Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

A Comprehensive Review of Structures, Structure-activity Relationships, Extractions, and Bioactivities of Flavonoids from Citrus medica

Author(s): Jie Chen, Nengxin He, Qinyuan Wang, Guang Wu, Wenxia Wu, Qiang Xin, Guangyu Cheng, Zhipei Sang*, Caiqing Zhu, Yongzhong Wu, Rongrui Wei* and Qinge Ma*

Volume 26, Issue 14, 2023

Published on: 02 May, 2023

Page: [2411 - 2423] Pages: 13

DOI: 10.2174/1386207326666230330083136

Price: $65

Abstract

Background: Citrus medica is a kind of medicinal and edible plant. It not only contains rich nutrients but also has a variety of therapeutic functions, including relieving pain, harmonizing the stomach, removing dampness, reducing phlegm, cleaning the liver, and relieving qi in traditional Chinese diagnosis.

Methods: The references of C. medica were mainly collected from the online database, such as PubMed, SciFinder, Web of Science, Google Scholar, Elsevier, Willy, SpringLink, and CNKI. The other related references were sorted by consulting books and documents.

Results: This review summarized and analyzed the different types of flavonoids of C. medica, including flavone-O-glycosides, flavone-C-glycosides, dihydroflavone-O-glycosides, flavonol aglycones, flavonoid aglycones, dihydroflavonoid aglycones, and bioflavonoids. The extraction methods of flavonoids were summarized in this review. Meanwhile, the multiple bioactivities of these flavonoids, including anti-atherosclerotic, hypolipidemic, anti-oxidant, hypoglycemic, and other activities. Their structure-activity relationships were reviewed and discussed in this paper.

Conclusions: This review summarized the different extraction methods of diverse flavonoids with multiple bioactivities of C. medica, and their structure-activity relationships were discussed in this paper. This review may provide a valuable reference for researching and exploiting C. medica.

Next »
Graphical Abstract

[1]
Chen, Z.Y.; Wang, Y.J.; Xu, Q.Y.; Han, X.X.; Hu, Q.M.; Yang, L.; Chen, E.R.; Liao, F.L.; Guo, W.D. CmsCRC is involved in regulated fingers stretch in Citrus medica and activated under lower temperature. Yuan Yi Xue Bao, 2019, 46, 2143-2154.
[2]
Jian, S.F.; Gong, S.; Ma, Y.H.; Liu, T.K.; Gong, J.Y.; Yi, Y.; Liu, W.H. Research progress on chemical structures, extraction methods, and bioactivities of bergamot flavonoids. Food Res. Dev., 2021, 42, 198-204.
[3]
Li, C.Y.; Yuan, Z.; She, C.J.; Bi, J.Y. Research progress on chemical constituents and pharmacological actions of Citrus medica. Food Drug, 2022, 24, 187-192.
[4]
Chen, J.; Wu, G.; Zhu, C.Q.; Wu, Y.Z.; Wei, R.R.; Ma, Q.G. Structurally diverse flavonoids from Citrus medica and their multiple bioactivities: A review. J. Food Nutr. Res., 2022, 10, 81-87.
[http://dx.doi.org/10.12691/jfnr-10-2-1]
[5]
Zhang, Y.; Kong, L.Y. Studies on the constituents of Citrus medica. Zhongguo Xiandai Zhongyao, 2006, 8, 16-17.
[6]
Yue, L.; Cheng, X.X.; Tang, X.M.; Yang, Q. Traditional application of Citrus medica. Chin. J. Exp. Trad. Med. Formulae, 2019, 25, 206-211.
[7]
Zhao, X.L. Research progress of physiologically active compounds of bergamot. Sci. Technol. Food Ind, 2012, 33, 393-399.
[8]
Zhong, Y.M.; Tian, Q.L.; Xiao, H.W.; Feng, Y.F. Chemical constituents of fruits from Citrus medica of different places. Cent. South Pharm, 2014, 12, 63-66.
[9]
Xia, Y.; Wang, Y.S.; Zhang, Y.J.; Wang, J. Determination on the basic nutrient components, active ingredients of bergamot fruit and study on their reducing blood lipids function. Food Sci. Technol, 2016, 41, 70-73.
[10]
Ou, G.H.; Rang, Y.F.; Huang, Z.Q.; Liu, C.H. Research progress on chemical constituents and biological activities of Citrus medica extract. Food Sci. Technol, 2021, 46, 169-174.
[11]
Neto, R.A.M.; Santos, C.B.R.; Henriques, S.V.C.; Machado, L.O.; Cruz, J.N.; da Silva, C.H.T.P.; Federico, L.B.; Oliveira, E.H.C.; de Souza, M.P.C.; da Silva, P.N.B.; Taft, C.A.; Ferreira, I.M.; Gomes, M.R.F. Novel chalcones derivatives with potential antineoplastic activity investigated by docking and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2022, 40(5), 2204-2216.
[http://dx.doi.org/10.1080/07391102.2020.1839562] [PMID: 33146078]
[12]
Galucio, N.C.R.; Moysés, D.A.; Pina, J.R.S.; Marinho, P.S.B.; Gomes Júnior, P.C.; Cruz, J.N.; Vale, V.V.; Khayat, A.S.; Marinho, A.M.R. Antiproliferative, genotoxic activities and quantification of extracts and cucurbitacin B obtained from Luffa operculata (L.). Cogn. Arab. J. Chem., 2022, 15(2), 103589.
[http://dx.doi.org/10.1016/j.arabjc.2021.103589]
[13]
Rego, C.M.A.; Francisco, A.F.; Boeno, C.N.; Paloschi, M.V.; Lopes, J.A.; Silva, M.D.S.; Santana, H.M.; Serrath, S.N.; Rodrigues, J.E.; Lemos, C.T.L.; Dutra, R.S.S.; da Cruz, J.N.; Dos Santos, C.B.R.; da S Setúbal, S.; Fontes, M.R.M.; Soares, A.M.; Pires, W.L.; Zuliani, J.P. Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom. Sci. Rep., 2022, 12(1), 4706.
[http://dx.doi.org/10.1038/s41598-022-08735-7] [PMID: 35304541]
[14]
Almeida, V.M.; Dias, Ê.R.; Souza, B.C.; Cruz, J.N.; Santos, C.B.R.; Leite, F.H.A.; Queiroz, R.F.; Branco, A. Methoxylated flavonols from Vellozia dasypus Seub ethyl acetate active myeloperoxidase extract: In vitro and in silico assays. J. Biomol. Struct. Dyn., 2022, 40(16), 7574-7583.
[http://dx.doi.org/10.1080/07391102.2021.1900916] [PMID: 33739225]
[15]
Lima, A.M.; Siqueira, A.S.; Möller, M.L.S.; Souza, R.C.; Cruz, J.N.; Lima, A.R.J.; Silva, R.C.; Aguiar, D.C.F.; Junior, J.L.S.G.V.; Gonçalves, E.C.; Gonçalves, E.C. In silico improvement of the cyanobacterial lectin microvirin and mannose interaction. J. Biomol. Struct. Dyn., 2022, 40(3), 1064-1073.
[http://dx.doi.org/10.1080/07391102.2020.1821782] [PMID: 32990187]
[16]
da Silva Júnior, O.S.; Franco, C.J.P.; de Moraes, A.A.B.; Cruz, J.N.; da Costa, K.S.; do Nascimento, L.D.; Andrade, E.H.A. In silico analyses of toxicity of the major constituents of essential oils from two Ipomoea L. species. Toxicon, 2021, 195, 111-118.
[http://dx.doi.org/10.1016/j.toxicon.2021.02.015] [PMID: 33667485]
[17]
Kanwal, Q.; Hussain, I.; Latif Siddiqui, H.; Javaid, A. Antifungal activity of flavonoids isolated from mango (Mangifera indica L.) leaves. Nat. Prod. Res., 2010, 24(20), 1907-1914.
[http://dx.doi.org/10.1080/14786419.2010.488628] [PMID: 21108117]
[18]
Kanwal, Q.; Hussain, I.; Siddiqui, L.; Javaid, A. Antimicrobial activity screening of isolated flavonoids from azadirachta indica leaves. J. Serb. Chem. Soc., 2011, 76(3), 375-384.
[http://dx.doi.org/10.2298/JSC100406027K]
[19]
Javaid, A.; Shafique, S.; Kanwal, Q.; Shafique, S. Herbicidal activity of flavonoids of mango leaves against Parthenium hysterophorus L. Nat. Prod. Res., 2010, 24(19), 1865-1875.
[http://dx.doi.org/10.1080/14786419.2010.488231] [PMID: 21104534]
[20]
Falé, P.L.; Borges, C.; Madeira, P.J.A.; Ascensão, L.; Araújo, M.E.M.; Florêncio, M.H.; Serralheiro, M.L.M. Rosmarinic acid, scutellarein 4′-methyl ether 7-O-glucuronide and (16S)-coleon E are the main compounds responsible for the antiacetylcholinesterase and antioxidant activity in herbal tea of Plectranthus barbatus (“falso boldo”). Food Chem., 2009, 114(3), 798-805.
[http://dx.doi.org/10.1016/j.foodchem.2008.10.015]
[21]
Luo, X.; Wang, J.; Chen, H.; Zhou, A.; Song, M.; Zhong, Q.; Chen, H.; Cao, Y. Identification of flavoanoids from finger Citron and evaluation on their anti-oxidative and anti-aging activities. Front. Nutr., 2020, 7, 584900.
[http://dx.doi.org/10.3389/fnut.2020.584900] [PMID: 33195374]
[22]
Gattuso, G.; Caristi, C.; Gargiulli, C.; Bellocco, E.; Toscano, G.; Leuzzi, U. Flavonoid glycosides in bergamot juice (Citrus bergamia Risso). J. Agric. Food Chem., 2006, 54(11), 3929-3935.
[http://dx.doi.org/10.1021/jf060348z] [PMID: 16719517]
[23]
Chu, J.; Li, S.L.; Yin, Z.Q.; Ye, W.C.; Zhang, Q.W. Simultaneous quantification of coumarins, flavonoids and limonoids in Fructus Citri Sarcodactylis by high performance liquid chromatography coupled with diode array detector. J. Pharm. Biomed. Anal., 2012, 66, 170-175.
[http://dx.doi.org/10.1016/j.jpba.2012.03.041] [PMID: 22494516]
[24]
Gardana, C.; Nalin, F.; Simonetti, P. Evaluation of flavonoids and furanocoumarins from Citrus bergamia (Bergamot) juice and identification of new compounds. Molecules, 2008, 13(9), 2220-2228.
[http://dx.doi.org/10.3390/molecules13092220] [PMID: 18830151]
[25]
Salerno, R.; Casale, F.; Calandruccio, C.; Procopio, A. Characterization of flavonoids in Citrus bergamia (Bergamot) polyphenolic fraction by liquid chromatography–high resolution mass spectrometry (LC/HRMS). PharmaNutrition, 2016, 4, S1-S7.
[http://dx.doi.org/10.1016/j.phanu.2015.10.001]
[26]
Russo, M.; Arigò, A.; Calabrò, M.L.; Farnetti, S.; Mondello, L.; Dugo, P. Bergamot (Citrus bergamia Risso) as a source of nutraceuticals: Limonoids and flavonoids. J. Funct. Foods, 2016, 20, 10-19.
[http://dx.doi.org/10.1016/j.jff.2015.10.005]
[27]
Yin, F.; Cheng, L.; Lou, F.C. Study on chemical constituents of Citrus medica L. var. sarcodactylis Swingle. Chin. J. Nat. Med., 2004, 2, 149-151.
[28]
He, H.Y.; Leng, L.Q.; Shi, G.P.; Zhang, N.; Mao, Q.M. Study on chemical constituents of Citrus medica. Trad. Chin. Med. J., 1988, 13, 32-34.
[29]
Cui, G.L.; Li, L.Y.; Tan, J.; Zhang, Y. Analysis and evaluation of eight active ingredients of fruits from Citrus medica from different regions. Nat. Prod. Res. Dev, 2019, 31, 250-260.
[30]
Nogata, Y.; Sakamoto, K.; Shiratsuchi, H.; Ishii, T.; Yano, M.; Ohta, H. Flavonoid composition of fruit tissues of citrus species. Biosci. Biotechnol. Biochem., 2006, 70(1), 178-192.
[http://dx.doi.org/10.1271/bbb.70.178] [PMID: 16428836]
[31]
Ma, Q.G.; Tang, Y.; Sang, Z.P.; Dong, J.H.; Wei, R.R. Structurally diverse biflavonoids from the fruits of Citrus medica L. var. sarcodactylis Swingle and their hypolipidemic and immunosuppressive activities. Bioorg. Chem., 2021, 117, 105450.
[http://dx.doi.org/10.1016/j.bioorg.2021.105450] [PMID: 34710667]
[32]
Xie, Y.; Zhou, X.; Li, J.; Yao, X.C.; Liu, W.L.; Kang, F.H.; Zou, Z.X.; Xu, K.P.; Xu, P.S.; Tan, G.S. Identification of a new natural biflavonoids against breast cancer cells induced ferroptosis via the mitochondrial pathway. Bioorg. Chem., 2021, 109, 104744.
[http://dx.doi.org/10.1016/j.bioorg.2021.104744] [PMID: 33639365]
[33]
Li, M.; Li, B.; Xia, Z.M.; Tian, Y.; Zhang, D.; Rui, W.J.; Dong, J.X.; Xiao, F.J. Anti-cancer effects of five biflavonoids from Ginkgo biloba L. male flowers in vitro. Molecules, 2019, 24(8), 1496.
[http://dx.doi.org/10.3390/molecules24081496] [PMID: 30995808]
[34]
Zou, Z.X.; Zhang, S.; Tan, J.B.; Chen, D.K.; Xu, Y.R.; Xu, K.P.; Tan, G.S. Two new biflavonoids from Selaginella doederleinii. Phytochem. Lett., 2020, 40, 126-129.
[http://dx.doi.org/10.1016/j.phytol.2020.10.003]
[35]
Xu, J.; Yang, L.; Wang, R.; Zeng, K.; Fan, B.; Zhao, Z. The biflavonoids as protein tyrosine phosphatase 1B inhibitors from Selaginella uncinata and their antihyperglycemic action. Fitoterapia, 2019, 137, 104255.
[http://dx.doi.org/10.1016/j.fitote.2019.104255] [PMID: 31271785]
[36]
Liu, Y.; Kelsang, N.; Lu, J.; Zhang, Y.; Liang, H.; Tu, P.; Kong, D.; Zhang, Q.; Oxytrodiflavanone, A.; Oxytrochalcoflavanones, A.B. new biflavonoids from Oxytropis chiliophylla. Molecules, 2019, 24(8), 1468.
[http://dx.doi.org/10.3390/molecules24081468] [PMID: 31013944]
[37]
Kalenga, T.M.; Ndoile, M.M.; Atilaw, Y.; Munissi, J.J.E.; Gilissen, P.J.; Rudenko, A.; Bourgard, C.; Sunnerhagen, P.; Nyandoro, S.S.; Erdelyi, M. Antibacterial and cytotoxic biflavonoids from the root bark of Ochna kirkii. Fitoterapia, 2021, 151, 104857.
[http://dx.doi.org/10.1016/j.fitote.2021.104857] [PMID: 33582268]
[38]
Chen, T.; Yang, P.; Chen, H.; Huang, B. A new biflavonoids from Aster tataricus induced non-apoptotic cell death in A549 cells. Nat. Prod. Res., 2022, 36(6), 1409-1415.
[http://dx.doi.org/10.1080/14786419.2021.1882456] [PMID: 33615932]
[39]
Yan, H.W.; Zhu, H.; Yuan, X.; Yang, Y.N.; Feng, Z.M.; Jiang, J.S.; Zhang, P.C. Eight new biflavonoids with lavandulyl units from the roots of Sophora flavescens and their inhibitory effect on PTP1B. Bioorg. Chem., 2019, 86, 679-685.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.058] [PMID: 30831529]
[40]
Liu, Y.J.; Xue, Y.C. Research progress of plant flavonoids. Zhongguo Shengwu Gongcheng Zazhi, 2016, 36, 81-86.
[41]
Liang, Y.N.; Tang, Z.S.; Zhang, X.Q.; Li, S.; Zhao, M.W.; Wang, Z. Optimization of ultrasonic assisted extraction of total flavonoids from Portulaca oleracea L. and its anti-oxidant and anti-tumor activities. Zhongguo Nongxue Tongbao, 2019, 35, 130-135.
[42]
Xu, J.B.; Su, X.F.; Mo, Y.F. Ultrasonic-assisted extraction of total flavonoids from Sterculia lanceolata and scavenging capacity on hydroxyl free radical. Sci. Technol. Food Ind., 2018, 39, 199-202.
[43]
Zhang, L.P.; Zhou, L.; Guan, B.F.; Wang, F.Y.; Liu, H.W.; Gao, H.L.; Jia, Y.; Luo, B.B.; Li, P.C. Study on ultrasonic assisted extraction of total flavonoids from persimmon leaves. Food Res. Dev., 2018, 39, 87-91.
[44]
Jiang, L.C.; Huang, C.S.; Yang, C.; Yuan, Q.P. Study on extraction and anti-oxidant activity of total flavonoids from C. medica var. sarcodactylus Swingle. Jiangsu Agric. Sci., 2010, 3, 340-342.
[45]
Zhang, B.; Hou, X.Z.; Rao, Q. Optimization of ultrasonic extraction and anti-oxidation of total flavonoids from bergamot by response surface methodology. Food Res. Dev., 2012, 33, 27-31.
[http://dx.doi.org/10.1016/j.foodres.2012.06.032]
[46]
Chen, J.; Lv, T.X.; Ye, J.X.; Zhao, Y.L. Study on ultrasonic extraction of total flavonoids from bergamot. Sci. Technol. Food Ind., 2012, 33, 262-265.
[47]
Zhang, G.Q. New progress in microwave-assisted extraction of flavonoids and polysaccharides. Tianjin Pharm., 2007, 19, 66-68.
[48]
Chen, X. Application of microwave assisted extraction technology in the extraction of active components of traditional Chinese medicine. Anhui Yiyao, 2018, 22, 2460-2463.
[49]
Liu, J.H. Microwave assisted extraction of flavonoids from Zanthoxylum bungeanum leaves and their anti-oxidant activities. Zhongguo Tiaoweipin, 2015, 40, 16-20.
[50]
Cui, P.; Chen, Z.R.; Shi, L.G. Microwave assisted extraction of total flavonoids of leaves from Ficus carica and their anti-oxidant activities in vitro. Food Res. Dev, 2018, 39, 41-45.
[51]
Zhao, L.L.; Cai, L.Q.; Ye, J.X.; Feng, J.; Zhao, Y.L. Microwave assisted extraction with the surfactant sodium dodecyl sulphate and anti-oxidant activity evaluation of total flavonoids from bergamot. Shipin Kexue, 2014, 35, 47-51.
[52]
Li, Y.; Yao, X. Effect of different processing methods on the content of total flavonoids in bergamot. Herald Med, 2012, 31, 643-645.
[53]
Li, H.T.; Wu, Z.F.; Wan, N.; Li, Y.H.; Li, Y.N.; Yang, M. Application and research progress of assistants in the extraction of traditional Chinese medicine. Zhongguo Shiyan Fangjixue Zazhi, 2017, 23, 212-219.
[54]
Wang, L.X.; Chen, Y.S.; Musha, L.L.; Li, G.R.; Huang, F.L.; Luo, R.; Xing, C.; Sun, H.J.; Li, Y. Study on extraction technology of total flavonoids from castor cake by ethanol extraction. Sci. Technol. Food Ind., 2015, 36, 282-285.
[55]
Wang, X. Application of extraction methods of flavonoids. Tianjin Pharm., 2007, 19, 61-66.
[56]
Liu, Y.F.; Xia, H.T. Optimization of extraction process of total flavonoids from bergamot by response surface methodology. Hubei Agric. Sci., 2013, 52, 1634-1637.
[57]
Wang, J.; Luo, X.G.; Zhu, Y.W.; Zhang, Y.M.; Huang, K.X.; Chen, H.M.; Xiao, S.R.; Zhou, A.M. Optimization of extraction process of bergamot flavonoids and its anti-oxidant activity in vitro. Sci. Technol. Food Ind., 2018, 39, 192-197.
[58]
Wan, X.H.; Chen, X.M.; Ma, S.; Wang, J.F.; Gao, Y.; Zhou, C.Z.; Wang, L.Z. Application of new extraction methods of flavonoids. Chin. Tradit. Herbal Drugs, 2019, 50, 3691-3699.
[59]
Gao, J.D.; Zhu, X.Y.; Liu, X.; Chen, H.; Song, K.R.; Shi, T.T. Optimization of extraction process of total flavonoids from Fructus lycii with complex enzymes by response surface methodology. Zhongguo Zhongyiyao Xinxi Zazhi, 2017, 24, 66-71.
[60]
Wang, Y.Y.; Li, M.; Zhou, Y.L.; Lu, W.Y.; Wu, G.X. Study on extraction of flavonoids from Capparis spinosa by cellulase and its anti-oxidant activity. Food Ind., 2015, 36, 1-3.
[61]
Zhang, B.; Hou, X.Z. Extraction of total flavonoids from bergamot by complex enzymes. Food Res. Dev., 2010, 31, 188-192.
[62]
Lv, L. Anti-atherosclerotic effect of quercetin based on PI3K/Akt/NF-κB signal pathway, Doctoral Diss. Jilin Univ., Changchun 2017.
[63]
Gong, Z.; Gong, L.; Lv, P.Y.; Zhang, J.M.; Zhang, C.Y.; Dong, C.J.; Luo, M.; Zhang, J. The effect of total flavonoids from Citrus medica on blood lipid and atherosclerosis relatived risk factors in hyperlipidemia rabbits. Chin. J. Micro, 2016, 26, 14-17.
[64]
Zhou, L.Y.; Tian, A.F.; Hu, X.G. Pharmacological study on glucose and lipid metabolism and regulation of the chemical composition of Citrus medica. Guangdong Chem. Ind, 2017, 44, 146-148.
[65]
Miceli, N.; Mondello, M.R.; Monforte, M.T.; Sdrafkakis, V.; Dugo, P.; Crupi, M.L.; Taviano, M.F.; Pasquale, R.D.; Trovato, A. Hypolipidemic effects of Citrus bergamia Risso et Poiteau juice in rats fed a hypercholesterolemic diet. J. Agric. Food Chem., 2007, 55(26), 10671-10677.
[http://dx.doi.org/10.1021/jf071772i] [PMID: 18038978]
[66]
Wilcox, L.J.; Borradaile, N.M.; de Dreu, L.E.; Huff, M.W. Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP. J. Lipid Res., 2001, 42(5), 725-734.
[http://dx.doi.org/10.1016/S0022-2275(20)31634-5] [PMID: 11352979]
[67]
Olaleye, M.T.; Crown, O.O.; Akinmoladun, A.C.; Akindahunsi, A.A. Rutin and quercetin show greater efficacy than nifedipin in ameliorating hemodynamic, redox, and metabolite imbalances in sodium chloride-induced hypertensive rats. Hum. Exp. Toxicol., 2014, 33(6), 602-608.
[http://dx.doi.org/10.1177/0960327113504790] [PMID: 24064906]
[68]
Patil, S.; Somashekarappa, H.M.; Rajashekhar, K.P. Radiomodulatory role of Rutin and Quercetin in Swiss Albino mice exposed to the whole body gamma radiation. Indian J. Nucl. Med., 2012, 27(4), 237-242.
[http://dx.doi.org/10.4103/0972-3919.115394] [PMID: 24019653]
[69]
Cho, J. Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Arch. Pharm. Res., 2006, 29(8), 699-706.
[http://dx.doi.org/10.1007/BF02968255] [PMID: 16964766]
[70]
Huang, X.M.; Deng, X. Study on separation, purification and anti-oxidant activity of flavonoids from bergamot. Chem. Res, 2017, 28, 730-739.
[71]
Wang, J.; Luo, X.G.; Zhu, Y.W.; Zhang, Y.M.; Huang, K.X.; Chen, H.M.; Xiao, S.R.; Zhou, A.M. Optimization of extraction process of flavonoids from bergamot and its anti-oxidative activity in vitro. Sci. Technol. Food Ind., 2018, 39, 192-197.
[72]
Huang, J.; Chen, C.; Huang, X.M. Flavonoids from C. medica: ultrasonicly extracting technology and its anti-oxidation properties. Zhongguo Nongxue Tongbao, 2021, 37, 126-131.
[73]
Wang, J. Studies on separation, purification and anti-oxidant activities of total flavonoids from C. medica, Master's Thesis South China Agric. Univ., Guangzhou 2018.
[74]
Shi, J.J.; Shi, B. Effect of hesperidin on lipid metabolism disorder in hyperlipemia model rats. Acta Chin. Med, 2016, 31, 554-557.
[75]
Zhao, Y.Y.; Hu, H.W.; Peng, T.; Deng, F.; Xiang, B.C.; Kuang, Y. Research progress on chemical constituents, pharmacological effects, development and application of bergamot. Lishizhen Med. Mater. Med. Res, 2018, 29, 2734-2736.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy