Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

The Role of Shear Stress in Coronary Artery Disease

Author(s): Gerasimos Siasos*, Vasiliki Tsigkou, Ahmet Umit Coskun, Evangelos Oikonomou, Marina Zaromitidou, Lilach O. Lerman, Amir Lerman and Peter H. Stone

Volume 23, Issue 22, 2023

Published on: 14 April, 2023

Page: [2132 - 2157] Pages: 26

DOI: 10.2174/1568026623666230329085631

Price: $65

Abstract

Coronary artery disease is the leading cause of morbidity and mortality worldwide, especially in developed countries, with an increasing incidence in developing countries. Despite the advances in cardiology, there are yet many unanswered questions about the natural history of coronary atherosclerosis. However, it has not been fully explained why some coronary artery plaques remain quiescent over time, whereas others evolve to a high-risk, “vulnerable” plaque with a predisposition to destabilize and induce a cardiac event. Furthermore, approximately half of the patients with acute coronary syndromes demonstrate no prior symptoms of ischemia or angiographically evident disease. Recent findings have indicated that apart from cardiovascular risk factors, genetics, and other unknown factors, local hemodynamic forces, such as endothelial shear stress, blood flow patterns, and endothelial dysfunction of the epicardial and microvascular coronary arteries, are associated with the progression of coronary plaque and the development of cardiovascular complications with complex interactions. In this review article, we summarize the mechanisms that affect coronary artery plaque progression, indicating the importance of endothelial shear stress, endothelial dysfunction of epicardial and microvascular vessels, inflammation, and their complex associations, underlying in parallel the clinical perspectives of these findings.

Graphical Abstract

[1]
Siasos, G.; Sara, J.D.; Zaromytidou, M.; Park, K.H.; Coskun, A.U.; Lerman, L.O.; Oikonomou, E.; Maynard, C.C.; Fotiadis, D.; Stefanou, K.; Papafaklis, M.; Michalis, L.; Feldman, C.; Lerman, A.; Stone, P.H. Local low shear stress and endothelial dysfunction in patients with nonobstructive coronary atherosclerosis. J. Am. Coll. Cardiol., 2018, 71(19), 2092-2102.
[http://dx.doi.org/10.1016/j.jacc.2018.02.073] [PMID: 29747829]
[2]
Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; Delling, F.N.; Djousse, L.; Elkind, M.S.V.; Ferguson, J.F.; Fornage, M.; Jordan, L.C.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Kwan, T.W.; Lackland, D.T.; Lewis, T.T.; Lichtman, J.H.; Longenecker, C.T.; Loop, M.S.; Lutsey, P.L.; Martin, S.S.; Matsushita, K.; Moran, A.E.; Mussolino, M.E.; O’Flaherty, M.; Pandey, A.; Perak, A.M.; Rosamond, W.D.; Roth, G.A.; Sampson, U.K.A.; Satou, G.M.; Schroeder, E.B.; Shah, S.H.; Spartano, N.L.; Stokes, A.; Tirschwell, D.L.; Tsao, C.W.; Turakhia, M.P.; VanWagner, L.B.; Wilkins, J.T.; Wong, S.S.; Virani, S.S. Heart disease and stroke statistics-2019 update: A report from the american heart association. Circulation, 2019, 139(10), e56-e528.
[http://dx.doi.org/10.1161/CIR.0000000000000659] [PMID: 30700139]
[3]
Balady, G.J.; Williams, M.A.; Ades, P.A.; Bittner, V.; Comoss, P.; Foody, J.M.; Franklin, B.; Sanderson, B.; Southard, D. Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: A scientific statement from the american heart association exercise, cardiac rehabilitation, and prevention committee, the council on clinical cardiology; the councils on cardiovascular nursing, epidemiology and prevention, and nutrition, physical activity, and metabolism; and the american association of cardiovascular and pulmonary rehabilitation. Circulation, 2007, 115(20), 2675-2682.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.180945] [PMID: 17513578]
[4]
Kaduka, L.; Korir, A.; Oduor, C.O.; Kwasa, J.; Mbui, J.; Wabwire, S.; Gakunga, R.; Okerosi, N.; Opanga, Y.; Kisiang’ani, I.; Chepkurui, M.R.; Muniu, E.; Remick, S.C. Stroke distribution patterns and characteristics in Kenya’s leading public health tertiary institutions: Kenyatta National Hospital and Moi Teaching and Referral Hospital. Cardiovasc. J. Afr., 2018, 29(2), 68-72.
[http://dx.doi.org/10.5830/CVJA-2017-046] [PMID: 29745965]
[5]
Tousoulis, D. Novel risk factors in coronary artery disease: Are they clinically relevant? Hellenic J. Cardiol., 2019, 60(3), 149-151.
[http://dx.doi.org/10.1016/j.hjc.2019.06.003] [PMID: 31520726]
[6]
Papageorgiou, N.; Tousoulis, D. Single-nucleotide polymorphisms and their role in coronary artery disease: Where do we stand now? Hellenic J. Cardiol., 2018, 59(1), 14-15.
[http://dx.doi.org/10.1016/j.hjc.2018.02.013] [PMID: 29627598]
[7]
Rahman, K.; Fisher, E.A. Insights from pre-clinical and clinical studies on the role of innate inflammation in atherosclerosis regression. Front. Cardiovasc. Med., 2018, 5, 32.
[http://dx.doi.org/10.3389/fcvm.2018.00032] [PMID: 29868610]
[8]
Zaromytidou, M.; Antoniadis, A.P.; Siasos, G.; Coskun, A.U.; Andreou, I.; Papafaklis, M.I.; Lucier, M.; Feldman, C.L.; Stone, P.H. Heterogeneity of coronary plaque morphology and natural history: Current understanding and clinical significance. Curr. Atheroscler. Rep., 2016, 18(12), 80.
[http://dx.doi.org/10.1007/s11883-016-0626-x] [PMID: 27822680]
[9]
Ford, T.J.; Corcoran, D.; Berry, C. Stable coronary syndromes: Pathophysiology, diagnostic advances and therapeutic need. Heart, 2018, 104(4), 284-292.
[PMID: 29030424]
[10]
Bechsgaard, D.F.; Prescott, E. Coronary microvascular dysfunction: A practical approach to diagnosis and management. Curr. Atheroscler. Rep., 2021, 23(9), 54.
[http://dx.doi.org/10.1007/s11883-021-00947-y] [PMID: 34268637]
[11]
Cameron, J.N.; Mehta, O.H.; Michail, M.; Chan, J.; Nicholls, S.J.; Bennett, M.R.; Brown, A.J. Exploring the relationship between biomechanical stresses and coronary atherosclerosis. Atherosclerosis, 2020, 302, 43-51.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.04.011] [PMID: 32438198]
[12]
Kelsey, L.J.; Bellinge, J.W.; Majeed, K.; Parker, L.P.; Richards, S.; Schultz, C.J.; Doyle, B.J. Low endothelial shear stress is associated with high-risk coronary plaque features and microcalcification activity. JACC Cardiovasc. Imaging, 2021, 14(11), 2262-2264.
[http://dx.doi.org/10.1016/j.jcmg.2021.06.016] [PMID: 34274284]
[13]
Chatzizisis, Y.S.; Coskun, A.U.; Jonas, M.; Edelman, E.R.; Feldman, C.L.; Stone, P.H. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: Molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol., 2007, 49(25), 2379-2393.
[http://dx.doi.org/10.1016/j.jacc.2007.02.059] [PMID: 17599600]
[14]
Fujimoto, J.G.; Boppart, S.A.; Tearney, G.J.; Bouma, B.E.; Pitris, C.; Brezinski, M.E. High resolution in vivo intra-arterial imaging with optical coherence tomography. Heart, 1999, 82(2), 128-133.
[http://dx.doi.org/10.1136/hrt.82.2.128] [PMID: 10409522]
[15]
Malek, A.M.; Alper, S.L.; Izumo, S. Hemodynamic shear stress and its role in atherosclerosis. JAMA, 1999, 282(21), 2035-2042.
[http://dx.doi.org/10.1001/jama.282.21.2035] [PMID: 10591386]
[16]
Slager, C.J.; Wentzel, J.J.; Gijsen, F.J.H.; Schuurbiers, J.C.H.; van der Wal, A.C.; van der Steen, A.F.W.; Serruys, P.W. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat. Clin. Pract. Cardiovasc. Med., 2005, 2(8), 401-407.
[http://dx.doi.org/10.1038/ncpcardio0274] [PMID: 16119702]
[17]
Soulis, J.V.; Giannoglou, G.D.; Chatzizisis, Y.S.; Farmakis, T.M.; Giannakoulas, G.A.; Parcharidis, G.E.; Louridas, G.E. Spatial and phasic oscillation of non-Newtonian wall shear stress in human left coronary artery bifurcation: An insight to atherogenesis. Coron. Artery Dis., 2006, 17(4), 351-358.
[http://dx.doi.org/10.1097/00019501-200606000-00005] [PMID: 16707958]
[18]
Asakura, T.; Karino, T. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ. Res., 1990, 66(4), 1045-1066.
[http://dx.doi.org/10.1161/01.RES.66.4.1045] [PMID: 2317887]
[19]
Friedman, M.H.; Bargeron, C.B.; Duncan, D.D.; Hutchins, G.M.; Mark, F.F. Effects of arterial compliance and non-Newtonian rheology on correlations between intimal thickness and wall shear. J. Biomech. Eng., 1992, 114(3), 317-320.
[http://dx.doi.org/10.1115/1.2891389] [PMID: 1326063]
[20]
Barakat, A.I.; Davies, P.F. Mechanisms of shear stress transmission and transduction in endothelial cells. Chest, 1998, 114(1), 58S-63S.
[http://dx.doi.org/10.1378/chest.114.1_Supplement.58S] [PMID: 9676631]
[21]
Li, Y.S.J.; Haga, J.H.; Chien, S. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech., 2005, 38(10), 1949-1971.
[http://dx.doi.org/10.1016/j.jbiomech.2004.09.030] [PMID: 16084198]
[22]
Urschel, K.; Tauchi, M.; Achenbach, S.; Dietel, B. Investigation of wall shear stress in cardiovascular research and in clinical practice - from bench to bedside. Int. J. Mol. Sci., 2021, 22(11), 5635.
[http://dx.doi.org/10.3390/ijms22115635] [PMID: 34073212]
[23]
Mahmoudi, M.; Farghadan, A.; McConnell, D.R.; Barker, A.J.; Wentzel, J.J.; Budoff, M.J.; Arzani, A. The story of wall shear stress in coronary artery atherosclerosis: Biochemical transport and mechanotransduction. J. Biomech. Eng., 2021, 143(4), 041002.
[http://dx.doi.org/10.1115/1.4049026] [PMID: 33156343]
[24]
Barbee, K.A.; Davies, P.F.; Lal, R. Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Circ. Res., 1994, 74(1), 163-171.
[http://dx.doi.org/10.1161/01.RES.74.1.163] [PMID: 8261591]
[25]
Levesque, M.J.; Liepsch, D.; Moravec, S.; Nerem, R.M. Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arteriosclerosis, 1986, 6(2), 220-229.
[http://dx.doi.org/10.1161/01.ATV.6.2.220] [PMID: 3954676]
[26]
Davies, P.F.; Barbee, K.A.; Volin, M.V.; Robotewskyj, A.; Chen, J.; Joseph, L.; Griem, M.L.; Wernick, M.N.; Jacobs, E.; Polacek, D.C.; DePaola, N.; Barakat, A.I. Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annu. Rev. Physiol., 1997, 59(1), 527-549.
[http://dx.doi.org/10.1146/annurev.physiol.59.1.527] [PMID: 9074776]
[27]
Dai, G.; Kaazempur-Mofrad, M.R.; Natarajan, S.; Zhang, Y.; Vaughn, S.; Blackman, B.R.; Kamm, R.D.; García-Cardeña, G.; Gimbrone, M.A. Jr Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc. Natl. Acad. Sci., 2004, 101(41), 14871-14876.
[http://dx.doi.org/10.1073/pnas.0406073101] [PMID: 15466704]
[28]
Meza, D.; Musmacker, B.; Steadman, E.; Stransky, T.; Rubenstein, D.A.; Yin, W. Endothelial cell biomechanical responses are dependent on both fluid shear stress and tensile strain. Cell. Mol. Bioeng., 2019, 12(4), 311-325.
[http://dx.doi.org/10.1007/s12195-019-00585-0] [PMID: 31719917]
[29]
Shihata, W.A.; Michell, D.L.; Andrews, K.L.; Chin-Dusting, J.P.F. Caveolae: A role in endothelial inflammation and mechanotransduction? Front. Physiol., 2016, 7, 628.
[http://dx.doi.org/10.3389/fphys.2016.00628] [PMID: 28066261]
[30]
Echarri, A.; Del Pozo, M.A. Caveolae – mechanosensitive membrane invaginations linked to actin filaments. J. Cell Sci., 2015, 128(15), jcs.153940.
[http://dx.doi.org/10.1242/jcs.153940] [PMID: 26159735]
[31]
Sowa, G. Caveolae, caveolins, cavins, and endothelial cell function: New insights. Front. Physiol., 2012, 2, 120.
[http://dx.doi.org/10.3389/fphys.2011.00120] [PMID: 22232608]
[32]
Noris, M.; Morigi, M.; Donadelli, R.; Aiello, S.; Foppolo, M.; Todeschini, M.; Orisio, S.; Remuzzi, G.; Remuzzi, A. Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ. Res., 1995, 76(4), 536-543.
[http://dx.doi.org/10.1161/01.RES.76.4.536] [PMID: 7534657]
[33]
Go, Y.M.; Boo, Y.C.; Park, H.; Maland, M.C.; Patel, R.; Pritchard, K.A. Jr Protein kinase B/Akt activates c-Jun NH(2)-terminal kinase by increasing NO production in response to shear stress. J. Appl. Physiol., 2001, 91(4), 1574-1578.
[34]
Boon, RA; Horrevoets, AJ Key transcriptional regulators of the vasoprotective effects of shear stress. Hamostaseologie, 2009, 29(1), 39-40-41-3.
[http://dx.doi.org/10.1055/s-0037-1616937]
[35]
Chen, X.L.; Dodd, G.; Thomas, S.; Zhang, X.; Wasserman, M.A.; Rovin, B.H.; Kunsch, C. Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. Am. J. Physiol. Heart Circ. Physiol., 2006, 290(5), H1862-H1870.
[http://dx.doi.org/10.1152/ajpheart.00651.2005] [PMID: 16339837]
[36]
Hoogendoorn, A.; Kok, A.M.; Hartman, E.M.J.; de Nisco, G.; Casadonte, L.; Chiastra, C.; Coenen, A.; Korteland, S.A.; Van der Heiden, K.; Gijsen, F.J.H.; Duncker, D.J.; van der Steen, A.F.W.; Wentzel, J.J. Multidirectional wall shear stress promotes advanced coronary plaque development: Comparing five shear stress metrics. Cardiovasc. Res., 2020, 116(6), 1136-1146.
[http://dx.doi.org/10.1093/cvr/cvz212] [PMID: 31504238]
[37]
Won, D.; Zhu, S.N.; Chen, M.; Teichert, A.M.; Fish, J.E.; Matouk, C.C.; Bonert, M.; Ojha, M.; Marsden, P.A.; Cybulsky, M.I. Relative reduction of endothelial nitric-oxide synthase expression and transcription in atherosclerosis-prone regions of the mouse aorta and in an in vitro model of disturbed flow. Am. J. Pathol., 2007, 171(5), 1691-1704.
[http://dx.doi.org/10.2353/ajpath.2007.060860] [PMID: 17982133]
[38]
Epstein, F.H.; Goldstein, J.L.; Kita, T.; Brown, M.S. Defective lipoprotein receptors and atherosclerosis. Lessons from an animal counterpart of familial hypercholesterolemia. N. Engl. J. Med., 1983, 309(5), 288-296.
[http://dx.doi.org/10.1056/NEJM198308043090507] [PMID: 6306464]
[39]
Hajra, L.; Evans, A.I.; Chen, M.; Hyduk, S.J.; Collins, T.; Cybulsky, M.I. The NF-κB signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc. Natl. Acad. Sci. USA, 2000, 97(16), 9052-9057.
[http://dx.doi.org/10.1073/pnas.97.16.9052] [PMID: 10922059]
[40]
Passerini, A.G.; Polacek, D.C.; Shi, C.; Francesco, N.M.; Manduchi, E.; Grant, G.R.; Pritchard, W.F.; Powell, S.; Chang, G.Y.; Stoeckert, C.J., Jr; Davies, P.F. Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc. Natl. Acad. Sci., 2004, 101(8), 2482-2487.
[http://dx.doi.org/10.1073/pnas.0305938101] [PMID: 14983035]
[41]
Feldman, C.L.; Ilegbusi, O.J.; Hu, Z.; Nesto, R.; Waxman, S.; Stone, P.H. Determination of in vivo velocity and endothelial shear stress patterns with phasic flow in human coronary arteries: A methodology to predict progression of coronary atherosclerosis. Am. Heart J., 2002, 143(6), 931-939.
[http://dx.doi.org/10.1067/mhj.2002.123118] [PMID: 12075241]
[42]
Moazzam, F.; DeLano, F.A.; Zweifach, B.W.; Schmid-Schönbein, G.W. The leukocyte response to fluid stress. Proc. Natl. Acad. Sci., 1997, 94(10), 5338-5343.
[http://dx.doi.org/10.1073/pnas.94.10.5338] [PMID: 9144238]
[43]
Davies, P.F.; Civelek, M.; Fang, Y.; Fleming, I. The atherosusceptible endothelium: Endothelial phenotypes in complex haemodynamic shear stress regions in vivo. Cardiovasc. Res., 2013, 99(2), 315-327.
[http://dx.doi.org/10.1093/cvr/cvt101] [PMID: 23619421]
[44]
Hwang, J.; Saha, A.; Boo, Y.C.; Sorescu, G.P.; McNally, J.S.; Holland, S.M.; Dikalov, S.; Giddens, D.P.; Griendling, K.K.; Harrison, D.G.; Jo, H. Oscillatory shear stress stimulates endothelial production of O2- from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion. J. Biol. Chem., 2003, 278(47), 47291-47298.
[http://dx.doi.org/10.1074/jbc.M305150200] [PMID: 12958309]
[45]
Tzima, E.; Irani-Tehrani, M.; Kiosses, W.B.; Dejana, E.; Schultz, D.A.; Engelhardt, B.; Cao, G.; DeLisser, H.; Schwartz, M.A. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature, 2005, 437(7057), 426-431.
[http://dx.doi.org/10.1038/nature03952] [PMID: 16163360]
[46]
Wang, J.; Zhang, S. Fluid shear stress modulates endothelial inflammation by targeting LIMS2. Exp. Biol. Med., 2020, 245(18), 1656-1663.
[http://dx.doi.org/10.1177/1535370220943837] [PMID: 32752897]
[47]
Fang, Y.; Shi, C.; Manduchi, E.; Civelek, M.; Davies, P.F. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc. Natl. Acad. Sci. USA, 2010, 107(30), 13450-13455.
[http://dx.doi.org/10.1073/pnas.1002120107] [PMID: 20624982]
[48]
Stary, H.C.; Chandler, A.B.; Dinsmore, R.E.; Fuster, V.; Glagov, S.; Insull, W., Jr; Rosenfeld, M.E.; Schwartz, C.J.; Wagner, W.D.; Wissler, R.W. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation, 1995, 92(5), 1355-1374.
[http://dx.doi.org/10.1161/01.CIR.92.5.1355] [PMID: 7648691]
[49]
Cheng, C.; Tempel, D.; van Haperen, R.; van der Baan, A.; Grosveld, F.; Daemen, M.J.A.P.; Krams, R.; de Crom, R. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation, 2006, 113(23), 2744-2753.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.590018] [PMID: 16754802]
[50]
Galis, Z.S.; Khatri, J.J. Matrix metalloproteinases in vascular remodeling and atherogenesis: The good, the bad, and the ugly. Circ. Res., 2002, 90(3), 251-262.
[http://dx.doi.org/10.1161/res.90.3.251] [PMID: 11861412]
[51]
Wentzel, J.J.; Chatzizisis, Y.S.; Gijsen, F.J.H.; Giannoglou, G.D.; Feldman, C.L.; Stone, P.H. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: Current understanding and remaining questions. Cardiovasc. Res., 2012, 96(2), 234-243.
[http://dx.doi.org/10.1093/cvr/cvs217] [PMID: 22752349]
[52]
Chatzizisis, Y.S.; Jonas, M.; Coskun, A.U.; Beigel, R.; Stone, B.V.; Maynard, C.; Gerrity, R.G.; Daley, W.; Rogers, C.; Edelman, E.R.; Feldman, C.L.; Stone, P.H. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: An intravascular ultrasound and histopathology natural history study. Circulation, 2008, 117(8), 993-1002.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.695254] [PMID: 18250270]
[53]
Hyun, S.; Kleinstreuer, C.; Archie, J.P., Jr Hemodynamics analyses of arterial expansions with implications to thrombosis and restenosis. Med. Eng. Phys., 2000, 22(1), 13-27.
[http://dx.doi.org/10.1016/S1350-4533(00)00006-0] [PMID: 10817945]
[54]
White, S.J.; Hayes, E.M.; Lehoux, S.; Jeremy, J.Y.; Horrevoets, A.J.G.; Newby, A.C. Characterization of the differential response of endothelial cells exposed to normal and elevated laminar shear stress. J. Cell. Physiol., 2011, 226(11), 2841-2848.
[http://dx.doi.org/10.1002/jcp.22629] [PMID: 21302282]
[55]
Li, Z-Y.; Taviani, V.; Tang, T.; Sadat, U.; Young, V.; Patterson, A.; Graves, M.; Gillard, J.H. The mechanical triggers of plaque rupture: Shear stress vs. pressure gradient. Br. J. Radiol., 2009, 82(1), S39-S45.
[http://dx.doi.org/10.1259/bjr/15036781] [PMID: 20348535]
[56]
Edwards, G.; Félétou, M.; Weston, A.H. Endothelium-derived hyperpolarising factors and associated pathways: A synopsis. Pflugers Arch., 2010, 459(6), 863-879.
[http://dx.doi.org/10.1007/s00424-010-0817-1] [PMID: 20383718]
[57]
Duncker, D.J.; Koller, A.; Merkus, D.; Canty, J.M., Jr Regulation of coronary blood flow in health and ischemic heart disease. Prog. Cardiovasc. Dis., 2015, 57(5), 409-422.
[http://dx.doi.org/10.1016/j.pcad.2014.12.002] [PMID: 25475073]
[58]
Tesauro, M.; Mauriello, A.; Rovella, V.; Annicchiarico-Petruzzelli, M.; Cardillo, C.; Melino, G.; Di Daniele, N. Arterial ageing: From endothelial dysfunction to vascular calcification. J. Intern. Med., 2017, 281(5), 471-482.
[http://dx.doi.org/10.1111/joim.12605] [PMID: 28345303]
[59]
Flammer, A.J.; Anderson, T.; Celermajer, D.S.; Creager, M.A.; Deanfield, J.; Ganz, P.; Hamburg, N.M.; Lüscher, T.F.; Shechter, M.; Taddei, S.; Vita, J.A.; Lerman, A. The assessment of endothelial function: From research into clinical practice. Circulation, 2012, 126(6), 753-767.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.093245] [PMID: 22869857]
[60]
Camici, P.G.; Crea, F. Coronary microvascular dysfunction. N. Engl. J. Med., 2007, 356(8), 830-840.
[http://dx.doi.org/10.1056/NEJMra061889] [PMID: 17314342]
[61]
Sabe, S.A.; Feng, J.; Sellke, F.W.; Abid, M.R. Mechanisms and clinical implications of endothelium-dependent vasomotor dysfunction in coronary microvasculature. Am. J. Physiol. Heart Circ. Physiol., 2022, 322(5), H819-H841.
[http://dx.doi.org/10.1152/ajpheart.00603.2021] [PMID: 35333122]
[62]
Ma, T.; Bai, Y.P. The hydromechanics in arteriogenesis. Aging Med., 2020, 3(3), 169-177.
[http://dx.doi.org/10.1002/agm2.12101] [PMID: 33103037]
[63]
Horikoshi, T.; Obata, J.; Nakamura, T.; Fujioka, D.; Watanabe, Y.; Nakamura, K.; Watanabe, K.; Saito, Y.; Kugiyama, K. Persistent dysfunction of coronary endothelial vasomotor responses is related to atheroma plaque progression in the infarct-related coronary artery of AMI survivors. J. Atheroscler. Thromb., 2019, 26(12), 1062-1074.
[http://dx.doi.org/10.5551/jat.48249] [PMID: 30996201]
[64]
Godo, S.; Corban, M.T.; Toya, T.; Gulati, R.; Lerman, L.O.; Lerman, A. Association of coronary microvascular endothelial dysfunction with vulnerable plaque characteristics in early coronary atherosclerosis. EuroIntervention, 2020, 16(5), 387-394.
[http://dx.doi.org/10.4244/EIJ-D-19-00265] [PMID: 31403459]
[65]
van de Hoef, T.P.; van Lavieren, M.A.; Damman, P.; Delewi, R.; Piek, M.A.; Chamuleau, S.A.J.; Voskuil, M.; Henriques, J.P.S.; Koch, K.T.; de Winter, R.J.; Spaan, J.A.E.; Siebes, M.; Tijssen, J.G.P.; Meuwissen, M.; Piek, J.J. Physiological basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ. Cardiovasc. Interv., 2014, 7(3), 301-311.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.113.001049] [PMID: 24782198]
[66]
Konst, R.E.; Guzik, T.J.; Kaski, J.C.; Maas, A.H.E.M.; Elias-Smale, S.E. The pathogenic role of coronary microvascular dysfunction in the setting of other cardiac or systemic conditions. Cardiovasc. Res., 2020, 116(4), 817-828.
[http://dx.doi.org/10.1093/cvr/cvaa009] [PMID: 31977015]
[67]
Heusch, G.; Skyschally, A.; Kleinbongard, P. Coronary microembolization and microvascular dysfunction. Int. J. Cardiol., 2018, 258, 17-23.
[http://dx.doi.org/10.1016/j.ijcard.2018.02.010] [PMID: 29429637]
[68]
Gambillara, V.; Chambaz, C.; Montorzi, G.; Roy, S.; Stergiopulos, N.; Silacci, P. Plaque-prone hemodynamics impair endothelial function in pig carotid arteries. Am. J. Physiol. Heart Circ. Physiol., 2006, 290(6), H2320-H2328.
[http://dx.doi.org/10.1152/ajpheart.00486.2005] [PMID: 16415081]
[69]
Amaya, R.; Pierides, A.; Tarbell, J.M. The interaction between fluid wall shear stress and solid circumferential strain affects endothelial gene expression. PLoS One, 2015, 10(7), e0129952.
[http://dx.doi.org/10.1371/journal.pone.0129952] [PMID: 26147292]
[70]
Kumar, A.; Hung, O.Y.; Piccinelli, M.; Eshtehardi, P.; Corban, M.T.; Sternheim, D.; Yang, B.; Lefieux, A.; Molony, D.S.; Thompson, E.W.; Zeng, W.; Bouchi, Y.; Gupta, S.; Hosseini, H.; Raad, M.; Ko, Y.A.; Liu, C.; McDaniel, M.C.; Gogas, B.D.; Douglas, J.S.; Quyyumi, A.A.; Giddens, D.P.; Veneziani, A.; Samady, H. Low coronary wall shear stress is associated with severe endothelial dysfunction in patients with nonobstructive coronary artery disease. JACC Cardiovasc. Interv., 2018, 11(20), 2072-2080.
[http://dx.doi.org/10.1016/j.jcin.2018.07.004] [PMID: 30268874]
[71]
Guyton, J.R.; Klemp, K.F. Development of the lipid-rich core in human atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 1996, 16(1), 4-11.
[http://dx.doi.org/10.1161/01.ATV.16.1.4] [PMID: 8548424]
[72]
Ross, R. Atherosclerosis - an inflammatory disease. N. Engl. J. Med., 1999, 340(2), 115-126.
[http://dx.doi.org/10.1056/NEJM199901143400207] [PMID: 9887164]
[73]
Nosovitsky, V.A.; Ilegbusi, O.J.; Jiang, J.; Stone, P.H.; Feldman, C.L. Effects of curvature and stenosis-like narrowing on wall shear stress in a coronary artery model with phasic flow. Comput. Biomed. Res., 1997, 30(1), 61-82.
[http://dx.doi.org/10.1006/cbmr.1997.1434] [PMID: 9134307]
[74]
Nooraeen, A.; Ghalichi, F.; Taghizadeh, H.; Guidoin, R. Probing the possibility of lesion formation/progression in vicinity of a primary atherosclerotic plaque: A fluid–solid interaction study and angiographic evidences. Int. J. Numer. Methods Biomed. Eng., 2022, 38(7), e3605.
[http://dx.doi.org/10.1002/cnm.3605] [PMID: 35481668]
[75]
Kamangar, S. Numerical simulation of pulsatile blood flow characteristics in a multi stenosed coronary artery. Biomed. Mater. Eng., 2021, 32(5), 309-321.
[http://dx.doi.org/10.3233/BME-211234] [PMID: 33998530]
[76]
Brown, R.A.; Shantsila, E.; Varma, C.; Lip, G.Y.H. Epidemiology and pathogenesis of diffuse obstructive coronary artery disease: The role of arterial stiffness, shear stress, monocyte subsets and circulating microparticles. Ann. Med., 2016, 48(6), 444-455.
[http://dx.doi.org/10.1080/07853890.2016.1190861] [PMID: 27282244]
[77]
Giannoglou, G.D.; Antoniadis, A.P.; Koskinas, K.C.; Chatzizisis, Y.S. Flow and atherosclerosis in coronary bifurcations. EuroIntervention, 2010, 6, J16-J23.
[http://dx.doi.org/10.4244/EIJV6SUPJA4]
[78]
Cekirdekci, E.I.; Bugan, B. Whole blood viscosity in microvascular angina and coronary artery disease: Significance and utility. Revista Portuguesa de Cardiologia, 2020, 39(1), 17-23.
[http://dx.doi.org/10.1016/j.repce.2019.04.001] [PMID: 32156449]
[79]
Wong, C.C.Y.; Javadzadegan, A.; Ada, C.; Lau, J.K.; Bhindi, R.; Fearon, W.F.; Kritharides, L.; Ng, M.K.C.; Yong, A.S.C. Fractional flow reserve and instantaneous wave‐free ratio predict pathological wall shear stress in coronary arteries: Implications for understanding the pathophysiological impact of functionally significant coronary stenoses. J. Am. Heart Assoc., 2022, 11(3), e023502.
[http://dx.doi.org/10.1161/JAHA.121.023502] [PMID: 35043698]
[80]
Hughes, W.E.; Chabowski, D.S.; Ait-Aissa, K.; Fetterman, J.L.; Hockenberry, J.; Beyer, A.M.; Gutterman, D.D. Critical interaction between telomerase and autophagy in mediating flow-induced human arteriolar vasodilation. Arterioscler. Thromb. Vasc. Biol., 2021, 41(1), 446-457.
[PMID: 33232201]
[81]
Bharath, L.P.; Mueller, R.; Li, Y.; Ruan, T.; Kunz, D.; Goodrich, R.; Mills, T.; Deeter, L.; Sargsyan, A.; Anandh Babu, P.V.; Graham, T.E.; Symons, J.D. Impairment of autophagy in endothelial cells prevents shear-stress-induced increases in nitric oxide bioavailability. Can. J. Physiol. Pharmacol., 2014, 92(7), 605-612.
[http://dx.doi.org/10.1139/cjpp-2014-0017] [PMID: 24941409]
[82]
Ait-Aissa, K.; Kadlec, A.O.; Hockenberry, J.; Gutterman, D.D.; Beyer, A.M. Telomerase reverse transcriptase protects against angiotensin II-induced microvascular endothelial dysfunction. Am. J. Physiol. Heart Circ. Physiol., 2018, 314(5), H1053-H1060.
[http://dx.doi.org/10.1152/ajpheart.00472.2017] [PMID: 29351466]
[83]
Choi, B.J.; Prasad, A.; Gulati, R.; Best, P.J.; Lennon, R.J.; Barsness, G.W.; Lerman, L.O.; Lerman, A. Coronary endothelial dysfunction in patients with early coronary artery disease is associated with the increase in intravascular lipid core plaque. Eur. Heart J., 2013, 34(27), 2047-2054.
[http://dx.doi.org/10.1093/eurheartj/eht132] [PMID: 23569198]
[84]
Gössl, M.; Yoon, M.H.; Choi, B.J.; Rihal, C.; Tilford, J.M.; Reriani, M.; Gulati, R.; Sandhu, G.; Eeckhout, E.; Lennon, R.; Lerman, L.O.; Lerman, A. Accelerated coronary plaque progression and endothelial dysfunction: Serial volumetric evaluation by IVUS. JACC Cardiovasc. Imaging, 2014, 7(1), 103-104.
[http://dx.doi.org/10.1016/j.jcmg.2013.05.020] [PMID: 24433714]
[85]
Suwaidi, J.A.; Hamasaki, S.; Higano, S.T.; Nishimura, R.A.; Holmes, D.R., Jr; Lerman, A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation, 2000, 101(9), 948-954.
[http://dx.doi.org/10.1161/01.CIR.101.9.948] [PMID: 10704159]
[86]
Reis, S.E.; Holubkov, R.; Smith, A.J.C.; Kelsey, S.F.; Sharaf, B.L.; Reichek, N.; Rogers, W.J.; Merz, C.N.B.; Sopko, G.; Pepine, C.J. Coronary microvascular dysfunction is highly prevalent in women with chest pain in the absence of coronary artery disease: Results from the NHLBI WISE study. Am. Heart J., 2001, 141(5), 735-741.
[http://dx.doi.org/10.1067/mhj.2001.114198] [PMID: 11320360]
[87]
Juonala, M.; Viikari, J.S.A.; Laitinen, T.; Marniemi, J.; Helenius, H.; Rönnemaa, T.; Raitakari, O.T. Interrelations between brachial endothelial function and carotid intima-media thickness in young adults: The cardiovascular risk in young Finns study. Circulation, 2004, 110(18), 2918-2923.
[http://dx.doi.org/10.1161/01.CIR.0000147540.88559.00] [PMID: 15505080]
[88]
Panza, J.A.; Casino, P.R.; Kilcoyne, C.M.; Quyyumi, A.A. Role of endothelium-derived nitric oxide in the abnormal endothelium-dependent vascular relaxation of patients with essential hypertension. Circulation, 1993, 87(5), 1468-1474.
[http://dx.doi.org/10.1161/01.CIR.87.5.1468] [PMID: 8491001]
[89]
Resnick, N.; Yahav, H.; Shay-Salit, A.; Shushy, M.; Schubert, S.; Zilberman, L.C.M.; Wofovitz, E. Fluid shear stress and the vascular endothelium: For better and for worse. Prog. Biophys. Mol. Biol., 2003, 81(3), 177-199.
[http://dx.doi.org/10.1016/S0079-6107(02)00052-4] [PMID: 12732261]
[90]
Zhuang, T.; Liu, J.; Chen, X.; Zhang, L.; Pi, J.; Sun, H.; Li, L.; Bauer, R.; Wang, H.; Yu, Z.; Zhang, Q.; Tomlinson, B.; Chan, P.; Zheng, X.; Morrisey, E.; Liu, Z.; Reilly, M.; Zhang, Y. Endothelial Foxp1 suppresses atherosclerosis via modulation of Nlrp3 inflammasome activation. Circ. Res., 2019, 125(6), 590-605.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.314402] [PMID: 31318658]
[91]
Blackman, B.R.; García-Cardeña, G.; Gimbrone, M.A. Jr A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. J. Biomech. Eng., 2002, 124(4), 397-407.
[http://dx.doi.org/10.1115/1.1486468] [PMID: 12188206]
[92]
Liu, Y.; Chen, B.P.C.; Lu, M.; Zhu, Y.; Stemerman, M.B.; Chien, S.; Shyy, J.Y.J. Shear stress activation of SREBP1 in endothelial cells is mediated by integrins. Arterioscler. Thromb. Vasc. Biol., 2002, 22(1), 76-81.
[http://dx.doi.org/10.1161/hq0102.101822] [PMID: 11788464]
[93]
Venturini, G.; Malagrino, P.A.; Padilha, K.; Tanaka, L.Y.; Laurindo, F.R.; Dariolli, R.; Carvalho, V.M.; Cardozo, K.H.M.; Krieger, J.E.; Pereira, A.C. Integrated proteomics and metabolomics analysis reveals differential lipid metabolism in human umbilical vein endothelial cells under high and low shear stress. Am. J. Physiol. Cell Physiol., 2019, 317(2), C326-C338.
[http://dx.doi.org/10.1152/ajpcell.00128.2018] [PMID: 31067084]
[94]
Tricot, O.; Mallat, Z.; Heymes, C.; Belmin, J.; Lesèche, G.; Tedgui, A. Relation between endothelial cell apoptosis and blood flow direction in human atherosclerotic plaques. Circulation, 2000, 101(21), 2450-2453.
[http://dx.doi.org/10.1161/01.CIR.101.21.2450] [PMID: 10831515]
[95]
Sakellarios, A.I.; Papafaklis, M.I.; Siogkas, P.; Athanasiou, L.S.; Exarchos, T.P.; Stefanou, K.; Bourantas, C.V.; Naka, K.K.; Michalis, L.K.; Parodi, O.; Fotiadis, D.I. Patient-specific computational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: Effect of hemodynamic and biological factors. Am. J. Physiol. Heart Circ. Physiol., 2013, 304(11), H1455-H1470.
[http://dx.doi.org/10.1152/ajpheart.00539.2012] [PMID: 23504178]
[96]
Mohan, S. Hamuro, M.; Sorescu, G.P.; Koyoma, K.; Sprague, E.A.; Jo, H.; Valente, A.J.; Prihoda, T.J.; Natarajan, M. IκBα-dependent regulation of low-shear flow-induced NF-κB activity: Role of nitric oxide. Am. J. Physiol. Cell Physiol., 2003, 284(4), C1039-C1047.
[http://dx.doi.org/10.1152/ajpcell.00464.2001] [PMID: 12620896]
[97]
Harrison, D.G.; Widder, J.; Grumbach, I.; Chen, W.; Weber, M.; Searles, C. Endothelial mechanotransduction, nitric oxide and vascular inflammation. J. Intern. Med., 2006, 259(4), 351-363.
[http://dx.doi.org/10.1111/j.1365-2796.2006.01621.x] [PMID: 16594903]
[98]
Orr, A.W.; Sanders, J.M.; Bevard, M.; Coleman, E.; Sarembock, I.J.; Schwartz, M.A. The subendothelial extracellular matrix modulates NF-kappaB activation by flow: A potential role in atherosclerosis. J. Cell Biol., 2005, 169(1), 191-202.
[http://dx.doi.org/10.1083/jcb.200410073] [PMID: 15809308]
[99]
Gerszten, R.E.; Lim, Y.C.; Ding, H.T.; Snapp, K.; Kansas, G.; Dichek, D.A.; Cabañas, C.; Sánchez-Madrid, F.; Gimbrone, M.A., Jr; Rosenzweig, A.; Luscinskas, F.W. Adhesion of monocytes to vascular cell adhesion molecule-1-transduced human endothelial cells: Implications for atherogenesis. Circ. Res., 1998, 82(8), 871-878.
[http://dx.doi.org/10.1161/01.RES.82.8.871] [PMID: 9580553]
[100]
Albarrán-Juárez, J.; Iring, A.; Wang, S.; Joseph, S.; Grimm, M.; Strilic, B.; Wettschureck, N.; Althoff, T.F.; Offermanns, S. Piezo1 and Gq/G11 promote endothelial inflammation depending on flow pattern and integrin activation. J. Exp. Med., 2018, 215(10), 2655-2672.
[http://dx.doi.org/10.1084/jem.20180483] [PMID: 30194266]
[101]
Lavi, S.; McConnell, J.P.; Rihal, C.S.; Prasad, A.; Mathew, V.; Lerman, L.O.; Lerman, A. Local production of lipoprotein-associated phospholipase A2 and lysophosphatidylcholine in the coronary circulation: Association with early coronary atherosclerosis and endothelial dysfunction in humans. Circulation, 2007, 115(21), 2715-2721.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.671420] [PMID: 17502572]
[102]
Rana, R.; Huang, T.; Koukos, G.; Fletcher, E.K.; Turner, S.E.; Shearer, A.; Gurbel, P.A.; Rade, J.J.; Kimmelstiel, C.D.; Bliden, K.P.; Covic, L.; Kuliopulos, A. Noncanonical matrix metalloprotease 1–protease-activated receptor 1 signaling drives progression of atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2018, 38(6), 1368-1380.
[http://dx.doi.org/10.1161/ATVBAHA.118.310967] [PMID: 29622563]
[103]
Elrayess, M.A.; Webb, K.E.; Flavell, D.M.; Syvänne, M.; Taskinen, M.R.; Frick, M.H.; Nieminen, M.S.; Kesäniemi, Y.A.; Pasternack, A.; Jukema, J.W.; Kastelein, J.J.P.; Zwinderman, A.H.; Humphries, S.E. A novel functional polymorphism in the PECAM-1 gene (53G>A) is associated with progression of atherosclerosis in the LOCAT and REGRESS studies. Atherosclerosis, 2003, 168(1), 131-138.
[http://dx.doi.org/10.1016/S0021-9150(03)00089-3] [PMID: 12732396]
[104]
Zhu, L.; Wang, F.; Yang, H.; Zhang, J.; Chen, S. Low shear stress damages endothelial function through STAT1 in Endothelial Cells (ECs). J. Physiol. Biochem., 2020, 76(1), 147-157.
[http://dx.doi.org/10.1007/s13105-020-00729-1] [PMID: 32037480]
[105]
Sorescu, G.P.; Song, H.; Tressel, S.L.; Hwang, J.; Dikalov, S.; Smith, D.A.; Boyd, N.L.; Platt, M.O.; Lassègue, B.; Griendling, K.K.; Jo, H. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Circ. Res., 2004, 95(8), 773-779.
[http://dx.doi.org/10.1161/01.RES.0000145728.22878.45] [PMID: 15388638]
[106]
Ciri, U.; Bennett, R.L.; Bhui, R.; Molony, D.S.; Samady, H.; Meyer, C.A.; Hayenga, H.N.; Leonardi, S. Assessment with clinical data of a coupled bio-hemodynamics numerical model to predict leukocyte adhesion in coronary arteries. Sci. Rep., 2021, 11(1), 12680.
[http://dx.doi.org/10.1038/s41598-021-92084-4] [PMID: 34135399]
[107]
Libby, P. Inflammation in atherosclerosis. Nature, 2002, 420(6917), 868-874.
[http://dx.doi.org/10.1038/nature01323] [PMID: 12490960]
[108]
Hernandez, A.A.; Foster, G.A.; Soderberg, S.R.; Fernandez, A.; Reynolds, M.B.; Orser, M.K.; Bailey, K.A.; Rogers, J.H.; Singh, G.D.; Wu, H.; Passerini, A.G.; Simon, S.I. An allosteric shift in CD11c affinity activates a proatherogenic state in arrested intermediate monocytes. J. Immunol., 2020, 205(10), 2806-2820.
[http://dx.doi.org/10.4049/jimmunol.2000485] [PMID: 33055281]
[109]
Moreno, P.R.; Falk, E.; Palacios, I.F.; Newell, J.B.; Fuster, V.; Fallon, J.T. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation, 1994, 90(2), 775-778.
[http://dx.doi.org/10.1161/01.CIR.90.2.775] [PMID: 8044947]
[110]
Kogo, T.; Hiro, T.; Kitano, D.; Takayama, T.; Fukamachi, D.; Morikawa, T.; Sudo, M.; Okumura, Y. Macrophage accumulation within coronary arterial wall in diabetic patients with acute coronary syndrome: A study with in-vivo intravascular imaging modalities. Cardiovasc. Diabetol., 2020, 19(1), 135.
[http://dx.doi.org/10.1186/s12933-020-01110-8] [PMID: 32891145]
[111]
Choi, B.J.; Matsuo, Y.; Aoki, T.; Kwon, T.G.; Prasad, A.; Gulati, R.; Lennon, R.J.; Lerman, L.O.; Lerman, A. Coronary endothelial dysfunction is associated with inflammation and vasa vasorum proliferation in patients with early atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2014, 34(11), 2473-2477.
[http://dx.doi.org/10.1161/ATVBAHA.114.304445] [PMID: 25234815]
[112]
Biglarian, M.; Firoozabadi, B.; Saidi, M.S. Atheroprone sites of coronary artery bifurcation: Effect of heart motion on hemodynamics-dependent monocytes deposition. Comput. Biol. Med., 2021, 133, 104411.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104411] [PMID: 33932644]
[113]
Grégory, Franck Role of mechanical stress and neutrophils in the pathogenesis of plaque erosion. Atherosclerosis, 2021, 318, 60-69.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.11.002] [PMID: 33190807]
[114]
Douglas, G.; Mehta, V.; Al Haj Zen, A.; Akoumianakis, I.; Goel, A.; Rashbrook, V.S.; Trelfa, L.; Donovan, L.; Drydale, E.; Chuaiphichai, S.; Antoniades, C.; Watkins, H.; Kyriakou, T.; Tzima, E.; Channon, K.M. A key role for the novel coronary artery disease gene JCAD in atherosclerosis via shear stress mechanotransduction. Cardiovasc. Res., 2020, 116(11), 1863-1874.
[http://dx.doi.org/10.1093/cvr/cvz263] [PMID: 31584065]
[115]
Lüscher, T.F. Chronic coronary syndromes: Genetics, shear stress, and biomarkers. Eur. Heart J., 2019, 40(41), 3367-3371.
[http://dx.doi.org/10.1093/eurheartj/ehz804] [PMID: 33215677]
[116]
Schacher, N.; Raaz-Schrauder, D.; Pasutto, F.; Stumpfe, F.; Tauchi, M.; Dietel, B.; Achenbach, S.; Urschel, K. Impact of single nucleotide polymorphisms in the VEGFR2 gene on endothelial cell activation under non uniform shear stress. Int. J. Mol. Med., 2019, 44(4), 1366-1376.
[http://dx.doi.org/10.3892/ijmm.2019.4301] [PMID: 31432097]
[117]
Miao, L.; Yin, R.X.; Huang, F.; Yang, S.; Chen, W.X.; Wu, J.Z. Integrated analysis of gene expression changes associated with coronary artery disease. Lipids Health Dis., 2019, 18(1), 92.
[http://dx.doi.org/10.1186/s12944-019-1032-5] [PMID: 30961613]
[118]
Cheng, C.; van Haperen, R.; de Waard, M.; van Damme, L.C.A.; Tempel, D.; Hanemaaijer, L.; van Cappellen, G.W.A.; Bos, J.; Slager, C.J.; Duncker, D.J.; van der Steen, A.F.W.; de Crom, R.; Krams, R. Shear stress affects the intracellular distribution of eNOS: Direct demonstration by a novel in vivo technique. Blood, 2005, 106(12), 3691-3698.
[http://dx.doi.org/10.1182/blood-2005-06-2326] [PMID: 16105973]
[119]
Ziegler, T.; Bouzourène, K.; Harrison, V.J.; Brunner, H.R.; Hayoz, D. Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells. Arterioscler. Thromb. Vasc. Biol., 1998, 18(5), 686-692.
[http://dx.doi.org/10.1161/01.ATV.18.5.686] [PMID: 9598825]
[120]
Cooke, J.P. Flow, NO, and atherogenesis. Proc. Natl. Acad. Sci., 2003, 100(3), 768-770.
[http://dx.doi.org/10.1073/pnas.0430082100] [PMID: 12552094]
[121]
Traub, O.; Berk, B.C. Laminar shear stress: Mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol., 1998, 18(5), 677-685.
[http://dx.doi.org/10.1161/01.ATV.18.5.677] [PMID: 9598824]
[122]
Zhao, P.; Yao, Q.; Zhang, P.J.; The, E.; Zhai, Y.; Ao, L.; Jarrett, M.J.; Dinarello, C.A.; Fullerton, D.A.; Meng, X. Single-cell RNAseq reveals a critical role of novel pro-inflammatory EndMT in mediating adverse remodeling in coronary artery–on–a–chip. Sci. Adv., 2021, 7(34), eabg1694.
[http://dx.doi.org/10.1126/sciadv.abg1694] [PMID: 34417174]
[123]
Williams, D.; Mahmoud, M.; Liu, R.; Andueza, A.; Kumar, S.; Kang, D.W.; Zhang, J.; Tamargo, I.; Villa-Roel, N.; Baek, K.I.; Lee, H.; An, Y.; Zhang, L.; Tate, E.W.; Bagchi, P.; Pohl, J.; Mosnier, L.O.; Diamandis, E.P.; Mihara, K.; Hollenberg, M.D.; Dai, Z.; Jo, H. Stable flow-induced expression of KLK10 inhibits endothelial inflammation and atherosclerosis. eLife, 2022, 11, e72579.
[http://dx.doi.org/10.7554/eLife.72579] [PMID: 35014606]
[124]
Feng, S.; Bowden, N.; Fragiadaki, M.; Souilhol, C.; Hsiao, S.; Mahmoud, M.; Allen, S.; Pirri, D.; Ayllon, B.T.; Akhtar, S.; Thompson, A.A.R.; Jo, H.; Weber, C.; Ridger, V.; Schober, A.; Evans, P.C. Mechanical activation of hypoxia-inducible factor 1α drives endothelial dysfunction at atheroprone sites. Arterioscler. Thromb. Vasc. Biol., 2017, 37(11), 2087-2101.
[http://dx.doi.org/10.1161/ATVBAHA.117.309249] [PMID: 28882872]
[125]
Allahwala, U.K.; Khachigian, L.M.; Nour, D.; Ridiandres, A.; Billah, M.; Ward, M.; Weaver, J.; Bhindi, R. Recruitment and maturation of the coronary collateral circulation: Current understanding and perspectives in arteriogenesis. Microvasc. Res., 2020, 132, 104058.
[http://dx.doi.org/10.1016/j.mvr.2020.104058] [PMID: 32798552]
[126]
Virmani, R.; Kolodgie, F.D.; Burke, A.P.; Farb, A.; Schwartz, S.M. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol., 2000, 20(5), 1262-1275.
[http://dx.doi.org/10.1161/01.ATV.20.5.1262] [PMID: 10807742]
[127]
Sluimer, J.C.; Kolodgie, F.D.; Bijnens, A.P.J.J.; Maxfield, K.; Pacheco, E.; Kutys, B.; Duimel, H.; Frederik, P.M.; van Hinsbergh, V.W.M.; Virmani, R.; Daemen, M.J.A.P. Thin-walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage. J. Am. Coll. Cardiol., 2009, 53(17), 1517-1527.
[http://dx.doi.org/10.1016/j.jacc.2008.12.056] [PMID: 19389562]
[128]
O’Riordan, E.; Mendelev, N.; Patschan, S.; Patschan, D.; Eskander, J.; Cohen-Gould, L.; Chander, P.; Goligorsky, M.S. Chronic NOS inhibition actuates endothelial-mesenchymal transformation. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(1), H285-H294.
[http://dx.doi.org/10.1152/ajpheart.00560.2006] [PMID: 16963618]
[129]
Zhou, H.; Tu, Q.; Zhang, Y.; Xie, H.Q.; Shuai, Q.Y.; Huang, X.C.; Fu, J.; Cao, Z. Shear stress improves the endothelial progenitor cell function via the CXCR7/ERK pathway axis in the coronary artery disease cases. BMC Cardiovasc. Disord., 2020, 20(1), 403.
[http://dx.doi.org/10.1186/s12872-020-01681-0] [PMID: 32894067]
[130]
Chen, M.H.; Fu, Q.M. The roles of AMPK in revascularization. Cardiol. Res. Pract., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/4028635] [PMID: 32185076]
[131]
Liu, X.; Liu, Z.; Chen, J.; Zhu, L.; Zhang, H.; Quan, X.; Yuan, Y.; Miao, H.; Huang, B.; Dong, H.; Zhang, Z. Pigment epithelium–derived factor increases native collateral blood flow to improve cardiac function and induce ventricular remodeling after acute myocardial infarction. J. Am. Heart Assoc., 2019, 8(22), e013323.
[http://dx.doi.org/10.1161/JAHA.119.013323] [PMID: 31718448]
[132]
Athani, A.; Ghazali, N.N.N.; Badruddin, I.A.; Kamangar, S.; Anqi, A.E.; Algahtani, A. Investigation of two-way fluid-structure interaction of blood flow in a patient-specific left coronary artery. Biomed. Mater. Eng., 2022, 33(1), 13-30.
[http://dx.doi.org/10.3233/BME-201171] [PMID: 34366314]
[133]
Hsieh, Y.F.; Lee, C.K.; Wang, W.; Huang, Y.C.; Lee, W.J.; Wang, T.D.; Chou, C.Y. Coronary CT angiography-based estimation of myocardial perfusion territories for coronary artery FFR and wall shear stress simulation. Sci. Rep., 2021, 11(1), 13855.
[http://dx.doi.org/10.1038/s41598-021-93237-1] [PMID: 34226598]
[134]
Han, D.; Starikov, A. ó Hartaigh, B.; Gransar, H.; Kolli, K.K.; Lee, J.H.; Rizvi, A.; Baskaran, L.; Schulman-Marcus, J.; Lin, F.Y.; Min, J.K. Relationship between endothelial wall shear stress and high-risk atherosclerotic plaque characteristics for identification of coronary lesions that cause ischemia: A direct comparison with fractional flow reserve. J. Am. Heart Assoc., 2016, 5(12), e004186.
[http://dx.doi.org/10.1161/JAHA.116.004186] [PMID: 27993831]
[135]
Corban, M.T.; Eshtehardi, P.; Suo, J.; McDaniel, M.C.; Timmins, L.H.; Rassoul-Arzrumly, E.; Maynard, C.; Mekonnen, G.; King, S., III; Quyyumi, A.A.; Giddens, D.P.; Samady, H. Combination of plaque burden, wall shear stress, and plaque phenotype has incremental value for prediction of coronary atherosclerotic plaque progression and vulnerability. Atherosclerosis, 2014, 232(2), 271-276.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.11.049] [PMID: 24468138]
[136]
Vergallo, R.; Papafaklis, M.I.; Yonetsu, T.; Bourantas, C.V.; Andreou, I.; Wang, Z.; Fujimoto, J.G.; McNulty, I.; Lee, H.; Biasucci, L.M.; Crea, F.; Feldman, C.L.; Michalis, L.K.; Stone, P.H.; Jang, I.K. Endothelial shear stress and coronary plaque characteristics in humans: Combined frequency-domain optical coherence tomography and computational fluid dynamics study. Circ. Cardiovasc. Imaging, 2014, 7(6), 905-911.
[http://dx.doi.org/10.1161/CIRCIMAGING.114.001932] [PMID: 25190591]
[137]
Koskinas, K.C.; Sukhova, G.K.; Baker, A.B.; Papafaklis, M.I.; Chatzizisis, Y.S.; Coskun, A.U.; Quillard, T.; Jonas, M.; Maynard, C.; Antoniadis, A.P.; Shi, G.P.; Libby, P.; Edelman, E.R.; Feldman, C.L.; Stone, P.H. Thin-capped atheromata with reduced collagen content in pigs develop in coronary arterial regions exposed to persistently low endothelial shear stress. Arterioscler. Thromb. Vasc. Biol., 2013, 33(7), 1494-1504.
[http://dx.doi.org/10.1161/ATVBAHA.112.300827] [PMID: 23640495]
[138]
Baker, A.B.; Chatzizisis, Y.S.; Beigel, R.; Jonas, M.; Stone, B.V.; Coskun, A.U.; Maynard, C.; Rogers, C.; Koskinas, K.C.; Feldman, C.L.; Stone, P.H.; Edelman, E.R. Regulation of heparanase expression in coronary artery disease in diabetic, hyperlipidemic swine. Atherosclerosis, 2010, 213(2), 436-442.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.09.003] [PMID: 20950809]
[139]
Chatzizisis, Y.S.; Baker, A.B.; Sukhova, G.K.; Koskinas, K.C.; Papafaklis, M.I.; Beigel, R.; Jonas, M.; Coskun, A.U.; Stone, B.V.; Maynard, C.; Shi, G.P.; Libby, P.; Feldman, C.L.; Edelman, E.R.; Stone, P.H. Augmented expression and activity of extracellular matrix-degrading enzymes in regions of low endothelial shear stress colocalize with coronary atheromata with thin fibrous caps in pigs. Circulation, 2011, 123(6), 621-630.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.970038] [PMID: 21282495]
[140]
Gori, T. Endothelial function: A short guide for the interventional cardiologist. Int. J. Mol. Sci., 2018, 19(12), 3838.
[http://dx.doi.org/10.3390/ijms19123838] [PMID: 30513819]
[141]
Kwak, B.R.; Back, M.; Bochaton-Piallat, M.L.; Caligiuri, G.; Daemen, M.J.; Davies, P.F. Biomechanical factors in atherosclerosis: Mechanisms and clinical implications. Eur. Heart J., 2014, 35(43), 3013-3020.
[http://dx.doi.org/10.1093/eurheartj/ehu353]
[142]
Jia, H.; Abtahian, F.; Aguirre, A.D.; Lee, S.; Chia, S.; Lowe, H.; Kato, K.; Yonetsu, T.; Vergallo, R.; Hu, S.; Tian, J.; Lee, H.; Park, S.J.; Jang, Y.S.; Raffel, O.C.; Mizuno, K.; Uemura, S.; Itoh, T.; Kakuta, T.; Choi, S.Y.; Dauerman, H.L.; Prasad, A.; Toma, C.; McNulty, I.; Zhang, S.; Yu, B.; Fuster, V.; Narula, J.; Virmani, R.; Jang, I.K. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J. Am. Coll. Cardiol., 2013, 62(19), 1748-1758.
[http://dx.doi.org/10.1016/j.jacc.2013.05.071] [PMID: 23810884]
[143]
Maldonado, N.; Kelly-Arnold, A.; Vengrenyuk, Y.; Laudier, D.; Fallon, J.T.; Virmani, R.; Cardoso, L.; Weinbaum, S. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: Potential implications for plaque rupture. Am. J. Physiol. Heart Circ. Physiol., 2012, 303(5), H619-H628.
[http://dx.doi.org/10.1152/ajpheart.00036.2012] [PMID: 22777419]
[144]
Mizukoshi, M.; Kubo, T.; Takarada, S.; Kitabata, H.; Ino, Y.; Tanimoto, T.; Komukai, K.; Tanaka, A.; Imanishi, T.; Akasaka, T. Coronary superficial and spotty calcium deposits in culprit coronary lesions of acute coronary syndrome as determined by optical coherence tomography. Am. J. Cardiol., 2013, 112(1), 34-40.
[http://dx.doi.org/10.1016/j.amjcard.2013.02.048] [PMID: 23540654]
[145]
Brown, A.J.; Teng, Z.; Calvert, P.A.; Rajani, N.K.; Hennessy, O.; Nerlekar, N.; Obaid, D.R.; Costopoulos, C.; Huang, Y.; Hoole, S.P.; Goddard, M.; West, N.E.J.; Gillard, J.H.; Bennett, M.R. Plaque structural stress estimations improve prediction of future major adverse cardiovascular events after intracoronary imaging. Circ. Cardiovasc. Imaging, 2016, 9(6), e004172.
[http://dx.doi.org/10.1161/CIRCIMAGING.115.004172] [PMID: 27307548]
[146]
Shao, J.S.; Cai, J.; Towler, D.A. Molecular mechanisms of vascular calcification: Lessons learned from the aorta. Arterioscler. Thromb. Vasc. Biol., 2006, 26(7), 1423-1430.
[http://dx.doi.org/10.1161/01.ATV.0000220441.42041.20] [PMID: 16601233]
[147]
Lerman, A.; Zeiher, A.M. Endothelial function. Circulation, 2005, 111(3), 363-368.
[http://dx.doi.org/10.1161/01.CIR.0000153339.27064.14] [PMID: 15668353]
[148]
Chatzizisis, Y.S.; Coskun, A.U.; Jonas, M.; Edelman, E.R.; Stone, P.H.; Feldman, C.L. Risk stratification of individual coronary lesions using local endothelial shear stress: A new paradigm for managing coronary artery disease. Curr. Opin. Cardiol., 2007, 22(6), 552-564.
[http://dx.doi.org/10.1097/HCO.0b013e3282f07548] [PMID: 17921744]
[149]
Papadaki, M.; Ruef, J.; Nguyen, K.T.; Li, F.; Patterson, C.; Eskin, S.G.; McIntire, L.V.; Runge, M.S. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells. Circ. Res., 1998, 83(10), 1027-1034.
[http://dx.doi.org/10.1161/01.RES.83.10.1027] [PMID: 9815150]
[150]
Virmani, R.; Kolodgie, F.D.; Burke, A.P.; Finn, A.V.; Gold, H.K.; Tulenko, T.N.; Wrenn, S.P.; Narula, J. Atherosclerotic plaque progression and vulnerability to rupture: Angiogenesis as a source of intraplaque hemorrhage. Arterioscler. Thromb. Vasc. Biol., 2005, 25(10), 2054-2061.
[http://dx.doi.org/10.1161/01.ATV.0000178991.71605.18] [PMID: 16037567]
[151]
Rotllan, N.; Wanschel, A.C.; Fernández-Hernando, A.; Salerno, A.G.; Offermanns, S.; Sessa, W.C.; Fernández-Hernando, C. Genetic evidence supports a major role for Akt1 in VSMCs during atherogenesis. Circ. Res., 2015, 116(11), 1744-1752.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305895] [PMID: 25868464]
[152]
Haug, C.; Voisard, R.; Lenich, A.; Baur, R.; Höher, M.; Osterhues, H.; Hannekum, A.; Vogel, U.; Mattfeldt, T.; Hombach, V.; Grünert, A. Increased endothelin release by cultured human smooth muscle cells from atherosclerotic coronary arteries. Cardiovasc. Res., 1996, 31(5), 807-813.
[http://dx.doi.org/10.1016/S0008-6363(96)00012-0] [PMID: 8763411]
[153]
Ford, T.J.; Berry, C.; De Bruyne, B.; Yong, A.S.C.; Barlis, P.; Fearon, W.F.; Ng, M.K.C. Physiological predictors of acute coronary syndromes. JACC Cardiovasc. Interv., 2017, 10(24), 2539-2547.
[http://dx.doi.org/10.1016/j.jcin.2017.08.059] [PMID: 29268883]
[154]
Lesnik, P.; Chapman, M.J. A new dimension in the vasculoprotective function of HDL: Progenitor-mediated endothelium repair. Arterioscler. Thromb. Vasc. Biol., 2006, 26(5), 965-967.
[http://dx.doi.org/10.1161/01.ATV.0000219613.90372.c1] [PMID: 16627821]
[155]
Aziz, A.; Hansen, H.S.; Sechtem, U.; Prescott, E.; Ong, P. Sex-related differences in vasomotor function in patients with angina and unobstructed coronary arteries. J. Am. Coll. Cardiol., 2017, 70(19), 2349-2358.
[http://dx.doi.org/10.1016/j.jacc.2017.09.016] [PMID: 29096805]
[156]
Burke, A.P.; Kolodgie, F.D.; Farb, A.; Weber, D.K.; Malcom, G.T.; Smialek, J.; Virmani, R. Healed plaque ruptures and sudden coronary death: Evidence that subclinical rupture has a role in plaque progression. Circulation, 2001, 103(7), 934-940.
[http://dx.doi.org/10.1161/01.CIR.103.7.934] [PMID: 11181466]
[157]
Feldman, C.L.; Coskun, A.U.; Yeghiazarians, Y.; Kinlay, S.; Wahle, A.; Olszewski, M.E.; Rossen, J.D.; Sonka, M.; Popma, J.J.; Orav, J.; Kuntz, R.E.; Stone, P.H. Remodeling characteristics of minimally diseased coronary arteries are consistent along the length of the artery. Am. J. Cardiol., 2006, 97(1), 13-16.
[http://dx.doi.org/10.1016/j.amjcard.2005.07.121] [PMID: 16377275]
[158]
Gijsen, F.J.H.; Wentzel, J.J.; Thury, A.; Mastik, F.; Schaar, J.A.; Schuurbiers, J.C.H.; Slager, C.J.; van der Giessen, W.J.; de Feyter, P.J.; van der Steen, A.F.W.; Serruys, P.W. Strain distribution over plaques in human coronary arteries relates to shear stress. Am. J. Physiol. Heart Circ. Physiol., 2008, 295(4), H1608-H1614.
[http://dx.doi.org/10.1152/ajpheart.01081.2007] [PMID: 18621851]
[159]
Eshtehardi, P.; Brown, A.J.; Bhargava, A.; Costopoulos, C.; Hung, O.Y.; Corban, M.T.; Hosseini, H.; Gogas, B.D.; Giddens, D.P.; Samady, H. High wall shear stress and high-risk plaque: An emerging concept. Int. J. Cardiovasc. Imaging, 2017, 33(7), 1089-1099.
[http://dx.doi.org/10.1007/s10554-016-1055-1] [PMID: 28074425]
[160]
Okamoto, N.; Vengrenyuk, Y.; Fuster, V.; Samady, H.; Yasumura, K.; Baber, U.; Barman, N.; Suleman, J.; Sweeny, J.; Krishnan, P.; Mehran, R.; Sharma, S.K.; Narula, J.; Kini, A.S. Relationship between high shear stress and OCT-verified thin-cap fibroatheroma in patients with coronary artery disease. PLoS One, 2020, 15(12), e0244015.
[http://dx.doi.org/10.1371/journal.pone.0244015] [PMID: 33332434]
[161]
Hartman, E.M.J.; De Nisco, G.; Kok, A.M.; Hoogendoorn, A.; Coenen, A.; Mastik, F.; Korteland, S.A.; Nieman, K.; Gijsen, F.J.H.; van der Steen, A.F.W.; Daemen, J.; Wentzel, J.J. Lipid-rich plaques detected by near-infrared spectroscopy are more frequently exposed to high shear stress. J. Cardiovasc. Transl. Res., 2021, 14(3), 416-425.
[http://dx.doi.org/10.1007/s12265-020-10072-x] [PMID: 33034862]
[162]
Hazell, G.G.J.; Peachey, A.M.G.; Teasdale, J.E.; Sala-Newby, G.B.; Angelini, G.D.; Newby, A.C.; White, S.J. PI16 is a shear stress and inflammation-regulated inhibitor of MMP2. Sci. Rep., 2016, 6(1), 39553.
[http://dx.doi.org/10.1038/srep39553] [PMID: 27996045]
[163]
Teng, E.L.; Masutani, E.M.; Yeoman, B.; Fung, J.; Lian, R.; Ngo, B.; Kumar, A.; Placone, J.K.; Lo Sardo, V.; Engler, A.J. High shear stress enhances endothelial permeability in the presence of the risk haplotype at 9p21.3. APL Bioeng., 2021, 5(3), 036102.
[http://dx.doi.org/10.1063/5.0054639] [PMID: 34327295]
[164]
Ma, Y.S.; Xie, Y.H.; Ma, D.; Zhang, J.J.; Liu, H.J. Shear stress-induced MMP1 and PDE2A expressions in coronary atherosclerosis. Bratisl. Med. J., 2021, 122(4), 287-292.
[http://dx.doi.org/10.4149/BLL_2021_048] [PMID: 33729823]
[165]
Bajraktari, A.; Bytyçi, I.; Henein, M.Y. High coronary wall shear stress worsens plaque vulnerability: A systematic review and meta-analysis. Angiology, 2021, 72(8), 706-714.
[http://dx.doi.org/10.1177/0003319721991722] [PMID: 33535802]
[166]
Thondapu, V.; Mamon, C.; Poon, E.K.W.; Kurihara, O.; Kim, H.O.; Russo, M.; Araki, M.; Shinohara, H.; Yamamoto, E.; Dijkstra, J.; Tacey, M.; Lee, H.; Ooi, A.; Barlis, P.; Jang, I.K. High spatial endothelial shear stress gradient independently predicts site of acute coronary plaque rupture and erosion. Cardiovasc. Res., 2021, 117(8), 1974-1985.
[http://dx.doi.org/10.1093/cvr/cvaa251] [PMID: 32832991]
[167]
Kurihara, O.; Takano, M.; Soeda, T.; Fracassi, F.; Araki, M.; Nakajima, A.; McNulty, I.; Lee, H.; Mizuno, K.; Jang, I.K. Degree of luminal narrowing and composition of thrombus in plaque erosion. J. Thromb. Thrombolysis, 2021, 51(1), 143-150.
[http://dx.doi.org/10.1007/s11239-020-02159-8] [PMID: 32472306]
[168]
Stone, P.H.; Coskun, A.U.; Yeghiazarians, Y.; Kinlay, S.; Popma, J.J.; Kuntz, R.E.; Feldman, C.L. Prediction of sites of coronary atherosclerosis progression: In vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior. Curr. Opin. Cardiol., 2003, 18(6), 458-470.
[http://dx.doi.org/10.1097/00001573-200311000-00007] [PMID: 14597887]
[169]
Carpenter, H.J.; Ghayesh, M.H.; Zander, A.C.; Ottaway, J.L.; Di Giovanni, G.; Nicholls, S.J. Optical coherence tomography based biomechanical fluid-structure interaction analysis of coronary atherosclerosis progression. J. Vis. Exp., 2022, 15(179)
[http://dx.doi.org/10.3791/62933] [PMID: 35098943]
[170]
Mazzi, V.; De Nisco, G.; Hoogendoorn, A.; Calò, K.; Chiastra, C.; Gallo, D.; Steinman, D.A.; Wentzel, J.J.; Morbiducci, U. Early atherosclerotic changes in coronary arteries are associated with endothelium shear stress contraction/expansion variability. Ann. Biomed. Eng., 2021, 49(9), 2606-2621.
[http://dx.doi.org/10.1007/s10439-021-02829-5] [PMID: 34324092]
[171]
Vardhan, M.; Gounley, J.; Chen, S.J.; Chi, E.C.; Kahn, A.M.; Leopold, J.A.; Randles, A. Non-invasive characterization of complex coronary lesions. Sci. Rep., 2021, 11(1), 8145.
[http://dx.doi.org/10.1038/s41598-021-86360-6] [PMID: 33854076]
[172]
Ibrahim, J.; Miyashiro, J.K.; Berk, B.C. Shear stress is differentially regulated among inbred rat strains. Circ. Res., 2003, 92(9), 1001-1009.
[http://dx.doi.org/10.1161/01.RES.0000069687.54486.B1] [PMID: 12676815]
[173]
Jang, I.K.; Bouma, B.E.; Kang, D.H.; Park, S.J.; Park, S.W.; Seung, K.B.; Choi, K.B.; Shishkov, M.; Schlendorf, K.; Pomerantsev, E.; Houser, S.L.; Aretz, H.T.; Tearney, G.J. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound. J. Am. Coll. Cardiol., 2002, 39(4), 604-609.
[http://dx.doi.org/10.1016/S0735-1097(01)01799-5] [PMID: 11849858]
[174]
Sakellarios, A.I.; Raber, L.; Bourantas, C.V.; Exarchos, T.P.; Athanasiou, L.S.; Pelosi, G.; Koskinas, K.C.; Parodi, O.; Naka, K.K.; Michalis, L.K.; Serruys, P.W.; Garcia-Garcia, H.M.; Windecker, S.; Fotiadis, D.I. Prediction of atherosclerotic plaque development in an in vivo coronary arterial segment based on a multilevel modeling approach. IEEE Trans. Biomed. Eng., 2017, 64(8), 1721-1730.
[http://dx.doi.org/10.1109/TBME.2016.2619489] [PMID: 28113248]
[175]
Ridker, P.M. C-reactive protein and the prediction of cardiovascular events among those at intermediate risk: Moving an inflammatory hypothesis toward consensus. J. Am. Coll. Cardiol., 2007, 49(21), 2129-2138.
[http://dx.doi.org/10.1016/j.jacc.2007.02.052] [PMID: 17531663]
[176]
Stone, P.H.; Coskun, A.U. Coronary angiography-based shear stress computation to identify high-risk coronary artery plaques: Are we there yet? Atherosclerosis, 2022, 342, 25-27.
[http://dx.doi.org/10.1016/j.atherosclerosis.2021.12.014] [PMID: 35045926]
[177]
Adriaenssens, T.; Allard-Ratick, M.P.; Thondapu, V.; Sugiyama, T.; Raffel, O.C.; Barlis, P.; Poon, E.K.W.; Araki, M.; Nakajima, A.; Minami, Y.; Takano, M.; Kurihara, O.; Fuster, V.; Kakuta, T.; Jang, I.K. Optical coherence tomography of coronary plaque progression and destabilization. J. Am. Coll. Cardiol., 2021, 78(12), 1275-1287.
[http://dx.doi.org/10.1016/j.jacc.2021.07.032] [PMID: 34531029]
[178]
Lodi Rizzini, M.; Candreva, A.; Chiastra, C.; Gallinoro, E.; Calò, K.; D’Ascenzo, F.; De Bruyne, B.; Mizukami, T.; Collet, C.; Gallo, D.; Morbiducci, U. Modelling coronary flows: Impact of differently measured inflow boundary conditions on vessel-specific computational hemodynamic profiles. Comput. Methods Programs Biomed., 2022, 221, 106882.
[http://dx.doi.org/10.1016/j.cmpb.2022.106882] [PMID: 35597205]
[179]
Cao, H.; Li, Y.; Zhao, Y.; Xiong, T.; Liu, Z.; Zheng, T.; Chen, M. Hemodynamic characteristics of patients with suspected coronary heart disease at their initial visit. Front. Physiol., 2021, 12, 714438.
[http://dx.doi.org/10.3389/fphys.2021.714438] [PMID: 34354604]
[180]
Feng, J.; Wang, N.; Wang, Y.; Tang, X.; Yuan, J. Haemodynamic mechanism of formation and distribution of coronary atherosclerosis: A lesion-specific model. Proc. Inst. Mech. Eng. H, 2020, 234(11), 1187-1196.
[http://dx.doi.org/10.1177/0954411920947972] [PMID: 32748686]
[181]
Tajeddini, F.; Nikmaneshi, M.R.; Firoozabadi, B.; Pakravan, H.A.; Ahmadi Tafti, S.H.; Afshin, H. High precision invasive FFR, low‐cost invasive IFR, or non‐invasive CFR?: Optimum assessment of coronary artery stenosis based on the patient‐specific computational models. Int. J. Numer. Methods Biomed. Eng., 2020, 36(10), e3382.
[http://dx.doi.org/10.1002/cnm.3382] [PMID: 32621661]
[182]
Freidoonimehr, N.; Chin, R.; Zander, A.; Arjomandi, M. A review on the effect of temporal geometric variations of the coronary arteries on the wall shear stress and pressure drop. J. Biomech. Eng., 2022, 144(1), 010801.
[http://dx.doi.org/10.1115/1.4051923] [PMID: 34318321]
[183]
Sakellarios, A.I.; Rigas, G.; Kigka, V.; Siogkas, P.; Tsompou, P.; Karanasiou, G.; Exarchos, T.; Andrikos, I.; Tachos, N.; Pelosi, G.; Parodi, O.; Fotiaids, D.I. SMARTool: A tool for clinical decision support for the management of patients with coronary artery disease based on modeling of atherosclerotic plaque process. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2017, 2017, 96-99.
[http://dx.doi.org/10.1109/EMBC.2017.8036771] [PMID: 29059819]
[184]
Pleouras, D.S.; Sakellarios, A.I.; Tsompou, P.; Kigka, V.; Kyriakidis, S.; Rocchiccioli, S.; Neglia, D.; Knuuti, J.; Pelosi, G.; Michalis, L.K.; Fotiadis, D.I. Simulation of atherosclerotic plaque growth using computational biomechanics and patient-specific data. Sci. Rep., 2020, 10(1), 17409.
[http://dx.doi.org/10.1038/s41598-020-74583-y] [PMID: 33060746]
[185]
Serruys, P.W.; Hara, H.; Garg, S.; Kawashima, H.; Nørgaard, B.L.; Dweck, M.R.; Bax, J.J.; Knuuti, J.; Nieman, K.; Leipsic, J.A.; Mushtaq, S.; Andreini, D.; Onuma, Y. Coronary computed tomographic angiography for complete assessment of coronary artery disease. J. Am. Coll. Cardiol., 2021, 78(7), 713-736.
[http://dx.doi.org/10.1016/j.jacc.2021.06.019] [PMID: 34384554]
[186]
van den Hoogen, I.J.; Schultz, J.; Kuneman, J.H.; de Graaf, M.A.; Kamperidis, V.; Broersen, A.; Jukema, J.W.; Sakellarios, A.; Nikopoulos, S.; Kyriakidis, S.; Naka, K.K.; Michalis, L.; Fotiadis, D.I.; Maaniitty, T.; Saraste, A.; Bax, J.J.; Knuuti, J. Detailed behaviour of endothelial wall shear stress across coronary lesions from non-invasive imaging with coronary computed tomography angiography. Eur. Heart J. Cardiovasc. Imaging, 2022, 23(12), 1708-1716.
[http://dx.doi.org/10.1093/ehjci/jeac095] [PMID: 35616068]
[187]
Collet, C.; Conte, E.; Mushtaq, S.; Brouwers, S.; Shinke, T.; Coskun, A.U.; Pu, Z.; Hakim, D.; Stone, P.H.; Andreini, D. Reviewing imaging modalities for the assessment of plaque erosion. Atherosclerosis, 2021, 318, 52-59.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.10.017] [PMID: 33129585]
[188]
Ferdows, M.; Hoque, K.E.; Bangalee, M.Z.I.; Xenos, M.A. Wall shear stress indicators influence the regular hemodynamic conditions in coronary main arterial diseases: Cardiovascular abnormalities. Comput. Methods Biomech. Biomed. Engin., 2023, 26(2), 235-248.
[http://dx.doi.org/10.1080/10255842.2022.2054660] [PMID: 35587791]
[189]
Hoque, K.E.; Ferdows, M.; Sawall, S.; Tzirtzilakis, E.E. The effect of hemodynamic parameters in patient-based coronary artery models with serial stenoses: Normal and hypertension cases. Comput. Methods Biomech. Biomed. Engin., 2020, 23(9), 467-475.
[http://dx.doi.org/10.1080/10255842.2020.1737028] [PMID: 32159397]
[190]
Kalykakis, G.E.; Antonopoulos, A.S.; Pitsargiotis, T.; Siogkas, P.; Exarchos, T.; Kafouris, P.; Sakelarios, A.; Liga, R.; Tzifa, A.; Giannopoulos, A.; Scholte, A.J.H.A.; Kaufmann, P.A.; Parodi, O.; Knuuti, J.; Fotiadis, D.I.; Neglia, D.; Anagnostopoulos, C.D. Relationship of endothelial shear stress with plaque features with coronary CT angiography and vasodilating capability with PET. Radiology, 2021, 300(3), 549-556.
[http://dx.doi.org/10.1148/radiol.2021204381] [PMID: 34184936]
[191]
Eslami, P.; Hartman, E.M.J.; Albaghadai, M.; Karady, J.; Jin, Z.; Thondapu, V.; Cefalo, N.V.; Lu, M.T.; Coskun, A.; Stone, P.H.; Marsden, A.; Hoffmann, U.; Wentzel, J.J. Validation of wall shear stress assessment in non-invasive coronary CTA versus invasive imaging: A patient-specific computational study. Ann. Biomed. Eng., 2021, 49(4), 1151-1168.
[http://dx.doi.org/10.1007/s10439-020-02631-9] [PMID: 33067688]
[192]
Kittaka, D.; Sato, H.; Nakai, Y.; Kato, K. Relationship between coronary fractional flow reserve and computational fluid dynamics analysis in moderate stenosis of the coronary artery. Circ. Rep., 2020, 2(10), 545-551.
[http://dx.doi.org/10.1253/circrep.CR-20-0078] [PMID: 33693179]
[193]
Curta, A.; Jaber, A.; Rieber, J.; Hetterich, H. Estimation of endothelial shear stress in atherosclerotic lesions detected by intravascular ultrasound using computational fluid dynamics from coronary CT scans with a pulsatile blood flow and an individualized blood viscosity. Clin. Hemorheol. Microcirc., 2021, 79(4), 505-518.
[http://dx.doi.org/10.3233/CH-201025] [PMID: 33459702]
[194]
Alfaidi, M.A.; Chamberlain, J.; Rothman, A.; Crossman, D.; Villa-Uriol, M.C.; Hadoke, P.; Wu, J.; Schenkel, T.; Evans, P.C.; Francis, S.E. Dietary docosahexaenoic acid reduces oscillatory wall shear stress, atherosclerosis, and hypertension, most likely mediated via an IL‐1–mediated mechanism. J. Am. Heart Assoc., 2018, 7(13), e008757.
[http://dx.doi.org/10.1161/JAHA.118.008757] [PMID: 29960988]
[195]
Chatzizisis, Y.S.; Jonas, M.; Beigel, R.; Coskun, A.U.; Baker, A.B.; Stone, B.V.; Maynard, C.; Gerrity, R.G.; Daley, W.; Edelman, E.R.; Feldman, C.L.; Stone, P.H. Attenuation of inflammation and expansive remodeling by Valsartan alone or in combination with Simvastatin in high-risk coronary atherosclerotic plaques. Atherosclerosis, 2009, 203(2), 387-394.
[http://dx.doi.org/10.1016/j.atherosclerosis.2008.07.032] [PMID: 18786669]
[196]
Tenekecioglu, E.; Torii, R.; Bourantas, C.; Abdelghani, M.; Cavalcante, R.; Sotomi, Y.; Crake, T.; Su, S.; Santoso, T.; Onuma, Y.; Serruys, P.W. Assessment of the hemodynamic characteristics of Absorb BVS in a porcine coronary artery model. Int. J. Cardiol., 2017, 227, 467-473.
[http://dx.doi.org/10.1016/j.ijcard.2016.11.005] [PMID: 27839816]
[197]
Kinlay, S.; Grewal, J.; Manuelin, D.; Fang, J.C.; Selwyn, A.P.; Bittl, J.A.; Ganz, P. Coronary flow velocity and disturbed flow predict adverse clinical outcome after coronary angioplasty. Arterioscler. Thromb. Vasc. Biol., 2002, 22(8), 1334-1340.
[http://dx.doi.org/10.1161/01.ATV.0000024569.80106.B4] [PMID: 12171797]
[198]
Monroe, V.S.; Kerensky, R.A.; Rivera, E.; Smith, K.M.; Pepine, C.J. Pharmacologic plaque passivation for the reduction of recurrent cardiac events in acute coronary syndromes. J. Am. Coll. Cardiol., 2003, 41(4), S23-S30.
[http://dx.doi.org/10.1016/S0735-1097(02)02774-2] [PMID: 12644337]
[199]
Chen, H.Y.; Chatzizisis, Y.S.; Louvard, Y.; Kassab, G.S. Computational simulations of provisional stenting of a diseased coronary artery bifurcation model. Sci. Rep., 2020, 10(1), 9667.
[http://dx.doi.org/10.1038/s41598-020-66777-1] [PMID: 32541660]
[200]
Kamangar, S.; Anjum Badruddin, I.; Anqi, A.E.; Ahamed Saleel, C.; Tirth, V.; Yunus Khan, T.M.; Anas Khan, M.; Mallick, Z.; Salman Ahmed, N.J. Influence of bifurcation angle in left coronary artery with stenosis: A CFD analysis. Biomed. Mater. Eng., 2020, 31(6), 339-349.
[http://dx.doi.org/10.3233/BME-201107] [PMID: 33252058]
[201]
Ng, J.; Bourantas, C.V.; Torii, R.; Ang, H.Y.; Tenekecioglu, E.; Serruys, P.W.; Foin, N. Local hemodynamic forces after stenting. Arterioscler. Thromb. Vasc. Biol., 2017, 37(12), 2231-2242.
[http://dx.doi.org/10.1161/ATVBAHA.117.309728] [PMID: 29122816]
[202]
Gamage, P.T.; Dong, P.; Lee, J.; Gharaibeh, Y.; Zimin, V.N.; Dallan, L.A.P.; Bezerra, H.G.; Wilson, D.L.; Gu, L. Hemodynamic alternations following stent deployment and post-dilation in a heavily calcified coronary artery: In silico and ex-vivo approaches. Comput. Biol. Med., 2021, 139, 104962.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104962] [PMID: 34715552]
[203]
Shen, C.; Gharleghi, R.; Li, D.D.; Stevens, M.; Dokos, S.; Beier, S. Secondary flow in bifurcations – Important effects of curvature, bifurcation angle and stents. J. Biomech., 2021, 129, 110755.
[http://dx.doi.org/10.1016/j.jbiomech.2021.110755] [PMID: 34601214]
[204]
Chiastra, C.; Mazzi, V.; Lodi Rizzini, M.; Calò, K.; Corti, A.; Acquasanta, A.; De Nisco, G.; Belliggiano, D.; Cerrato, E.; Gallo, D.; Morbiducci, U. Coronary artery stenting affects wall shear stress topological skeleton. J. Biomech. Eng., 2022, 144(6), 061002.
[http://dx.doi.org/10.1115/1.4053503] [PMID: 35015058]
[205]
Wei, L.; Wang, J.; Chen, Q.; Li, Z. Impact of stent malapposition on intracoronary flow dynamics: An optical coherence tomography-based patient-specific study. Med. Eng. Phys., 2021, 94, 26-32.
[http://dx.doi.org/10.1016/j.medengphy.2021.06.002] [PMID: 34303498]
[206]
Bourantas, C.V.; Räber, L.; Zaugg, S.; Sakellarios, A.; Taniwaki, M.; Heg, D.; Moschovitis, A.; Radu, M.; Papafaklis, M.I.; Kalatzis, F.; Naka, K.K.; Fotiadis, D.I.; Michalis, L.K.; Serruys, P.W.; Garcia Garcia, H.M.; Windecker, S. Impact of local endothelial shear stress on neointima and plaque following stent implantation in patients with ST-elevation myocardial infarction: A subgroup-analysis of the comfortable AMI–IBIS 4 trial. Int. J. Cardiol., 2015, 186, 178-185.
[http://dx.doi.org/10.1016/j.ijcard.2015.03.160] [PMID: 25828109]
[207]
Wang, Y.; Zhan, J.; Bian, W.; Tang, X.; Zeng, M. Local hemodynamic analysis after coronary stent implantation based on Euler-Lagrange method. J. Biol. Phys., 2021, 47(2), 143-170.
[http://dx.doi.org/10.1007/s10867-021-09571-y] [PMID: 34046777]
[208]
Liu, P.; Deng, X.; Liu, X.; Sun, A.; Kang, H. Influence of artery straightening on local hemodynamics in Left Anterior Descending (LAD) artery after stent implantation. Cardiol. Res. Pract., 2020, 2020, 1-9.
[http://dx.doi.org/10.1155/2020/6970817] [PMID: 32550022]
[209]
Tomaszewski, M.; Sybilski, K. Małachowski, J.; Wolański, W.; Buszman, P.P. Numerical and experimental analysis of balloon angioplasty impact on flow hemodynamics improvement. Acta Bioeng. Biomech., 2020, 22(3), 169-183.
[http://dx.doi.org/10.37190/ABB-01660-2020-03] [PMID: 33518735]
[210]
Ozaki, Y.; Kuku, K.O.; Sakellarios, A.; Haude, M.; Hideo-Kajita, A.; Desale, S.; Siogkas, P.; Sioros, S.; Ince, H.; Abizaid, A.; Tölg, R.; Lemos, P.A.; von Birgelen, C.; Christiansen, E.H.; Wijns, W.; Escaned, J.; Michalis, L.; Fotiadis, D.I.; Djikstra, J.; Waksman, R.; Garcia-Garcia, H.M. Impact of endothelial shear stress on absorption process of resorbable magnesium scaffold: A BIOSOLVE-II substudy. Cardiovasc. Revasc. Med., 2021, 29, 9-15.
[http://dx.doi.org/10.1016/j.carrev.2021.04.003] [PMID: 33863661]
[211]
Tenekecioglu, E.; Katagiri, Y.; Takahashi, K.; Tomaniak, M.; Dudek, D.; Cequier, A.; Carrié, D.; Iñiguez, A.; Johannes van der Schaaf, R.; Dominici, M.; Boven, A.J.; Helqvist, S.; Sabaté, M.; Baumbach, A.; Piek, J.J.; Wykrzykowska, J.J.; Kitslaar, P.; Dijkstra, J.; Reiber, J.H.C.; Chevalier, B.; Ural, D.; Pekkan, K.; Bourantas, C.V.; Gijsen, F.; Onuma, Y.; Torii, R.; Serruys, P.W. Endothelial shear stress and vascular remodeling in bioresorbable scaffold and metallic stent. Atherosclerosis, 2020, 312, 79-89.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.08.031] [PMID: 32979635]
[212]
Park, K.S.; Kang, S.N.; Kim, D.H.; Kim, H.B.; Im, K.S.; Park, W.; Hong, Y.J.; Han, D.K.; Joung, Y.K. Late endothelial progenitor cell-capture stents with CD146 antibody and nanostructure reduce in-stent restenosis and thrombosis. Acta Biomater., 2020, 111, 91-101.
[http://dx.doi.org/10.1016/j.actbio.2020.05.011] [PMID: 32434081]
[213]
Lv, Y.; Li, G.; Peng, H.; Liu, Y.; Yao, J.; Wang, G.; Sun, J.; Liu, J.; Zhang, H.; Chen, G.; Liu, L. Development of elastic artificial vessels with a digital pulse flow system to investigate the risk of restenosis and vasospasm. Lab Chip, 2020, 20(16), 3051-3059.
[http://dx.doi.org/10.1039/D0LC00533A] [PMID: 32725035]
[214]
Wu, X.; Ono, M.; Poon, E.K.W.; O’Leary, N.; Torii, R.; Janssen, J.P.; Zhu, S.J.; Vijgeboom, Y.; El-Kurdi, M.S.; Cox, M.; Reinöhl, J.; Dijkstra, J.; Barlis, P.; Wijns, W.; Reiber, J.H.C.; Bourantas, C.V.; Virmani, R.; Onuma, Y.; Serruys, P.W. One-year performance of biorestorative polymeric coronary bypass grafts in an ovine model: Correlation between early biomechanics and late serial Quantitative Flow Ratio. Eur. J. Cardiothorac. Surg., 2022, 61(6), 1402-1411.
[http://dx.doi.org/10.1093/ejcts/ezab554] [PMID: 35022681]
[215]
McQueen, L.W.; Ladak, S.S.; Zakkar, M. Acute shear stress and vein graft disease. Int. J. Biochem. Cell Biol., 2022, 144, 106173.
[http://dx.doi.org/10.1016/j.biocel.2022.106173] [PMID: 35151879]
[216]
Zhu, L.; Pan, Z.; Li, Z.; Chang, Y.; Zhu, Y.; Yan, F.; Tu, S.; Yang, W. Can the wall shear stress values of left internal mammary artery grafts during the perioperative period reflect the one-year patency? Thorac. Cardiovasc. Surg., 2020, 68(8), 723-729.
[http://dx.doi.org/10.1055/s-0040-1714385] [PMID: 32937666]
[217]
Matsuura, K.; Jin, W.W.; Liu, H.; Matsumiya, G. Computational fluid dynamic study of multiple sequential coronary artery bypass anastomoses in a native coronary stenosis model. Coron. Artery Dis., 2020, 31(5), 458-463.
[http://dx.doi.org/10.1097/MCA.0000000000000864] [PMID: 32271246]
[218]
Khan, M.O.; Tran, J.S.; Zhu, H.; Boyd, J.; Packard, R.R.S.; Karlsberg, R.P.; Kahn, A.M.; Marsden, A.L. Low wall shear stress is associated with saphenous vein graft stenosis in patients with coronary artery bypass grafting. J. Cardiovasc. Transl. Res., 2021, 14(4), 770-781.
[http://dx.doi.org/10.1007/s12265-020-09982-7] [PMID: 32240496]
[219]
Baratchi, S.; Chen, Y.C.; Peter, K. Helical flow: A means to identify unstable plaques and a new direction for the design of vascular grafts and stents. Atherosclerosis, 2020, 300, 34-36.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.03.002] [PMID: 32216972]
[220]
De Nisco, G.; Hoogendoorn, A.; Chiastra, C.; Gallo, D.; Kok, A.M.; Morbiducci, U.; Wentzel, J.J. The impact of helical flow on coronary atherosclerotic plaque development. Atherosclerosis, 2020, 300, 39-46.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.01.027] [PMID: 32085872]
[221]
Stone, P.H.; Saito, S.; Takahashi, S.; Makita, Y.; Nakamura, S.; Kawasaki, T.; Takahashi, A.; Katsuki, T.; Nakamura, S.; Namiki, A.; Hirohata, A.; Matsumura, T.; Yamazaki, S.; Yokoi, H.; Tanaka, S.; Otsuji, S.; Yoshimachi, F.; Honye, J.; Harwood, D.; Reitman, M.; Coskun, A.U.; Papafaklis, M.I.; Feldman, C.L. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: The prediction study. Circulation, 2012, 126(2), 172-181.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.096438] [PMID: 22723305]
[222]
Wentzel, J.J.; Papafaklis, M.I.; Antoniadis, A.P.; Takahashi, S.; Cefalo, N.V.; Cormier, M.; Saito, S.; Coskun, A.U.; Stone, P.H. Sex-related differences in plaque characteristics and endothelial shear stress related plaque-progression in human coronary arteries. Atherosclerosis, 2022, 342, 9-18.
[http://dx.doi.org/10.1016/j.atherosclerosis.2021.12.013] [PMID: 34999306]
[223]
Bourantas, C.V.; Zanchin, T.; Torii, R.; Serruys, P.W.; Karagiannis, A.; Ramasamy, A.; Safi, H.; Coskun, A.U.; Koning, G.; Onuma, Y.; Zanchin, C.; Krams, R.; Mathur, A.; Baumbach, A.; Mintz, G.; Windecker, S.; Lansky, A.; Maehara, A.; Stone, P.H.; Raber, L.; Stone, G.W. Shear stress estimated by quantitative coronary angiography predicts plaques prone to progress and cause events. JACC Cardiovasc. Imaging, 2020, 13(10), 2206-2219.
[http://dx.doi.org/10.1016/j.jcmg.2020.02.028] [PMID: 32417338]
[224]
Bourantas, C.V.; Zanchin, T.; Sakellarios, A.; Karagiannis, A.; Ramasamy, A.; Yamaji, K.; Taniwaki, M.; Heg, D.; Moschovitis, A.; Fotiadis, D.; Mihalis, L.; Baumbach, A.; Torii, R.; Serruys, P.; Garcia-Garcia, H.M.; Windecker, S.; Räber, L. Implications of the local haemodynamic forces on the phenotype of coronary plaques. Heart, 2019, 105(14), 1078-1086.
[http://dx.doi.org/10.1136/heartjnl-2018-314086] [PMID: 30877239]
[225]
Varshney, A.S.; Coskun, A.U.; Siasos, G.; Maynard, C.C.; Pu, Z.; Croce, K.J.; Cefalo, N.V.; Cormier, M.A.; Fotiadis, D.; Stefanou, K.; Papafaklis, M.I.; Michalis, L.; VanOosterhout, S.; Mulder, A.; Madder, R.D.; Stone, P.H. Spatial relationships among hemodynamic, anatomic, and biochemical plaque characteristics in patients with coronary artery disease. Atherosclerosis, 2021, 320, 98-104.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.12.018] [PMID: 33468315]
[226]
Candreva, A.; Pagnoni, M.; Rizzini, M.L.; Mizukami, T.; Gallinoro, E.; Mazzi, V.; Gallo, D.; Meier, D.; Shinke, T.; Aben, J.P.; Nagumo, S.; Sonck, J.; Munhoz, D.; Fournier, S.; Barbato, E.; Heggermont, W.; Cook, S.; Chiastra, C.; Morbiducci, U.; De Bruyne, B.; Muller, O.; Collet, C. Risk of myocardial infarction based on endothelial shear stress analysis using coronary angiography. Atherosclerosis, 2022, 342, 28-35.
[http://dx.doi.org/10.1016/j.atherosclerosis.2021.11.010] [PMID: 34815069]
[227]
Yang, S.; Choi, G.; Zhang, J.; Lee, J.M.; Hwang, D.; Doh, J.H.; Nam, C.W.; Shin, E.S.; Cho, Y.S.; Choi, S.Y.; Chun, E.J.; Nørgaard, B.L.; Nieman, K.; Otake, H.; Penicka, M.; Bruyne, B.D.; Kubo, T.; Akasaka, T.; Taylor, C.A.; Koo, B.K. Association among local hemodynamic parameters derived from CT angiography and their comparable implications in development of acute coronary syndrome. Front. Cardiovasc. Med., 2021, 8, 713835.
[http://dx.doi.org/10.3389/fcvm.2021.713835] [PMID: 34589527]
[228]
Tufaro, V.; Safi, H.; Torii, R.; Koo, B.K.; Kitslaar, P.; Ramasamy, A.; Mathur, A.; Jones, D.A.; Bajaj, R. Erdoğan, E.; Lansky, A.; Zhang, J.; Konstantinou, K.; Little, C.D.; Rakhit, R.; Karamasis, G.V.; Baumbach, A.; Bourantas, C.V. Wall shear stress estimated by 3D-QCA can predict cardiovascular events in lesions with borderline negative fractional flow reserve. Atherosclerosis, 2021, 322, 24-30.
[http://dx.doi.org/10.1016/j.atherosclerosis.2021.02.018] [PMID: 33706080]
[229]
Hossain, T.; Anan, N.; Arafat, M.T. The effects of plaque morphological characteristics on the post-stenotic flow in left main coronary artery bifurcation. Biomed. Phys. Eng. Express, 2021, 7(6), 065001.
[http://dx.doi.org/10.1088/2057-1976/ac202c] [PMID: 34425569]
[230]
Yong, A.S.C.; Pargaonkar, V.S.; Wong, C.C.Y.; Javadzdegan, A.; Yamada, R.; Tanaka, S.; Kimura, T.; Rogers, I.S.; Sen, I.; Kritharides, L.; Schnittger, I.; Tremmel, J.A. Abnormal shear stress and residence time are associated with proximal coronary atheroma in the presence of myocardial bridging. Int. J. Cardiol., 2021, 340, 7-13.
[http://dx.doi.org/10.1016/j.ijcard.2021.08.011] [PMID: 34375705]
[231]
Saito, N.; Mori, Y.; Komatsu, T. Influence of stent flexibility on artery wall stress and wall shear stress in bifurcation lesions. Med. Devices, 2020, 13, 365-375.
[http://dx.doi.org/10.2147/MDER.S275883] [PMID: 33173357]
[232]
Liu, H.; Leung, T.; Wong, A.; Chen, F.; Zheng, D. The geometric effects on the stress of arterial atherosclerotic plaques: A computational study. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2019, 2019, 6948-6951.
[http://dx.doi.org/10.1109/EMBC.2019.8857885] [PMID: 31947437]
[233]
Tanaka, A.; Taruya, A.; Shibata, K.; Fuse, K.; Katayama, Y.; Yokoyama, M.; Kashiwagi, M.; Shingo, O.; Akasaka, T.; Kato, N. Coronary artery lumen complexity as a new marker for refractory symptoms in patients with vasospastic angina. Sci. Rep., 2021, 11(1), 13.
[http://dx.doi.org/10.1038/s41598-020-79669-1] [PMID: 33420164]
[234]
Kim, H.O.; Jiang, B.; Poon, E.K.W.; Thondapu, V.; Kim, C.J.; Kurihara, O.; Araki, M.; Nakajima, A.; Mamon, C.; Dijkstra, J.; Lee, H.; Ooi, A.; Barlis, P.; Jang, I.K. High endothelial shear stress and stress gradient at plaque erosion persist up to 12 months. Int. J. Cardiol., 2022, 357, 1-7.
[http://dx.doi.org/10.1016/j.ijcard.2022.03.035] [PMID: 35306029]
[235]
Yeboah, J.; Folsom, A.R.; Burke, G.L.; Johnson, C.; Polak, J.F.; Post, W.; Lima, J.A.; Crouse, J.R.; Herrington, D.M. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: The multi-ethnic study of atherosclerosis. Circulation, 2009, 120(6), 502-509.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.864801] [PMID: 19635967]
[236]
Bonetti, P.O.; Lerman, L.O.; Lerman, A. Endothelial dysfunction. Arterioscler. Thromb. Vasc. Biol., 2003, 23(2), 168-175.
[http://dx.doi.org/10.1161/01.ATV.0000051384.43104.FC] [PMID: 12588755]
[237]
Cziráki, A.; Lenkey, Z.; Sulyok, E.; Szokodi, I.; Koller, A. L-arginine-nitric oxide-asymmetric dimethylarginine pathway and the coronary circulation: Translation of basic science results to clinical practice. Front. Pharmacol., 2020, 11, 569914.
[http://dx.doi.org/10.3389/fphar.2020.569914] [PMID: 33117166]
[238]
Badhwar, S.; Chandran, D.S.; Jaryal, A.K.; Narang, R.; Patel, C.; Deepak, K.K. Brachial artery “Low-Flow Mediated Constriction” is associated with myocardial perfusion defect severity and mediated by an altered flow pattern during occlusion. Pulse, 2021, 9(3-4), 99-108.
[http://dx.doi.org/10.1159/000519558] [PMID: 35083176]
[239]
Charakida, M.; Masi, S.; Loukogeorgakis, S.P.; Deanfield, J.E. The role of flow-mediated dilatation in the evaluation and development of antiatherosclerotic drugs. Curr. Opin. Lipidol., 2009, 20(6), 460-466.
[http://dx.doi.org/10.1097/MOL.0b013e3283330518] [PMID: 19851104]
[240]
Ganbaatar, B.; Fukuda, D.; Salim, H.M.; Nishimoto, S.; Tanaka, K.; Higashikuni, Y.; Hirata, Y.; Yagi, S.; Soeki, T.; Sata, M. Ticagrelor, a P2Y12 antagonist, attenuates vascular dysfunction and inhibits atherogenesis in apolipoprotein-E-deficient mice. Atherosclerosis, 2018, 275, 124-132.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.05.053] [PMID: 29902700]
[241]
Charakida, M.; Masi, S.; Lüscher, T.F.; Kastelein, J.J.P.; Deanfield, J.E. Assessment of atherosclerosis: The role of flow-mediated dilatation. Eur. Heart J., 2010, 31(23), 2854-2861.
[http://dx.doi.org/10.1093/eurheartj/ehq340] [PMID: 20864485]
[242]
Thijssen, D.H.J.; Bruno, R.M.; van Mil, A.C.C.M.; Holder, S.M.; Faita, F.; Greyling, A.; Zock, P.L.; Taddei, S.; Deanfield, J.E.; Luscher, T.; Green, D.J.; Ghiadoni, L. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur. Heart J., 2019, 40(30), 2534-2547.
[http://dx.doi.org/10.1093/eurheartj/ehz350] [PMID: 31211361]
[243]
Koller, A.; Laughlin, M.H.; Cenko, E.; de Wit, C.; Tóth, K.; Bugiardini, R.; Trifunovits, D.; Vavlukis, M.; Manfrini, O.; Lelbach, A.; Dornyei, G.; Padro, T.; Badimon, L.; Tousoulis, D.; Gielen, S.; Duncker, D.J. Functional and structural adaptations of the coronary macro- and microvasculature to regular aerobic exercise by activation of physiological, cellular, and molecular mechanisms: ESC Working Group on Coronary Pathophysiology and Microcirculation position paper. Cardiovasc. Res., 2022, 118(2), 357-371.
[http://dx.doi.org/10.1093/cvr/cvab246] [PMID: 34358290]
[244]
Hebbel, R.P.; Wei, P.; Milbauer, L.; Corban, M.T.; Solovey, A.; Kiley, J.; Pattee, J.; Lerman, L.O.; Pan, W.; Lerman, A. Abnormal endothelial gene expression associated with early coronary atherosclerosis. J. Am. Heart Assoc., 2020, 9(14), e016134.
[http://dx.doi.org/10.1161/JAHA.120.016134] [PMID: 32673514]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy