID: 22090739]
[15]
Rezende-Neto, J.B.; Rizoli, S.B.; Andrade, M.V.; Lisboa, T.A.; Cunha-Melo, J.R. Rabbit model of uncontrolled hemorrhagic shock and hypotensive resuscitation. Braz. J. Med. Biol. Res., 2010, 43(12), 1153-1159.
[http://dx.doi.org/10.1590/S0100-879X2010007500127] [PMID: 21085888]
[16]
Schmidt, B.M.; Rezende-Neto, J.B.; Andrade, M.V.; Winter, P.C.; Carvalho, M.G.; Lisboa, T.A. Permissive hypotension does not reduce regional organ perfusion compared to normotensive resuscitation: Animal study with fluorescent microspheres. In: World J. Emerg. Surg., 2012, 7(1), 1-10.
[http://dx.doi.org/10.1186/1749-7922-7-S1-S9]
[17]
Albreiki, M.; Voegeli, D. Permissive hypotensive resuscitation in adult patients with traumatic haemorrhagic shock: A systematic review. Eur. J. Trauma Emerg. Surg., 2018, 44(2), 191-202.
[http://dx.doi.org/10.1007/s00068-017-0862-y] [PMID: 29079917]
[18]
Tran, A.; Yates, J.; Lau, A.; Lampron, J.; Matar, M. Permissive hypotension versus conventional resuscitation strategies in adult trauma patients with hemorrhagic shock: A systematic review and meta-analysis of randomized controlled trials. J. Trauma Acute Care Surg., 2018, 84(5), 802-808.
[http://dx.doi.org/10.1097/TA.0000000000001816] [PMID: 29370058]
[19]
Volpin, G.; Cohen, M.; Assaf, M.; Meir, T.; Katz, R.; Pollack, S. Cytokine levels (IL-4, IL-6, IL-8 and TGFβ) as potential biomarkers of systemic inflammatory response in trauma patients. Int. Orthop., 2014, 38(6), 1303-1309.
[http://dx.doi.org/10.1007/s00264-013-2261-2] [PMID: 24402554]
[20]
Jaffer, U.; Wade, R.G.; Gourlay, T. Cytokines in the systemic inflammatory response syndrome: A review. HSR Proc. Intensive Care Cardiovasc. Anesth., 2010, 2(3), 161-175.
[PMID: 23441054]
[21]
Alzoghaibi, M.A.; Zubaidi, A.M. Upregulation of the proinflammatory cytokine-induced neutrophil chemoattractant-1 and monocyte chemoattractant protein-1 in rats’ intestinal anastomotic wound healing—Does it matter? Asian J. Surg., 2014, 37(2), 86-92.
[http://dx.doi.org/10.1016/j.asjsur.2013.07.016] [PMID: 24060212]
[22]
Nehring, S.M.; Goyal, A.; Bansal, P.; Patel, B.C. C reactive protein; StatPearls Publishing: Treasure Island, FL, 2020.
[23]
Cui, A.; Xiang, M.; Xu, M.; Lu, P.; Wang, S.; Zou, Y.; Qiao, K.; Jin, C.; Li, Y.; Lu, M.; Chen, A.F.; Chen, S. VCAM-1-mediated neutrophil infiltration exacerbates ambient fine particle-induced lung injury. Toxicol. Lett., 2019, 302, 60-74.
[http://dx.doi.org/10.1016/j.toxlet.2018.11.002] [PMID: 30447258]
[24]
Hao, X.; Wang, H.; Liu, W.; Liu, S.; Peng, Z.; Sun, Y.; Zhao, J.; Jiang, Q.; Liu, H. Enhanced expression levels of aquaporin-1 and aquaporin-4 in A549 cells exposed to silicon dioxide. Mol. Med. Rep., 2016, 14(3), 2101-2106.
[http://dx.doi.org/10.3892/mmr.2016.5481] [PMID: 27431275]
[25]
Zhu, L.H.; Li, T.P.; He, L. [Role of AQP-4 in pulmonary water metabolism in rats in early stage of oleic acid-induced acute lung injury Nan Fang Yi Ke Da Xue Xue Bao, 2008, 28(5), 707-711.
[PMID: 18504185]
[26]
Guidet, B.; Ait-Oufella, H. Fluid resuscitation should respect the endothelial glycocalyx layer. Crit. Care, 2014, 18(6), 707.
[http://dx.doi.org/10.1186/s13054-014-0707-6] [PMID: 25629597]
[27]
Watters, J.M.; Tieu, B.H.; Todd, S.R.; Jackson, T.; Muller, P.J.; Malinoski, D.; Schreiber, M.A. Fluid resuscitation increases inflammatory gene transcription after traumatic injury. J. Trauma, 2006, 61(2), 300-309.
[http://dx.doi.org/10.1097/01.ta.0000224211.36154.44] [PMID: 16917442]
[28]
Sheppard, F.R.; Schaub, L.J.; Cap, C.O.L.A.P.; Macko, A.R.; Moore, H.B.; Moore, E.E.; Glaser, C.D.R.J.J. Whole blood mitigates the acute coagulopathy of trauma and avoids the coagulopathy of crystalloid resuscitation. J. Trauma Acute Care Surg., 2018, 85(6), 1055-1062.
[http://dx.doi.org/10.1097/TA.0000000000002046] [PMID: 30124622]
[29]
Tremblay, L.N.; Rizoli, S.B.; Brenneman, F.D. Advances in fluid resuscitation of hemorrhagic shock. Can. J. Surg., 2001, 44(3), 172-179.
[PMID: 11407826]
[30]
Phillips, C.R.; Vinecore, K.; Hagg, D.S.; Sawai, R.S.; Differding, J.A.; Watters, J.M.; Schreiber, M.A. Resuscitation of haemorrhagic shock with normal saline vs. lactated Ringer’s: effects on oxygenation, extravascular lung water and haemodynamics. Crit. Care, 2009, 13(2), R30.
[http://dx.doi.org/10.1186/cc7736] [PMID: 19257901]
[31]
Healey, M.A.; Davis, R.E.; Liu, F.C.; Loomis, W.H.; Hoyt, D.B. Lactated ringer’s is superior to normal saline in a model of massive hemorrhage and resuscitation. J. Trauma Inj. Infect. Crit. Care, 1998, 45(5), 894-899.
[http://dx.doi.org/10.1097/00005373-199811000-00010] [PMID: 9820700]
[32]
Kiraly, L.N.; Differding, J.A.; Enomoto, T.M.; Sawai, R.S.; Muller, P.J.; Diggs, B. Resuscitation with normal saline (NS) vs. lactated ringers (LR) modulates hypercoagulability and leads to increased blood loss in an uncontrolled hemorrhagic shock swine model. J. Trauma, 2006, 61(1), 57-64.
[http://dx.doi.org/10.1097/01.ta.0000220373.29743.69] [PMID: 16832250]
[33]
Todd, S.R.; Malinoski, D.; Muller, P.J.; Schreiber, M.A. Lactated Ringer’s is superior to normal saline in the resuscitation of uncontrolled hemorrhagic shock. J. Trauma, 2007, 62(3), 636-639.
[http://dx.doi.org/10.1097/TA.0b013e31802ee521] [PMID: 17414340]
[34]
Farrell, P.R.; Greenfield, B.; Rogers, M.; Magida, L.; Ammoury, R. Mitigating the inflammatory response in acute pancreatitis with appropriate fluid management; a randomized clinical control trial comparing the effects of lactated ringers and normal saline. Am Acad Pediatrics, 2018, 141, 432.
[http://dx.doi.org/10.1542/peds.141.1MA5.432]
[35]
Wu, B.U.; Hwang, J.Q.; Gardner, T.H.; Repas, K.; Delee, R. Yu, S Lactated Ringer’s solution reduces systemic inflammation compared with saline in patients with acute pancreatitis. Clin. Gastroenterol. Hepatol., 2011, 9(8), 710-717.
[http://dx.doi.org/10.1016/j.cgh.2011.04.026]
[36]
Kusza, K.; Mielniczuk, M.; Krokowicz, L. Cywiński, J.B.; Siemionow, M. Ringer’s lactate solution enhances the inflammatory response during fluid resuscitation of experimentally induced haemorrhagic shock in rats. Arch. Med. Sci., 2018, 14(3), 655-670.
[http://dx.doi.org/10.5114/aoms.2017.69771] [PMID: 29765455]
[37]
Boone, M.; Oren-Grinberg, A.; Robinson, T.; Chen, C.; Kasper, E. Mannitol or hypertonic saline in the setting of traumatic brain injury: What have we learned? Surg. Neurol. Int., 2015, 6(1), 177.
[http://dx.doi.org/10.4103/2152-7806.170248] [PMID: 26673517]
[38]
Silva, MRe. Hypertonic saline for treatment of shock: have we looked for everything? Med. Express, 2014, 1, 14-21.
[http://dx.doi.org/10.5935/MedicalExpress.2014.01.04]
[39]
Kølsen-Petersen, J.A. Immune effect of hypertonic saline: Fact or fiction? Acta Anaesthesiol. Scand., 2004, 48(6), 667-678.
[http://dx.doi.org/10.1111/j.1399-6576.2004.00396.x] [PMID: 15196097]
[40]
Junger, W.G.; Rhind, S.G.; Rizoli, S.B.; Cuschieri, J.; Shiu, M.Y.; Baker, A.J.; Li, L.; Shek, P.N.; Hoyt, D.B.; Bulger, E.M. Resuscitation of traumatic hemorrhagic shock patients with hypertonic saline-without dextran-inhibits neutrophil and endothelial cell activation. Shock, 2012, 38(4), 341-350.
[http://dx.doi.org/10.1097/SHK.0b013e3182635aca] [PMID: 22777113]
[41]
Cheung-Flynn, J.; Alvis, B.D.; Hocking, K.M.; Guth, C.M.; Luo, W.; McCallister, R. et al. Normal Saline solutions cause endothelial dysfunction through loss of membrane integrity, ATP release, and inflammatory responses mediated by P2X7R/p38 MAPK/MK2 signaling pathways. PLoS One, 2019, 14(8)e0220893
[42]
Murao, Y.; Loomis, W.; Wolf, P.; Hoyt, D.B.; Junger, W.G. Effect of dose of hypertonic saline on its potential to prevent lung tissue damage in a mouse model of hemorrhagic shock. Shock, 2003, 20(1), 29-34.
[http://dx.doi.org/10.1097/01.shk.0000071060.78689.f1] [PMID: 12813365]
[43]
Shields, C.J.; Winter, D.C.; Manning, B.J.; Wang, J.H.; Kirwan, W.O.; Redmond, H.P. Hypertonic saline infusion for pulmonary injury due to ischemia-reperfusion. Arch. Surg., 2003, 138(1), 9-14.
[http://dx.doi.org/10.1001/archsurg.138.1.9] [PMID: 12511143]
[44]
Miller, L.R.; Waters, J.H.; Provost, C. Mechanism of hyperchloremic metabolic acidosis. Anesthesiology, 1996, 84(2), 482-483.
[http://dx.doi.org/10.1097/00000542-199602000-00044] [PMID: 8602693]
[45]
McSwain, N., Jr; Barbeau, J. Potential use of prothrombin complex concentrate in trauma resuscitation. J. Trauma, 2011, 70(5), S53-S56.
[http://dx.doi.org/10.1097/TA.0b013e31821a5e5d] [PMID: 21841575]
[46]
Jehan, F.; Aziz, H.; O’Keeffe, T.; Khan, M.; Zakaria, E.R.; Hamidi, M.; Zeeshan, M.; Kulvatunyou, N.; Joseph, B. The role of four-factor prothrombin complex concentrate in coagulopathy of trauma: A propensity matched analysis. J. Trauma Acute Care Surg., 2018, 85(1), 18-24.
[http://dx.doi.org/10.1097/TA.0000000000001938] [PMID: 29664892]
[47]
Mitrophanov, A.Y.; Szlam, F.; Sniecinski, R.M.; Levy, J.H.; Reifman, J. A step toward balance: Thrombin generation improvement via procoagulant factor and antithrombin supplementation. Anesth. Analg., 2016, 123(3), 535-546.
[http://dx.doi.org/10.1213/ANE.0000000000001361] [PMID: 27541717]
[48]
Mitrophanov, A.Y.; Vandyck, K.; Tanaka, K.A. Thrombin generation in trauma patients: How do we navigate through scylla and charybdis? Curr. Anesthesiol. Rep., 2022, 12, 308-319.
[http://dx.doi.org/10.1007/s40140-021-00502-0]
[49]
Hildebrand, F.; Andruszkow, H.; Huber-Lang, M.; Pape, H.C.; van Griensven, M. Combined hemorrhage/trauma models in pigs-current state and future perspectives. Shock, 2013, 40(4), 247-273.
[http://dx.doi.org/10.1097/SHK.0b013e3182a3cd74] [PMID: 23856921]
[50]
Yu, Y.; Huang, J.; Tang, X.; Allison, J.; Sandlin, D.; Ding, D.; Pang, Y.; Zhang, C.; Chen, T.; Yin, N.; Chen, L.; Mustain, W.; Zhou, W.; Zhu, H. Exposure to blast shock waves via the ear canal induces deficits in vestibular afferent function in rats. J. Otol., 2020, 15(3), 77-85.
[http://dx.doi.org/10.1016/j.joto.2020.01.003] [PMID: 32884557]
[51]
Ning, J.L.; Mo, L.W.; Lu, K.Z.; Lai, X.N.; Wang, Z.G.; Ma, D. Lung injury following lower extremity blast trauma in rats. J. Trauma Acute Care Surg., 2012, 73(6), 1537-1544.
[http://dx.doi.org/10.1097/TA.0b013e318266013a] [PMID: 23064609]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy