Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Overcoming the Limitations of Therapeutic Strategies to Combat Pancreatic Cancer using Nanotechnology

Author(s): Shivang Dhoundiyal and Md. Aftab Alam*

Volume 23, Issue 9, 2023

Published on: 28 April, 2023

Page: [697 - 717] Pages: 21

DOI: 10.2174/1568009623666230329085618

Price: $65

Abstract

There is a significant unmet demand for the treatment of pancreatic cancer. Many patients do not make it to past five years after diagnosis. The effectiveness of treatment varies greatly from patient to patient, and many people are too weak to endure chemotherapy or surgery. Unfortunately, by the time patients receive the diagnosis, the tumour typically spreads, rendering these chemotherapies ineffective. Effective anticancer drugs can be better formulated with the help of nanotechnology, which can help them overcome issues with their physicochemical features, such as their poor water solubility or their short half-life in the bloodstream after administration. Many of the reported nanotechnologies offer multifunctional qualities including image guidance and controlled release, in addition to site-specific targeting to the site of action. In this review, we will examine the current status of the most promising nanotechnologies for treating pancreatic cancer, including those still in the research and development phase as well as those that have recently been given the green signal for use in clinical practice.

Graphical Abstract

[1]
Ilic, M.; Ilic, I. Epidemiology of pancreatic cancer. World J. Gastroenterol., 2016, 22(44), 9694-9705.
[http://dx.doi.org/10.3748/wjg.v22.i44.9694] [PMID: 27956793]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Orth, M.; Metzger, P.; Gerum, S.; Mayerle, J.; Schneider, G.; Belka, C.; Schnurr, M.; Lauber, K. Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat. Oncol., 2019, 14(1), 141.
[http://dx.doi.org/10.1186/s13014-019-1345-6] [PMID: 31395068]
[4]
Hidalgo, M.; Cascinu, S.; Kleeff, J.; Labianca, R.; Löhr, J.M.; Neoptolemos, J.; Real, F.X.; Van Laethem, J.L.; Heinemann, V. Addressing the challenges of pancreatic cancer: Future directions for improving outcomes. Pancreatology, 2015, 15(1), 8-18.
[http://dx.doi.org/10.1016/j.pan.2014.10.001] [PMID: 25547205]
[5]
Kuzmickiene, I.; Everatt, R.; Virviciute, D.; Tamosiunas, A.; Radisauskas, R.; Reklaitiene, R.; Milinaviciene, E. Smoking and other risk factors for pancreatic cancer: A cohort study in men in Lithuania. Cancer Epidemiol., 2013, 37(2), 133-139.
[http://dx.doi.org/10.1016/j.canep.2012.10.001] [PMID: 23107757]
[6]
Xu, M.; Jung, X.; Hines, O.J.; Eibl, G.; Chen, Y. Obesity and pancreatic cancer: overview of epidemiology and potential prevention by weight loss. Pancreas, 2018, 47(2), 158-162.
[http://dx.doi.org/10.1097/MPA.0000000000000974] [PMID: 29346216]
[7]
Lu, P.Y.; Shu, L.; Shen, S.S.; Chen, X.J.; Zhang, X.Y. Dietary patterns and pancreatic cancer risk: a meta-analysis. Nutrients, 2017, 9(1), 38.
[http://dx.doi.org/10.3390/nu9010038] [PMID: 28067765]
[8]
Michaud, D.S.; Vrieling, A.; Jiao, L.; Mendelsohn, J.B.; Steplowski, E.; Lynch, S.M.; Wactawski-Wende, J.; Arslan, A.A.; Bas Bueno-de-Mesquita, H.; Fuchs, C.S.; Gross, M.; Helzlsouer, K.; Jacobs, E.J.; LaCroix, A.; Petersen, G.; Zheng, W.; Allen, N.; Ammundadottir, L.; Bergmann, M.M.; Boffetta, P.; Buring, J.E.; Canzian, F.; Chanock, S.J.; Clavel-Chapelon, F.; Clipp, S.; Freiberg, M.S.; Michael Gaziano, J.; Giovannucci, E.L.; Hankinson, S.; Hartge, P.; Hoover, R.N.; Allan Hubbell, F.; Hunter, D.J.; Hutchinson, A.; Jacobs, K.; Kooperberg, C.; Kraft, P.; Manjer, J.; Navarro, C.; Peeters, P.H.M.; Shu, X.O.; Stevens, V.; Thomas, G.; Tjønneland, A.; Tobias, G.S.; Trichopoulos, D.; Tumino, R.; Vineis, P.; Virtamo, J.; Wallace, R.; Wolpin, B.M.; Yu, K.; Zeleniuch-Jacquotte, A.; Stolzenberg-Solomon, R.Z. Alcohol intake and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium (PanScan). Cancer Causes Control, 2010, 21(8), 1213-1225.
[http://dx.doi.org/10.1007/s10552-010-9548-z] [PMID: 20373013]
[9]
Ojajärvi, I.A.; Partanen, T.J.; Ahlbom, A.; Boffetta, P.; Hakulinen, T.; Jourenkova, N.; Kauppinen, T.P.; Kogevinas, M.; Porta, M.; Vainio, H.U.; Weiderpass, E.; Wesseling, C.H. Occupational exposures and pancreatic cancer: a meta-analysis. Occup. Environ. Med., 2000, 57(5), 316-324.
[http://dx.doi.org/10.1136/oem.57.5.316] [PMID: 10769297]
[10]
Andersen, D.K.; Korc, M.; Petersen, G.M.; Eibl, G.; Li, D.; Rickels, M.R.; Chari, S.T.; Abbruzzese, J.L. Diabetes, pancreatogenic diabetes, and pancreatic cancer. Diabetes, 2017, 66(5), 1103-1110.
[http://dx.doi.org/10.2337/db16-1477] [PMID: 28507210]
[11]
Olson, S.H.; Kurtz, R.C. Epidemiology of pancreatic cancer and the role of family history. J. Surg. Oncol., 2013, 107(1), 1-7.
[http://dx.doi.org/10.1002/jso.23149] [PMID: 22589078]
[12]
Osmani, R.; Hani, U.; Bhosale, R.; Kulkarni, P.; Shanmuganathan, S. Nanosponge carriers-an archetype swing in cancer therapy: a comprehensive review. Curr. Drug Targets, 2016, 18(1), 108-118.
[http://dx.doi.org/10.2174/1389450116666151001105449] [PMID: 26424399]
[13]
Ghosn, M.; Ibrahim, T.; Assi, T.; El Rassy, E.; Kourie, H.R.; Kattan, J. Dilemma of first line regimens in metastatic pancreatic adenocarcinoma. World J. Gastroenterol., 2016, 22(46), 10124-10130.
[http://dx.doi.org/10.3748/wjg.v22.i46.10124] [PMID: 28028360]
[14]
Hobday, T.J.; Qin, R.; Reidy-Lagunes, D.; Moore, M.J.; Strosberg, J.; Kaubisch, A.; Shah, M.; Kindler, H.L.; Lenz, H.J.; Chen, H.; Erlichman, C. Multicenter phase II trial of temsirolimus and bevacizumab in pancreatic neuroendocrine tumors. J. Clin. Oncol., 2015, 33(14), 1551-1556.
[http://dx.doi.org/10.1200/JCO.2014.56.2082] [PMID: 25488966]
[15]
Bhosale, R.R.; Gangadharappa, H.V.; Gowda, D.V.; Osmani, R.A.; Vaghela, R.; Kulkarni, P.K.; Sairam, K.V.; Gurupadayya, B. Current perspectives on novel drug carrier systems and therapies for management of pancreatic cancer: An updated inclusive review. Crit. Rev. Ther. Drug Carrier Sys., 2018, 35(3), 195-292.
[16]
Osmani, RA; Kulkarni, PK; Gowda, V; Hani, U; Gupta, VK; Prerana, M; Saha, C Cyclodextrin-based nanosponges in drug delivery and cancer therapeutics: New perspectives for old problems. Applications of nanocomposite materials in drug delivery; Elsevier: Amsterdam, 2018, pp. 97-147. INCOMPLETE
[http://dx.doi.org/10.1016/B978-0-12-813741-3.00005-4]
[17]
Von Hoff, D.D.; Goldstein, D.; Renschler, M.F. Albumin-bound paclitaxel plus gemcitabine in pancreatic cancer. N. Engl. J. Med., 2014, 370(5), 478-480.
[http://dx.doi.org/10.1056/NEJMc1314761] [PMID: 24476438]
[18]
Von Hoff, D.D.; Ramanathan, R.K.; Borad, M.J.; Laheru, D.A.; Smith, L.S.; Wood, T.E.; Korn, R.L.; Desai, N.; Trieu, V.; Iglesias, J.L.; Zhang, H.; Soon-Shiong, P.; Shi, T.; Rajeshkumar, N.V.; Maitra, A.; Hidalgo, M. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J. Clin. Oncol., 2011, 29(34), 4548-4554.
[http://dx.doi.org/10.1200/JCO.2011.36.5742] [PMID: 21969517]
[19]
Osmani, R.A.M.; Kulkarni, P.K.; Shanmuganathan, S.; Hani, U.; Srivastava, A.; M, P.; Shinde, C.G.; Bhosale, R.R. A 3 2 full factorial design for development and characterization of a nanosponge-based intravaginal in situ gelling system for vulvovaginal candidiasis. RSC Advances, 2016, 6(23), 18737-18750.
[http://dx.doi.org/10.1039/C5RA26218F]
[20]
Fusco, J. Pancreas Embryology, Anatomy, and Physiology. In: Endocrine Surgery in Children; Springer: Berlin, Heidelberg, 2018; pp. 143-160.
[http://dx.doi.org/10.1007/978-3-662-54256-9_11]
[21]
Ojha, A.; Ojha, U.; Mohammed, R.; Chandrashekar, A.; Ojha, H. Current perspective on the role of insulin and glucagon in the pathogenesis and treatment of type 2 diabetes mellitus. Clin. Pharmacol., 2019, 11, 57-65.
[http://dx.doi.org/10.2147/CPAA.S202614] [PMID: 31191043]
[22]
Qaid, M.M.; Abdelrahman, M.M. Role of insulin and other related hormones in energy metabolism - A review. Cogent Food Agric., 2016, 2(1), 1267691.
[http://dx.doi.org/10.1080/23311932.2016.1267691]
[23]
Chang, E.B.; Leung, P.S. Pancreatic physiology. In: The Gastrointestinal System; Springer: Berlin, 2014; pp. 87-105.
[24]
Roshani, R.; McCarthy, F.; Hagemann, T. Inflammatory cytokines in human pancreatic cancer. Cancer Lett., 2014, 345(2), 157-163.
[http://dx.doi.org/10.1016/j.canlet.2013.07.014] [PMID: 23879960]
[25]
de Wilde, R.F.; Hruban, R.H.; Maitra, A.; Offerhaus, G.J.A. Reporting precursors to invasive pancreatic cancer: pancreatic intraepithelial neoplasia, intraductal neoplasms and mucinous cystic neoplasm. Diagn. Histopathol., 2012, 18(1), 17-30.
[http://dx.doi.org/10.1016/j.mpdhp.2011.10.012]
[26]
Zhi, X.; Tao, J.; Xie, K.; Zhu, Y.; Li, Z.; Tang, J.; Wang, W.; Xu, H.; Zhang, J.; Xu, Z. MUC4-induced nuclear translocation of β -catenin: A novel mechanism for growth, metastasis and angiogenesis in pancreatic cancer. Cancer Lett., 2014, 346(1), 104-113.
[http://dx.doi.org/10.1016/j.canlet.2013.12.021] [PMID: 24374017]
[27]
Z’graggen, K.; Centeno, B.A.; Fernandez-del Castillo, C.; Jimenez, R.E.; Werner, J.; Warshaw, A.L. Biological implications of tumor cells in blood and bone marrow of pancreatic cancer patients. Surgery, 2001, 129(5), 537-546.
[http://dx.doi.org/10.1067/msy.2001.113819] [PMID: 11331445]
[28]
Prasad, R.; Katiyar, S.K. Grape seed proanthocyanidins inhibit migration potential of pancreatic cancer cells by promoting mesenchymal-to-epithelial transition and targeting NF-κB. Cancer Lett., 2013, 334(1), 118-126.
[http://dx.doi.org/10.1016/j.canlet.2012.08.003] [PMID: 22902508]
[29]
Hosoki, T. Dynamic CT of pancreatic tumors. AJR Am. J. Roentgenol., 1983, 140(5), 959-965.
[http://dx.doi.org/10.2214/ajr.140.5.959] [PMID: 6601441]
[30]
Sofuni, A.; Iijima, H.; Moriyasu, F.; Nakayama, D.; Shimizu, M.; Nakamura, K.; Itokawa, F.; Itoi, T. Differential diagnosis of pancreatic tumors using ultrasound contrast imaging. J. Gastroenterol., 2005, 40(5), 518-525.
[http://dx.doi.org/10.1007/s00535-005-1578-z] [PMID: 15942718]
[31]
Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Girard, O.M.; Hanahan, D.; Mattrey, R.F.; Ruoslahti, E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell, 2009, 16(6), 510-520.
[http://dx.doi.org/10.1016/j.ccr.2009.10.013] [PMID: 19962669]
[32]
Bendas, G.; Borsig, L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. Int. J. Cell Biol., 2012, 2012, 1-10.
[http://dx.doi.org/10.1155/2012/676731] [PMID: 22505933]
[33]
Grzesiak, J.J.; Ho, J.C.; Moossa, A.R.; Bouvet, M. The integrin-extracellular matrix axis in pancreatic cancer. Pancreas, 2007, 35(4), 293-301.
[http://dx.doi.org/10.1097/mpa.0b013e31811f4526] [PMID: 18090233]
[34]
Dodson, L.F.; Hawkins, W.G.; Goedegebuure, P. Potential targets for pancreatic cancer immunotherapeutics. Immunotherapy, 2011, 3(4), 517-537.
[http://dx.doi.org/10.2217/imt.11.10] [PMID: 21463193]
[35]
Felix, K.; Gaida, M.M. Neutrophil-derived proteases in the microenvironment of pancreatic cancer-active players in tumor progression. Int. J. Biol. Sci., 2016, 12(3), 302-313.
[http://dx.doi.org/10.7150/ijbs.14996] [PMID: 26929737]
[36]
Quante, A.S.; Ming, C.; Rottmann, M.; Engel, J.; Boeck, S.; Heinemann, V.; Westphalen, C.B.; Strauch, K. Projections of cancer incidence and cancer‐related deaths in Germany by 2020 and 2030. Cancer Med., 2016, 5(9), 2649-2656.
[http://dx.doi.org/10.1002/cam4.767] [PMID: 27356493]
[37]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[38]
Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res., 2014, 74(11), 2913-2921.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0155] [PMID: 24840647]
[39]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S. Zeng h, Bray F, Jemal A, Yu XQ and he J: Cancer statistics in china. CA Cancer J. Clin., 2016, 66, 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[40]
Kamisawa, T.; Wood, L.D.; Itoi, T.; Takaori, K. Pancreatic cancer. Lancet, 2016, 388(10039), 73-85.
[http://dx.doi.org/10.1016/S0140-6736(16)00141-0] [PMID: 26830752]
[41]
Jiang, B.; Zhou, L.; Lu, J.; Wang, Y.; Liu, C.; You, L.; Guo, J. Stroma-targeting therapy in pancreatic cancer: one coin with two sides? Front. Oncol., 2020, 10, 576399.
[http://dx.doi.org/10.3389/fonc.2020.576399] [PMID: 33178608]
[42]
Yang, F.; Jin, C.; Subedi, S.; Lee, C.L.; Wang, Q.; Jiang, Y.; Li, J.; Di, Y.; Fu, D. Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment. Cancer Treat. Rev., 2012, 38(6), 566-579.
[http://dx.doi.org/10.1016/j.ctrv.2012.02.003] [PMID: 22655679]
[43]
Kota, J.; Hancock, J.; Kwon, J.; Korc, M. Pancreatic cancer: Stroma and its current and emerging targeted therapies. Cancer Lett., 2017, 391, 38-49.
[http://dx.doi.org/10.1016/j.canlet.2016.12.035] [PMID: 28093284]
[44]
Neesse, A.; Michl, P.; Frese, K.K.; Feig, C.; Cook, N.; Jacobetz, M.A.; Lolkema, M.P.; Buchholz, M.; Olive, K.P.; Gress, T.M.; Tuveson, D.A. Stromal biology and therapy in pancreatic cancer. Gut, 2011, 60(6), 861-868.
[http://dx.doi.org/10.1136/gut.2010.226092] [PMID: 20966025]
[45]
Xu, Z.; Pothula, S.P.; Wilson, J.S.; Apte, M.V. Pancreatic cancer and its stroma: A conspiracy theory. World J. Gastroenterol., 2014, 20(32), 11216-11229.
[http://dx.doi.org/10.3748/wjg.v20.i32.11216] [PMID: 25170206]
[46]
von Ahrens, D.; Bhagat, T.D.; Nagrath, D.; Maitra, A.; Verma, A. The role of stromal cancer-associated fibroblasts in pancreatic cancer. J. Hematol. Oncol., 2017, 10(1), 76.
[http://dx.doi.org/10.1186/s13045-017-0448-5] [PMID: 28351381]
[47]
Jain, R.K.; Martin, J.D.; Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng., 2014, 16(1), 321-346.
[http://dx.doi.org/10.1146/annurev-bioeng-071813-105259] [PMID: 25014786]
[48]
Meng, H.; Nel, A.E. Use of nano engineered approaches to overcome the stromal barrier in pancreatic cancer. Adv. Drug Deliv. Rev., 2018, 130, 50-57.
[http://dx.doi.org/10.1016/j.addr.2018.06.014] [PMID: 29958925]
[49]
The role of stroma in pancreatic cancer: Diagnostic and therapeutic implications. Nat. Rev. Gastroenterol. Hepatol., 2012, 9, 454-467.
[http://dx.doi.org/10.1038/nrgastro.2012.115]
[50]
Ligorio, M.; Sil, S.; Malagon-Lopez, J.; Nieman, L.T.; Misale, S.; Di Pilato, M.; Ebright, R.Y.; Karabacak, M.N.; Kulkarni, A.S.; Liu, A.; Vincent Jordan, N.; Franses, J.W.; Philipp, J.; Kreuzer, J.; Desai, N.; Arora, K.S.; Rajurkar, M.; Horwitz, E.; Neyaz, A.; Tai, E.; Magnus, N.K.C.; Vo, K.D.; Yashaswini, C.N.; Marangoni, F.; Boukhali, M.; Fatherree, J.P.; Damon, L.J.; Xega, K.; Desai, R.; Choz, M.; Bersani, F.; Langenbucher, A.; Thapar, V.; Morris, R.; Wellner, U.F.; Schilling, O.; Lawrence, M.S.; Liss, A.S.; Rivera, M.N.; Deshpande, V.; Benes, C.H.; Maheswaran, S.; Haber, D.A.; Fernandez-Del-Castillo, C.; Ferrone, C.R.; Haas, W.; Aryee, M.J.; Ting, D.T. Stromal microenvironment shapes the intratumoral architecture of pancreatic cancer. Cell, 2019, 178(1), 160-175.e27.
[http://dx.doi.org/10.1016/j.cell.2019.05.012] [PMID: 31155233]
[51]
Dougan, S.K. The pancreatic cancer microenvironment. Cancer J., 2017, 23(6), 321-325.
[http://dx.doi.org/10.1097/PPO.0000000000000288] [PMID: 29189327]
[52]
Nia, H.T.; Munn, L.L.; Jain, R.K. Mapping Physical Tumor Microenvironment and Drug Delivery. Clin. Cancer Res., 2019, 25(7), 2024-2026.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3724] [PMID: 30630829]
[53]
Wang, J.; Chan, D.K.W.; Sen, A.; Ma, W.W.; Straubinger, R.M. Tumor Priming by SMO inhibition enhances antibody delivery and efficacy in a pancreatic ductal adenocarcinoma model. Mol. Cancer Ther., 2019, 18(11), 2074-2084.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0354] [PMID: 31363010]
[54]
Cros, J.; Raffenne, J.; Couvelard, A.; Poté, N. Tumor heterogeneity in pancreatic adenocarcinoma. Pathobiology, 2018, 85(1-2), 64-71.
[http://dx.doi.org/10.1159/000477773] [PMID: 28787741]
[55]
Zhang, Z.; Han, H.; Rong, Y.; Zhu, K.; Zhu, Z.; Tang, Z.; Xiong, C.; Tao, J. Hypoxia potentiates gemcitabine-induced stemness in pancreatic cancer cells through AKT/Notch1 signaling. J. Exp. Clin. Cancer Res., 2018, 37(1), 291.
[http://dx.doi.org/10.1186/s13046-018-0972-3] [PMID: 30486896]
[56]
Balachandran, V.P.; Beatty, G.L.; Dougan, S.K. Broadening the impact of immunotherapy to pancreatic cancer: challenges and opportunities. Gastroenterology, 2019, 156(7), 2056-2072.
[http://dx.doi.org/10.1053/j.gastro.2018.12.038] [PMID: 30660727]
[57]
Looi, C.K.; Chung, F.F.L.; Leong, C.O.; Wong, S.F.; Rosli, R.; Mai, C.W. Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. J. Exp. Clin. Cancer Res., 2019, 38(1), 162.
[http://dx.doi.org/10.1186/s13046-019-1153-8] [PMID: 30987642]
[58]
Li, K.Y.; Yuan, J.L.; Trafton, D.; Wang, J.X.; Niu, N.; Yuan, C.H.; Liu, X.B.; Zheng, L. Pancreatic ductal adenocarcinoma immune microenvironment and immunotherapy prospects. Chronic Dis. Transl. Med., 2020, 6(1), 6-17.
[http://dx.doi.org/10.1016/j.cdtm.2020.01.002] [PMID: 32226930]
[59]
Parayath, N.; Padmakumar, S.; Nair, S.V.; Menon, D.; Amiji, M.M. Strategies for targeting cancer immunotherapy through modulation of the tumor microenvironment. Regen. Eng. Transl. Med., 2020, 6(1), 29-49.
[http://dx.doi.org/10.1007/s40883-019-00113-6]
[60]
Shen, H.; Sun, T.; Hoang, H.H.; Burchfield, J.S.; Hamilton, G.F.; Mittendorf, E.A.; Ferrari, M. Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells. Semin. Immunol., 2017, 34, 114-122.
[http://dx.doi.org/10.1016/j.smim.2017.09.002]
[61]
Liu, Y.; Guo, J.; Huang, L. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. Theranostics, 2020, 10(7), 3099-3117.
[http://dx.doi.org/10.7150/thno.42998] [PMID: 32194857]
[62]
Lu, J.; Liu, X.; Liao, Y.P.; Salazar, F.; Sun, B.; Jiang, W.; Chang, C.H.; Jiang, J.; Wang, X.; Wu, A.M.; Meng, H.; Nel, A.E. Nanoenabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat. Commun., 2017, 8(1), 1811.
[http://dx.doi.org/10.1038/s41467-017-01651-9] [PMID: 29180759]
[63]
Suto, A.; Kudo, D.; Yoshida, E.; Nagase, H.; Suto, S.; Mimura, J.; Itoh, K.; Hakamada, K. Increase of tumor infiltrating γδ T-cells in pancreatic ductal adenocarcinoma through remodeling of the extracellular matrix by a hyaluronan synthesis suppressor, 4-methylumbelliferone. Pancreas, 2019, 48(2), 292-298.
[http://dx.doi.org/10.1097/MPA.0000000000001211] [PMID: 30589828]
[64]
Das, M.; Shen, L.; Liu, Q.; Goodwin, T.J.; Huang, L. Nanoparticle delivery of RIG-I agonist enables effective and safe adjuvant therapy in pancreatic cancer. Mol. Ther., 2019, 27(3), 507-517.
[http://dx.doi.org/10.1016/j.ymthe.2018.11.012] [PMID: 30545600]
[65]
Liu, L.; Kshirsagar, P.G.; Gautam, S.K.; Gulati, M.; Wafa, E.I.; Christiansen, J.C.; White, B.M.; Mallapragada, S.K.; Wannemuehler, M.J.; Kumar, S.; Solheim, J.C.; Batra, S.K.; Salem, A.K.; Narasimhan, B.; Jain, M. Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies. Theranostics, 2022, 12(3), 1030-1060.
[http://dx.doi.org/10.7150/thno.64805] [PMID: 35154473]
[66]
Giustarini, G.; Pavesi, A.; Adriani, G. Nanoparticle-based therapies for turning cold tumors hot: How to treat an immunosuppressive tumor microenvironment. Front. Bioeng. Biotechnol., 2021, 9, 689245.
[http://dx.doi.org/10.3389/fbioe.2021.689245] [PMID: 34150739]
[67]
Zhen, Z.; Tang, W.; Wang, M.; Zhou, S.; Wang, H.; Wu, Z.; Hao, Z.; Li, Z.; Liu, L.; Xie, J. Protein nanocage mediated fibroblastactivation protein targeted photoimmunotherapy to enhance cytotoxic T cell infiltration and tumor control. Nano Lett., 2017, 17(2), 862-869.
[http://dx.doi.org/10.1021/acs.nanolett.6b04150] [PMID: 28027646]
[68]
Han, X.; Li, Y.; Xu, Y.; Zhao, X.; Zhang, Y.; Yang, X.; Wang, Y.; Zhao, R.; Anderson, G.J.; Zhao, Y.; Nie, G. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem. Nat. Commun., 2018, 9(1), 3390.
[http://dx.doi.org/10.1038/s41467-018-05906-x] [PMID: 30139933]
[69]
Abdolahinia, E.D.; Nadri, S.; Rahbarghazi, R.; Barar, J.; Aghanejad, A.; Omidi, Y. Enhanced penetration and cytotoxicity of metformin and collagenase conjugated gold nanoparticles in breast cancer spheroids. Life Sci., 2019, 231, 116545.
[http://dx.doi.org/10.1016/j.lfs.2019.116545] [PMID: 31176782]
[70]
Zinger, A.; Koren, L.; Adir, O.; Poley, M.; Alyan, M.; Yaari, Z.; Noor, N.; Krinsky, N.; Simon, A.; Gibori, H.; Krayem, M.; Mumblat, Y.; Kasten, S.; Ofir, S.; Fridman, E.; Milman, N.; Lübtow, M.M.; Liba, L.; Shklover, J.; Shainsky-Roitman, J.; Binenbaum, Y.; Hershkovitz, D.; Gil, Z.; Dvir, T.; Luxenhofer, R.; Satchi-Fainaro, R.; Schroeder, A. Collagenase nanoparticles enhance the penetration of drugs into pancreatic tumors. ACS Nano, 2019, 13(10), 11008-11021.
[http://dx.doi.org/10.1021/acsnano.9b02395] [PMID: 31503443]
[71]
Xu, F.; Huang, X.; Wang, Y.; Zhou, S. A size‐changeable collagenase‐modified nanoscavenger for increasing penetration and retention of nanomedicine in deep tumor tissue. Adv. Mater., 2020, 32(16), 1906745.
[http://dx.doi.org/10.1002/adma.201906745] [PMID: 32105374]
[72]
Adiseshaiah, P.P.; Crist, R.M.; Hook, S.S.; McNeil, S.E. Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat. Rev. Clin. Oncol., 2016, 13(12), 750-765.
[http://dx.doi.org/10.1038/nrclinonc.2016.119] [PMID: 27531700]
[73]
Kolodecik, T.; Shugrue, C.; Ashat, M.; Thrower, E.C. Risk factors for pancreatic cancer: underlying mechanisms and potential targets. Front. Physiol., 2014, 4, 415.
[http://dx.doi.org/10.3389/fphys.2013.00415] [PMID: 24474939]
[74]
Ling, J.; Kang, Y.; Zhao, R.; Xia, Q.; Lee, D.F.; Chang, Z.; Li, J.; Peng, B.; Fleming, J.B.; Wang, H.; Liu, J.; Lemischka, I.R.; Hung, M.C.; Chiao, P.J. KrasG12D-induced IKK2/β/NF-κB activation by IL-1α and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell, 2012, 21(1), 105-120.
[http://dx.doi.org/10.1016/j.ccr.2011.12.006] [PMID: 22264792]
[75]
Rahib, L.; Fleshman, J.M.; Matrisian, L.M.; Berlin, J.D. Evaluation of pancreatic cancer clinical trials and benchmarks for clinically meaningful future trials: a systematic review. JAMA Oncol., 2016, 2(9), 1209-1216.
[http://dx.doi.org/10.1001/jamaoncol.2016.0585] [PMID: 27270617]
[76]
Goji, T.; Kimura, T.; Miyamoto, H.; Takehara, M.; Kagemoto, K.; Okada, Y.; Okazaki, J.; Takaoka, Y.; Miyamoto, Y.; Mitsui, Y.; Matsumoto, S.; Sueuchi, T.; Tanaka, K.; Fujino, Y.; Takaoka, T.; Kitamura, S.; Okamoto, K.; Kimura, M.; Sogabe, M.; Muguruma, N.; Okahisa, T.; Sato, Y.; Sagawa, T.; Fujikawa, K.; Sato, Y.; Ikushima, H.; Takayama, T. A phase I/II study of fixed-dose-rate gemcitabine and S-1 with concurrent radiotherapy for locally advanced pancreatic cancer. Cancer Chemother. Pharmacol., 2015, 76(3), 615-620.
[http://dx.doi.org/10.1007/s00280-015-2835-3] [PMID: 26220846]
[77]
Wang, J.P.; Wu, C.Y.; Yeh, Y.C.; Shyr, Y.M.; Wu, Y.Y.; Kuo, C.Y.; Hung, Y.P.; Chen, M.H.; Lee, W.P.; Luo, J.C.; Chao, Y.; Li, C.P. Erlotinib is effective in pancreatic cancer with epidermal growth factor receptor mutations: A randomized, open-label, prospective trial. Oncotarget, 2015, 6(20), 18162-18173.
[http://dx.doi.org/10.18632/oncotarget.4216] [PMID: 26046796]
[78]
Goldstein, D.; El-Maraghi, R.H.; Hammel, P.; Heinemann, V.; Kunzmann, V.; Sastre, J.; Scheithauer, W.; Siena, S.; Tabernero, J.; Teixeira, L.; Tortora, G.; Van Laethem, J.L.; Young, R.; Penenberg, D.N.; Lu, B.; Romano, A.; Von Hoff, D.D. nab-Paclitaxel plus gemcitabine for metastatic pancreatic cancer: long-term survival from a phase III trial. J. Natl. Cancer Inst., 2015, 107(2), dju413.
[http://dx.doi.org/10.1093/jnci/dju413] [PMID: 25638248]
[79]
Bennett, K.M.; Jo, J.; Cabral, H.; Bakalova, R.; Aoki, I. MR imaging techniques for nano-pathophysiology and theranostics. Adv. Drug Deliv. Rev., 2014, 74, 75-94.
[http://dx.doi.org/10.1016/j.addr.2014.04.007] [PMID: 24787226]
[80]
McCarroll, J.; Teo, J.; Boyer, C.; Goldstein, D.; Kavallaris, M.; Phillips, P.A. Potential applications of nanotechnology for the diagnosis and treatment of pancreatic cancer. Front. Physiol., 2014, 5, 2.
[http://dx.doi.org/10.3389/fphys.2014.00002] [PMID: 24478715]
[81]
Schnittert, J.; Bansal, R.; Prakash, J. Targeting pancreatic stellate cells in cancer. Trends Cancer, 2019, 5(2), 128-142.
[http://dx.doi.org/10.1016/j.trecan.2019.01.001] [PMID: 30755305]
[82]
Campbell, P.M.; Groehler, A.L.; Lee, K.M.; Ouellette, M.M.; Khazak, V.; Der, C.J. K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling. Cancer Res., 2007, 67(5), 2098-2106.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3752] [PMID: 17332339]
[83]
Frakes, J.; Mellon, E.A.; Springett, G.M.; Hodul, P.; Malafa, M.P.; Fulp, W.J.; Zhao, X.; Hoffe, S.E.; Shridhar, R.; Meredith, K.L. Outcomes of adjuvant radiotherapy and lymph node resection in elderly patients with pancreatic cancer treated with surgery and chemotherapy. J. Gastrointest. Oncol., 2017, 8(5), 758-765.
[http://dx.doi.org/10.21037/jgo.2017.08.05] [PMID: 29184679]
[84]
Landau, E.; Kalnicki, S. The evolving role of radiation in pancreatic cancer. Surg. Clin. North Am., 2018, 98(1), 113-125.
[http://dx.doi.org/10.1016/j.suc.2017.09.008] [PMID: 29191268]
[85]
Sherman, W.H.; Hecht, E.; Leung, D.; Chu, K. Predictors of response and survival in locally advanced adenocarcinoma of the pancreas following neoadjuvant GTX with or without radiation therapy. Oncologist, 2018, 23(1), 4-e10.
[http://dx.doi.org/10.1634/theoncologist.2017-0208] [PMID: 29212734]
[86]
Eggen, S.; Afadzi, M.; Nilssen, E.A.; Haugstad, S.B.; Angelsen, B.; Davies, C.L. Ultrasound improves the uptake and distribution of liposomal Doxorubicin in prostate cancer xenografts. Ultrasound Med. Biol., 2013, 39(7), 1255-1266.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2013.02.010] [PMID: 23643054]
[87]
Badiyan, S.N.; Molitoris, J.K.; Chuong, M.D.; Regine, W.F.; Kaiser, A. The role of radiation therapy for pancreatic cancer in the adjuvant and neoadjuvant settings. Surg. Oncol. Clin. N. Am., 2017, 26(3), 431-453.
[http://dx.doi.org/10.1016/j.soc.2017.01.012] [PMID: 28576181]
[88]
Koay, E.J.; Hanania, A.N.; Hall, W.A.; Taniguchi, C.M.; Rebueno, N.; Myrehaug, S.; Aitken, K.L.; Dawson, L.A.; Crane, C.H.; Herman, J.M.; Erickson, B. Dose-escalated radiation therapy for pancreatic cancer: a simultaneous integrated boost approach. Pract. Radiat. Oncol., 2020, 10(6), e495-e507.
[http://dx.doi.org/10.1016/j.prro.2020.01.012] [PMID: 32061993]
[89]
Regine, W.F.; Winter, K.W.; Abrams, R.; Safran, H.; Hoffman, J.P.; Konski, A.; Benson, A.B.; MacDonald, J.S.; Willett, C.G.; Rich, T.A. RTOG 9704 a phase III study of adjuvant pre and post chemoradiation (CRT) 5-FU vs. gemcitabine (G) for resected pancreatic adenocarcinoma. J. Clin. Oncol., 2006, 24(Suppl. 18), 4007.
[http://dx.doi.org/10.1200/jco.2006.24.18_suppl.4007]
[90]
Evans, D.B.; Varadhachary, G.R.; Crane, C.H.; Sun, C.C.; Lee, J.E.; Pisters, P.W.T.; Vauthey, J.N.; Wang, H.; Cleary, K.R.; Staerkel, G.A.; Charnsangavej, C.; Lano, E.A.; Ho, L.; Lenzi, R.; Abbruzzese, J.L.; Wolff, R.A. Preoperative gemcitabine-based chemoradiation for patients with resectable adenocarcinoma of the pancreatic head. J. Clin. Oncol., 2008, 26(21), 3496-3502.
[http://dx.doi.org/10.1200/JCO.2007.15.8634] [PMID: 18640930]
[91]
Hoffman, J.P.; Lipsitz, S.; Pisansky, T.; Weese, J.L.; Solin, L.; Benson, A.B., III Phase II trial of preoperative radiation therapy and chemotherapy for patients with localized, resectable adenocarcinoma of the pancreas: an eastern cooperative oncology group study. J. Clin. Oncol., 1998, 16(1), 317-323.
[http://dx.doi.org/10.1200/JCO.1998.16.1.317] [PMID: 9440759]
[92]
Bown, S.G.; Rogowska, A.Z.; Whitelaw, D.E.; Lees, W.R.; Lovat, L.B.; Ripley, P.; Jones, L.; Wyld, P.; Gillams, A.; Hatfield, A.W. Photodynamic therapy for cancer of the pancreas. Gut, 2002, 50(4), 549-557.
[http://dx.doi.org/10.1136/gut.50.4.549] [PMID: 11889078]
[93]
Huggett, M.T.; Jermyn, M.; Gillams, A.; Illing, R.; Mosse, S.; Novelli, M.; Kent, E.; Bown, S.G.; Hasan, T.; Pogue, B.W.; Pereira, S.P. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br. J. Cancer, 2014, 110(7), 1698-1704.
[http://dx.doi.org/10.1038/bjc.2014.95] [PMID: 24569464]
[94]
DeWitt, J.M.; Sandrasegaran, K.; O’Neil, B.; House, M.G.; Zyromski, N.J.; Sehdev, A.; Perkins, S.M.; Flynn, J.; McCranor, L.; Shahda, S. Phase 1 study of EUS-guided photodynamic therapy for locally advanced pancreatic cancer. Gastrointest. Endosc., 2019, 89(2), 390-398.
[http://dx.doi.org/10.1016/j.gie.2018.09.007] [PMID: 30222972]
[95]
Sivasubramanian, M.; Chuang, Y.; Lo, L.W. Evolution of nanoparticle-mediated photodynamic therapy: from superficial to deepseated cancers. Molecules, 2019, 24(3), 520.
[http://dx.doi.org/10.3390/molecules24030520] [PMID: 30709030]
[96]
Vogl, T.J.; Farshid, P.; Naguib, N.N.N.; Darvishi, A.; Bazrafshan, B.; Mbalisike, E.; Burkhard, T.; Zangos, S. Thermal ablation of liver metastases from colorectal cancer: radiofrequency, microwave and laser ablation therapies. Radiol. Med. (Torino), 2014, 119(7), 451-461.
[http://dx.doi.org/10.1007/s11547-014-0415-y] [PMID: 24894923]
[97]
Schizas, D.; Charalampakis, N.; Kole, C.; Economopoulou, P.; Koustas, E.; Gkotsis, E.; Ziogas, D.; Psyrri, A.; Karamouzis, M.V. Immunotherapy for pancreatic cancer: A 2020 update. Cancer Treat. Rev., 2020, 86, 102016.
[98]
Bennett, C. Microbiome May Join Immunotherapy-Boosting Efforts: Patient responses to immunotherapy are influenced by the sometimes shifty but always well-connected factor known as the microbiome. Genet. Eng. Biotechnol. News, 2020, 40(S1), S16-S18.
[http://dx.doi.org/10.1089/gen.40.S1.06]
[99]
Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.M.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; Pitot, H.C.; Hamid, O.; Bhatia, S.; Martins, R.; Eaton, K.; Chen, S.; Salay, T.M.; Alaparthy, S.; Grosso, J.F.; Korman, A.J.; Parker, S.M.; Agrawal, S.; Goldberg, S.M.; Pardoll, D.M.; Gupta, A.; Wigginton, J.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med., 2012, 366(26), 2455-2465.
[http://dx.doi.org/10.1056/NEJMoa1200694] [PMID: 22658128]
[100]
Winograd, R.; Byrne, K.T.; Evans, R.A.; Odorizzi, P.M.; Meyer, A.R.L.; Bajor, D.L.; Clendenin, C.; Stanger, B.Z.; Furth, E.E.; Wherry, E.J.; Vonderheide, R.H. Induction of t-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol. Res., 2015, 3(4), 399-411.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0215] [PMID: 25678581]
[101]
Vogelstein, B; Papadopoulos, N; Velculescu, VE; Zhou, S; Diaz, LA, Jr; Kinzler, KW Cancer genome landscapes. Science, 2013, 339, 6127, 1546-.
[102]
Fukunaga, A.; Miyamoto, M.; Cho, Y.; Murakami, S.; Kawarada, Y.; Oshikiri, T.; Kato, K.; Kurokawa, T.; Suzuoki, M.; Nakakubo, Y.; Hiraoka, K.; Itoh, T.; Morikawa, T.; Okushiba, S.; Kondo, S.; Katoh, H. CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas, 2004, 28(1), e26-e31.
[http://dx.doi.org/10.1097/00006676-200401000-00023] [PMID: 14707745]
[103]
Schmitz-Winnenthal, F.H.; Volk, C.; Z’graggen, K.; Galindo, L.; Nummer, D.; Ziouta, Y.; Bucur, M.; Weitz, J.; Schirrmacher, V.; Büchler, M.W.; Beckhove, P. High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res., 2005, 65(21), 10079-10087.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1098] [PMID: 16267034]
[104]
Mittal, D.; Gubin, M.M.; Schreiber, R.D.; Smyth, M.J. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr. Opin. Immunol., 2014, 27, 16-25.
[http://dx.doi.org/10.1016/j.coi.2014.01.004] [PMID: 24531241]
[105]
Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science, 1996, 271(5256), 1734-1736.
[http://dx.doi.org/10.1126/science.271.5256.1734] [PMID: 8596936]
[106]
Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; Akerley, W.; van den Eertwegh, A.J.M.; Lutzky, J.; Lorigan, P.; Vaubel, J.M.; Linette, G.P.; Hogg, D.; Ottensmeier, C.H.; Lebbé, C.; Peschel, C.; Quirt, I.; Clark, J.I.; Wolchok, J.D.; Weber, J.S.; Tian, J.; Yellin, M.J.; Nichol, G.M.; Hoos, A.; Urba, W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med., 2010, 363(8), 711-723.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[107]
Andersson, R.; Pereira, C.F.; Bauden, M.; Ansari, D. Is immunotherapy the holy grail for pancreatic cancer? Immunotherapy, 2019, 11(17), 1435-1438.
[http://dx.doi.org/10.2217/imt-2019-0164] [PMID: 31747808]
[108]
Torphy, R.J.; Zhu, Y.; Schulick, R.D. Immunotherapy for pancreatic cancer: Barriers and breakthroughs. Ann. Gastroenterol. Surg., 2018, 2(4), 274-281.
[http://dx.doi.org/10.1002/ags3.12176] [PMID: 30003190]
[109]
Sutton, J.M.; Abbott, D.E. Neoadjuvant therapy for pancreas cancer: Past lessons and future therapies. World J. Gastroenterol., 2014, 20(42), 15564-15579.
[http://dx.doi.org/10.3748/wjg.v20.i42.15564] [PMID: 25400440]
[110]
Cameron, J.L.; Riall, T.S.; Coleman, J.; Belcher, K.A. One thousand consecutive pancreaticoduodenectomies. Ann. Surg., 2006, 244(1), 10-15.
[http://dx.doi.org/10.1097/01.sla.0000217673.04165.ea] [PMID: 16794383]
[111]
Lowy, A.M. Neoadjuvant therapy for pancreatic cancer. J. Gastrointest. Surg., 2008, 12(9), 1600-1608.
[http://dx.doi.org/10.1007/s11605-008-0482-2] [PMID: 18259825]
[112]
Jagannath, P.; Dhir, V.; Shrikhande, S.; Shah, R.C.; Mullerpatan, P.; Mohandas, K.M. Effect of preoperative biliary stenting on immediate outcome after pancreaticoduodenectomy. Br. J. Surg., 2005, 92(3), 356-361.
[http://dx.doi.org/10.1002/bjs.4864] [PMID: 15672425]
[113]
Hartwig, W.; Werner, J.; Jäger, D.; Debus, J.; Büchler, M.W. Improvement of surgical results for pancreatic cancer. Lancet Oncol., 2013, 14(11), e476-e485.
[http://dx.doi.org/10.1016/S1470-2045(13)70172-4] [PMID: 24079875]
[114]
Hidalgo, M. Pancreatic Cancer. N. Engl. J. Med., 2010, 362(17), 1605-1617.
[http://dx.doi.org/10.1056/NEJMra0901557] [PMID: 20427809]
[115]
Gandhi, N.S.; Tekade, R.K.; Chougule, M.B. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: Current progress and advances. J. Control. Release, 2014, 194, 238-256.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.001] [PMID: 25204288]
[116]
Majeed, H.; Gupta, V Adverse Effects of Radiation Therapy. In: StatPearls; StatPearls Publishing: Florida, USA, 2021.
[117]
Hu, J.; Tang, Y.; Elmenoufy, A.H.; Xu, H.; Cheng, Z.; Yang, X. Nanocomposite‐based photodynamic therapy strategies for deep tumor treatment. Small, 2015, 11(44), 5860-5887.
[http://dx.doi.org/10.1002/smll.201501923] [PMID: 26398119]
[118]
Blankenstein, T.; Coulie, P.G.; Gilboa, E.; Jaffee, E.M. The determinants of tumour immunogenicity. Nat. Rev. Cancer, 2012, 12(4), 307-313.
[http://dx.doi.org/10.1038/nrc3246] [PMID: 22378190]
[119]
Fogel, E.L.; Shahda, S.; Sandrasegaran, K.; DeWitt, J.; Easler, J.J.; Agarwal, D.M.; Eagleson, M.; Zyromski, N.J.; House, M.G.; Ellsworth, S.; El Hajj, I.; O’Neil, B.H.; Nakeeb, A.; Sherman, S. A multidisciplinary approach to pancreas cancer in 2016: a review. Am. J. Gastroenterol., 2017, 112(4), 537-554.
[http://dx.doi.org/10.1038/ajg.2016.610] [PMID: 28139655]
[120]
Huguet, F.; André, T.; Hammel, P.; Artru, P.; Balosso, J.; Selle, F.; Deniaud-Alexandre, E.; Ruszniewski, P.; Touboul, E.; Labianca, R.; de Gramont, A.; Louvet, C. Impact of chemoradiotherapy after disease control with chemotherapy in locally advanced pancreatic adenocarcinoma in GERCOR phase II and III studies. J. Clin. Oncol., 2007, 25(3), 326-331.
[http://dx.doi.org/10.1200/JCO.2006.07.5663] [PMID: 17235048]
[121]
Burris, H.A., III; Moore, M.J.; Andersen, J.; Green, M.R.; Rothenberg, M.L.; Modiano, M.R.; Cripps, M.C.; Portenoy, R.K.; Storniolo, A.M.; Tarassoff, P.; Nelson, R.; Dorr, F.A.; Stephens, C.D.; Von Hoff, D.D. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol., 1997, 15(6), 2403-2413.
[http://dx.doi.org/10.1200/JCO.1997.15.6.2403] [PMID: 9196156]
[122]
Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; Harris, M.; Reni, M.; Dowden, S.; Laheru, D.; Bahary, N.; Ramanathan, R.K.; Tabernero, J.; Hidalgo, M.; Goldstein, D.; Van Cutsem, E.; Wei, X.; Iglesias, J.; Renschler, M.F. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med., 2013, 369(18), 1691-1703.
[http://dx.doi.org/10.1056/NEJMoa1304369] [PMID: 24131140]
[123]
Regine, W.F.; Winter, K.A.; Abrams, R.; Safran, H.; Hoffman, J.P.; Konski, A.; Benson, A.B.; Macdonald, J.S.; Rich, T.A.; Willett, C.G. Fluorouracil-based chemoradiation with either gemcitabine or fluorouracil chemotherapy after resection of pancreatic adenocarcinoma: 5-year analysis of the U.S. Intergroup/RTOG 9704 phase III trial. Ann. Surg. Oncol., 2011, 18(5), 1319-1326.
[http://dx.doi.org/10.1245/s10434-011-1630-6] [PMID: 21499862]
[124]
Oettle, H.; Neuhaus, P.; Hochhaus, A.; Hartmann, J.T.; Gellert, K.; Ridwelski, K.; Niedergethmann, M.; Zülke, C.; Fahlke, J.; Arning, M.B.; Sinn, M.; Hinke, A.; Riess, H. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA, 2013, 310(14), 1473-1481.
[http://dx.doi.org/10.1001/jama.2013.279201] [PMID: 24104372]
[125]
Oettle, H.; Post, S.; Neuhaus, P.; Gellert, K.; Langrehr, J.; Ridwelski, K.; Schramm, H.; Fahlke, J.; Zuelke, C.; Burkart, C.; Gutberlet, K.; Kettner, E.; Schmalenberg, H.; Weigang-Koehler, K.; Bechstein, W.O.; Niedergethmann, M.; Schmidt-Wolf, I.; Roll, L.; Doerken, B.; Riess, H. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA, 2007, 297(3), 267-277.
[http://dx.doi.org/10.1001/jama.297.3.267] [PMID: 17227978]
[126]
Triesscheijn, M.; Ruevekamp, M.; Antonini, N.; Neering, H.; Stewart, F.A.; Baas, P. Optimizing meso-tetra-hydroxyphenylchlorin-mediated photodynamic therapy for basal cell carcinoma. Photochem. Photobiol., 2006, 82(6), 1686-1690.
[http://dx.doi.org/10.1111/j.1751-1097.2006.tb09831.x] [PMID: 16984216]
[127]
Royal, R.E.; Levy, C.; Turner, K.; Mathur, A.; Hughes, M.; Kammula, U.S.; Sherry, R.M.; Topalian, S.L.; Yang, J.C.; Lowy, I.; Rosenberg, S.A. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J. Immuno., 2010, 33(8), 828.
[http://dx.doi.org/10.1097/CJI.0b013e3181eec14c]
[128]
Farkona, S.; Diamandis, E.P.; Blasutig, I.M. Cancer immunotherapy: the beginning of the end of cancer? BMC Med., 2016, 14(1), 73.
[http://dx.doi.org/10.1186/s12916-016-0623-5] [PMID: 27151159]
[129]
Ventola, C.L. Cancer immunotherapy, part 3: challenges and future trends. P&T, 2017, 42(8), 514-521.
[PMID: 28781505]
[130]
Ventola, C.L. Cancer immunotherapy, part 2: efficacy, safety, and other clinical considerations. P&T, 2017, 42(7), 452-463.
[PMID: 28674473]
[131]
Cao, J.; Huang, D.; Peppas, N.A. Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv. Drug Deliv. Rev., 2020, 167, 170-188.
[http://dx.doi.org/10.1016/j.addr.2020.06.030] [PMID: 32622022]
[132]
Saeed, M.; Gao, J.; Shi, Y.; Lammers, T.; Yu, H. Engineering nanoparticles to reprogram the tumor immune microenvironment for improved cancer immunotherapy. Theranostics, 2019, 9(26), 7981-8000.
[http://dx.doi.org/10.7150/thno.37568] [PMID: 31754376]
[133]
Tong, Q.S.; Miao, W.M.; Huang, H.; Luo, J.Q.; Liu, R.; Huang, Y.C.; Zhao, D.K.; Shen, S.; Du, J.Z.; Wang, J. A Tumorpenetrating nanomedicine improves the chemoimmunotherapy of pancreatic cancer. Small, 2021, 17(29), 2101208.
[http://dx.doi.org/10.1002/smll.202101208] [PMID: 34145747]
[134]
Rhodes, K.R.; Green, J.J. Nanoscale artificial antigen presenting cells for cancer immunotherapy. Mol. Immunol., 2018, 98, 13-18.
[http://dx.doi.org/10.1016/j.molimm.2018.02.016] [PMID: 29525074]
[135]
Kosmides, A.K.; Meyer, R.A.; Hickey, J.W.; Aje, K.; Cheung, K.N.; Green, J.J.; Schneck, J.P. Biomimetic biodegradable artificial antigen presenting cells synergize with PD-1 blockade to treat melanoma. Biomaterials, 2017, 118, 16-26.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.038] [PMID: 27940380]
[136]
Irvine, D.J.; Dane, E.L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol., 2020, 20(5), 321-334.
[http://dx.doi.org/10.1038/s41577-019-0269-6] [PMID: 32005979]
[137]
Park, W.; Heo, Y.J.; Han, D.K. New opportunities for nanoparticles in cancer immunotherapy. Biomater. Res., 2018, 22(1), 24.
[http://dx.doi.org/10.1186/s40824-018-0133-y] [PMID: 30275967]
[138]
Chaturvedi, V.K.; Singh, A.; Singh, V.K.; Singh, M.P. Cancer nanotechnology: a new revolution for cancer diagnosis and therapy. Curr. Drug Metab., 2019, 20(6), 416-429.
[http://dx.doi.org/10.2174/1389200219666180918111528] [PMID: 30227814]
[139]
Mu, Q.; Wang, H.; Zhang, M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin. Drug Deliv., 2017, 14(1), 123-136.
[http://dx.doi.org/10.1080/17425247.2016.1208650] [PMID: 27401941]
[140]
Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target., 2016, 24(3), 179-191.
[http://dx.doi.org/10.3109/1061186X.2015.1051049] [PMID: 26061298]
[141]
Caruthers, S.D.; Wickline, S.A.; Lanza, G.M. Nanotechnological applications in medicine. Curr. Opin. Biotechnol., 2007, 18(1), 26-30.
[http://dx.doi.org/10.1016/j.copbio.2007.01.006] [PMID: 17254762]
[142]
Dorai, T.; Cao, Y.C.; Dorai, B.; Buttyan, R.; Katz, A.E. Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate, 2001, 47(4), 293-303.
[http://dx.doi.org/10.1002/pros.1074] [PMID: 11398177]
[143]
Xu, R.; Zhang, G.; Mai, J.; Deng, X.; Segura-Ibarra, V.; Wu, S.; Shen, J.; Liu, H.; Hu, Z.; Chen, L.; Huang, Y.; Koay, E.; Huang, Y.; Liu, J.; Ensor, J.E.; Blanco, E.; Liu, X.; Ferrari, M.; Shen, H. An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat. Biotechnol., 2016, 34(4), 414-418.
[http://dx.doi.org/10.1038/nbt.3506] [PMID: 26974511]
[144]
Arya, G.; Das, M.; Sahoo, S.K. Evaluation of curcumin loaded chitosan/PEG blended PLGA nanoparticles for effective treatment of pancreatic cancer. Biomed. Pharmacother., 2018, 102, 555-566.
[http://dx.doi.org/10.1016/j.biopha.2018.03.101] [PMID: 29597089]
[145]
Aggarwal, S.; Yadav, S.; Gupta, S. EGFR targeted PLGA nanoparticles using gemcitabine for treatment of pancreatic cancer. J. Biomed. Nanotechnol., 2011, 7(1), 137-138.
[http://dx.doi.org/10.1166/jbn.2011.1238] [PMID: 21485840]
[146]
Niikura, K.; Matsunaga, T.; Suzuki, T.; Kobayashi, S.; Yamaguchi, H.; Orba, Y.; Kawaguchi, A.; Hasegawa, H.; Kajino, K.; Ninomiya, T.; Ijiro, K.; Sawa, H. Gold nanoparticles as a vaccine platform: influence of size and shape on immunological responses in vitro and in vivo. ACS Nano, 2013, 7(5), 3926-3938.
[http://dx.doi.org/10.1021/nn3057005] [PMID: 23631767]
[147]
Salatin, S.; Maleki Dizaj, S.; Yari Khosroushahi, A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol. Int., 2015, 39(8), 881-890.
[http://dx.doi.org/10.1002/cbin.10459] [PMID: 25790433]
[148]
Barnaby, S.N.; Lee, A.; Mirkin, C.A. Probing the inherent stability of siRNA immobilized on nanoparticle constructs. Proc. Natl. Acad. Sci. USA, 2014, 111(27), 9739-9744.
[http://dx.doi.org/10.1073/pnas.1409431111] [PMID: 24946803]
[149]
Arvizo, R.R.; Bhattacharyya, S.; Kudgus, R.A.; Giri, K.; Bhattacharya, R.; Mukherjee, P. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem. Soc. Rev., 2012, 41(7), 2943-2970.
[http://dx.doi.org/10.1039/c2cs15355f] [PMID: 22388295]
[150]
Hwang, S.; Nam, J.; Jung, S.; Song, J.; Doh, H.; Kim, S. Gold nanoparticle-mediated photothermal therapy: current status and future perspective. Nanomedicine (Lond.), 2014, 9(13), 2003-2022.
[http://dx.doi.org/10.2217/nnm.14.147] [PMID: 25343350]
[151]
Balkrishna, A.; Sharma, V.K.; Das, S.K.; Mishra, N.; Bisht, L.; Joshi, A.; Sharma, N. Characterization and anti-cancerous effect of Putranjiva roxburghii seed extract mediated silver nanoparticles on human colon (HCT-116), pancreatic (PANC-1) and breast (MDAMB 231) cancer cell lines: a comparative study. Int. J. Nanomedicine, 2020, 15, 573-585.
[http://dx.doi.org/10.2147/IJN.S230244] [PMID: 32158209]
[152]
Kummara, S.; Patil, M.B.; Uriah, T. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles – A comparative study. Biomed. Pharmacother., 2016, 84, 10-21.
[http://dx.doi.org/10.1016/j.biopha.2016.09.003] [PMID: 27621034]
[153]
Benguigui, M.; Weitz, I.S.; Timaner, M.; Kan, T.; Shechter, D.; Perlman, O.; Sivan, S.; Raviv, Z.; Azhari, H.; Shaked, Y. Copper oxide nanoparticles inhibit pancreatic tumor growth primarily by targeting tumor initiating cells. Sci. Rep., 2019, 9(1), 12613.
[http://dx.doi.org/10.1038/s41598-019-48959-8] [PMID: 31471546]
[154]
Chen, W.; Zhou, Y.; Zhi, X.; Ma, T.; Liu, H.; Chen, B.W.; Zheng, X.; Xie, S.; Zhao, B.; Feng, X.; Dang, X.; Liang, T. Delivery of miR-212 by chimeric peptide-condensed supramolecular nanoparticles enhances the sensitivity of pancreatic ductal adenocarcinoma to doxorubicin. Biomaterials, 2019, 192, 590-600.
[http://dx.doi.org/10.1016/j.biomaterials.2018.11.035] [PMID: 30553134]
[155]
Paciotti, G.F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R.E.; Tamarkin, L. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv., 2004, 11(3), 169-183.
[http://dx.doi.org/10.1080/10717540490433895] [PMID: 15204636]
[156]
Sampathkumar, SG; Yarema, KJ Dendrimers in cancer treatment and diagnosis. In: Nanotechnologies for the Life Sciences; Springer: Berlin, 2007.
[http://dx.doi.org/10.1002/9783527610419.ntls0071]
[157]
Lee, C.C.; MacKay, J.A.; Fréchet, J.M.J.; Szoka, F.C. Designing dendrimers for biological applications. Nat. Biotechnol., 2005, 23(12), 1517-1526.
[http://dx.doi.org/10.1038/nbt1171] [PMID: 16333296]
[158]
Anitha, P.; Bhargavi, J.; Sravani, G.; Aruna, B.; S, R. Recent progress of dendrimers in drug delivery for cancer therapy. Int. J. Appl. Pharm., 2018, 10(5), 34-42.
[http://dx.doi.org/10.22159/ijap.2018v10i5.27075]
[159]
Dutta, T.; Jain, N.K.; McMillan, N.A.J.; Parekh, H.S. Retraction to “Dendrimer nanocarriers as versatile vectors in gene delivery”. Nanomedicine: NBM 2010; 6:25–34] Nanomedicine, 2010, 6(6), 815.
[http://dx.doi.org/10.1016/j.nano.2010.11.001] [PMID: 21174368]
[160]
Kaneshiro, T.L.; Lu, Z.R. Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimerbased nanoglobular carrier. Biomaterials, 2009, 30(29), 5660-5666.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.026] [PMID: 19595449]
[161]
Sharma, A.K.; Gothwal, A.; Kesharwani, P.; Alsaab, H.; Iyer, A.K.; Gupta, U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov. Today, 2017, 22(2), 314-326.
[http://dx.doi.org/10.1016/j.drudis.2016.09.013] [PMID: 27671487]
[162]
Öztürk, K.; Esendağlı, G.; Gürbüz, M.U.; Tülü, M.; Çalış, S. Effective targeting of gemcitabine to pancreatic cancer through PEGcored Flt-1 antibody-conjugated dendrimers. Int. J. Pharm., 2017, 517(1-2), 157-167.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.009] [PMID: 27965135]
[163]
Opitz, A.W.; Czymmek, K.J.; Wickstrom, E.; Wagner, N.J. Uptake, efflux, and mass transfer coefficient of fluorescent PAMAM den-drimers into pancreatic cancer cells. Biochim. Biophys. Acta Biomembr., 2013, 1828(2), 294-301.
[http://dx.doi.org/10.1016/j.bbamem.2012.09.016] [PMID: 23022133]
[164]
Kiaie, S.H.; Mojarad-Jabali, S.; Khaleseh, F.; Allahyari, S.; Taheri, E.; Zakeri-Milani, P.; Valizadeh, H. Axial pharmaceutical properties of liposome in cancer therapy: Recent advances and perspectives. Int. J. Pharm., 2020, 581, 119269.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119269] [PMID: 32234427]
[165]
Yang, F.; Jin, C.; Jiang, Y.; Li, J.; Di, Y.; Ni, Q.; Fu, D. Liposome based delivery systems in pancreatic cancer treatment: From bench to bedside. Cancer Treat. Rev., 2011, 37(8), 633-642.
[http://dx.doi.org/10.1016/j.ctrv.2011.01.006] [PMID: 21330062]
[166]
Cheng, R.; Liu, L.; Xiang, Y.; Lu, Y.; Deng, L.; Zhang, H.; Santos, H.A.; Cui, W. Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials, 2020, 232, 119706.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119706] [PMID: 31918220]
[167]
Erten, A.; Wrasidlo, W.; Scadeng, M.; Esener, S.; Hoffman, R.M.; Bouvet, M.; Makale, M. Magnetic resonance and fluorescence imaging of doxorubicin-loaded nanoparticles using a novel in vivo model. Nanomedicine, 2010, 6(6), 797-807.
[http://dx.doi.org/10.1016/j.nano.2010.06.005] [PMID: 20599526]
[168]
Marengo, A.; Forciniti, S.; Dando, I.; Dalla Pozza, E.; Stella, B.; Tsapis, N.; Yagoubi, N.; Fanelli, G.; Fattal, E.; Heeschen, C.; Palmieri, M.; Arpicco, S. Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate-copper complex loaded into hyaluronic acid decorated liposomes. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(1), 61-72.
[http://dx.doi.org/10.1016/j.bbagen.2018.09.018] [PMID: 30267751]
[169]
Tangutoori, S.; Spring, B.Q.; Mai, Z.; Palanisami, A.; Mensah, L.B.; Hasan, T. Simultaneous delivery of cytotoxic and biologic therapeutics using nanophotoactivatable liposomes enhances treatment efficacy in a mouse model of pancreatic cancer. Nanomedicine, 2016, 12(1), 223-234.
[http://dx.doi.org/10.1016/j.nano.2015.08.007] [PMID: 26390832]
[170]
Li, Y.J.; Wu, J.Y.; Wang, J.M.; Xiang, D.X. Emerging nanomedicine-based strategies for preventing metastasis of pancreatic cancer. J. Control. Release, 2020, 320, 105-111.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.041] [PMID: 31978441]
[171]
Makler, A.; Asghar, W. Exosomal biomarkers for cancer diagnosis and patient monitoring. Expert Rev. Mol. Diagn., 2020, 20(4), 387-400.
[http://dx.doi.org/10.1080/14737159.2020.1731308] [PMID: 32067543]
[172]
Li, Y.J.; Wu, J.Y.; Wang, J.M.; Hu, X.B.; Cai, J.X.; Xiang, D.X. Gemcitabine loaded autologous exosomes for effective and safe chemo-therapy of pancreatic cancer. Acta Biomater., 2020, 101, 519-530.
[http://dx.doi.org/10.1016/j.actbio.2019.10.022] [PMID: 31629893]
[173]
Ingato, D.; Edson, J.A.; Zakharian, M.; Kwon, Y.J. Cancer cell-derived, drug-loaded nanovesicles induced by sulfhydryl-blocking for effective and safe cancer therapy. ACS Nano, 2018, 12(9), 9568-9577.
[http://dx.doi.org/10.1021/acsnano.8b05377] [PMID: 30130093]
[174]
Anitha, V.; Reddy, P.D.; Ramkanth, S. Phytosomes: A promising technology in novel herbal drug delivery system. PharmaTutor., 2019, 7(6), 18-25.
[175]
Lagoa, R.; Silva, J.; Rodrigues, J.R.; Bishayee, A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol. Adv., 2020, 38, 107382.
[http://dx.doi.org/10.1016/j.biotechadv.2019.04.004] [PMID: 30978386]
[176]
Pastorelli, D.; Fabricio, A.S.C.; Giovanis, P.; D’Ippolito, S.; Fiduccia, P.; Soldà, C.; Buda, A.; Sperti, C.; Bardini, R.; Da Dalt, G.; Rainato, G.; Gion, M.; Ursini, F. Phytosome complex of curcumin as complementary therapy of advanced pancreatic cancer improves safety and efficacy of gemcitabine: Results of a prospective phase II trial. Pharmacol. Res., 2018, 132, 72-79.
[http://dx.doi.org/10.1016/j.phrs.2018.03.013] [PMID: 29614381]
[177]
Tran, T.H.; Guo, Y.; Song, D.; Bruno, R.S.; Lu, X. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J. Pharm. Sci., 2014, 103(3), 840-852.
[http://dx.doi.org/10.1002/jps.23858] [PMID: 24464737]
[178]
Hani, U.; Osmani, R.A.; Bhosale, R.R.; Shivakumar, H.G.; Kulkarni, P.K. Current perspectives on novel drug delivery systems and approaches for management of cervical cancer: a comprehensive review. Curr. Drug Targets, 2016, 17(3), 337-352.
[http://dx.doi.org/10.2174/1389450116666150505154720] [PMID: 25944014]
[179]
Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J.F.W.; Hennink, W.E. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm. Res., 2010, 27(12), 2569-2589.
[http://dx.doi.org/10.1007/s11095-010-0233-4] [PMID: 20725771]
[180]
Pittella, F.; Cabral, H.; Maeda, Y.; Mi, P.; Watanabe, S.; Takemoto, H.; Kim, H.J.; Nishiyama, N.; Miyata, K.; Kataoka, K. Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles. J. Control. Release, 2014, 178, 18-24.
[http://dx.doi.org/10.1016/j.jconrel.2014.01.008] [PMID: 24440662]
[181]
Gao, D.; Lo, P.C. Polymeric micelles encapsulating pH-responsive doxorubicin prodrug and glutathione-activated zinc(II) phthalocyanine for combined chemotherapy and photodynamic therapy. J. Control. Release, 2018, 282, 46-61.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.030] [PMID: 29673646]
[182]
Ge, Z.; Chen, Q.; Osada, K.; Liu, X.; Tockary, T.A.; Uchida, S.; Dirisala, A.; Ishii, T.; Nomoto, T.; Toh, K.; Matsumoto, Y.; Oba, M.; Kano, M.R.; Itaka, K.; Kataoka, K. Targeted gene delivery by polyplex micelles with crowded PEG palisade and cRGD moiety for systemic treatment of pancreatic tumors. Biomaterials, 2014, 35(10), 3416-3426.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.086] [PMID: 24439417]
[183]
Sarkar, F.; Banerjee, S.; Li, Y. Pancreatic cancer: Pathogenesis, prevention and treatment. Toxicol. Appl. Pharmacol., 2007, 224(3), 326-336.
[http://dx.doi.org/10.1016/j.taap.2006.11.007] [PMID: 17174370]
[184]
Hani, U.; Osmani, R.A.M.; Siddiqua, A.; Wahab, S.; Batool, S.; Ather, H.; Sheraba, N.; Alqahtani, A. A systematic study of novel drug delivery mechanisms and treatment strategies for pancreatic cancer. J. Drug Deliv. Sci. Technol., 2021, 63, 102539.
[http://dx.doi.org/10.1016/j.jddst.2021.102539]
[185]
Huai, Y.; Zhang, Y.; Xiong, X.; Das, S.; Bhattacharya, R.; Mukherjee, P. Gold Nanoparticles sensitize pancreatic cancer cells to gemcitabine. Cell Stress, 2019, 3(8), 267-279.
[http://dx.doi.org/10.15698/cst2019.08.195] [PMID: 31440741]
[186]
Tang, M.; Svirskis, D.; Leung, E.; Kanamala, M.; Wang, H.; Wu, Z. Can intracellular drug delivery using hyaluronic acid functionalised pH-sensitive liposomes overcome gemcitabine resistance in pancreatic cancer? J. Control. Release, 2019, 305, 89-100.
[http://dx.doi.org/10.1016/j.jconrel.2019.05.018] [PMID: 31096017]
[187]
Comandatore, A.; Immordino, B.; Balsano, R.; Capula, M.; Garajovà, I.; Ciccolini, J.; Giovannetti, E.; Morelli, L. Potential role of exosomes in the chemoresistance to gemcitabine and nab-paclitaxel in pancreatic cancer. Diagnostics (Basel), 2022, 12(2), 286.
[http://dx.doi.org/10.3390/diagnostics12020286] [PMID: 35204377]
[188]
Mirzaei, H.; Shakeri, A.; Rashidi, B.; Jalili, A.; Banikazemi, Z.; Sahebkar, A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed. Pharmacother., 2017, 85, 102-112.
[http://dx.doi.org/10.1016/j.biopha.2016.11.098] [PMID: 27930973]
[189]
Ristori, S.; Ciani, L.; Candiani, G.; Battistini, C.; Frati, A.; Grillo, I.; In, M. Complexing a small interfering RNA with divalent cationic surfactants. Soft Matter, 2012, 8(3), 749-756.
[http://dx.doi.org/10.1039/C1SM06470C]
[190]
Harada-Shiba, M.; Yamauchi, K.; Harada, A.; Takamisawa, I.; Shimokado, K.; Kataoka, K. Polyion complex micelles as vectors in gene therapy – pharmacokinetics and in vivo gene transfer. Gene Ther., 2002, 9(6), 407-414.
[http://dx.doi.org/10.1038/sj.gt.3301665] [PMID: 11960317]
[191]
Daima, H.K.; Selvakannan, P.R.; Kandjani, A.E.; Shukla, R.; Bhargava, S.K.; Bansal, V. Synergistic influence of polyoxometalate surface corona towards enhancing the antibacterial performance of tyrosine-capped Ag nanoparticles. Nanoscale, 2014, 6(2), 758-765.
[http://dx.doi.org/10.1039/C3NR03806H] [PMID: 24165753]
[192]
Daima, H.K.; Selvakannan, P.R.; Shukla, R.; Bhargava, S.K.; Bansal, V. Fine-tuning the antimicrobial profile of biocompatible gold nanoparticles by sequential surface functionalization using polyoxometalates and lysine. PLoS One, 2013, 8(10), e79676.
[http://dx.doi.org/10.1371/journal.pone.0079676] [PMID: 24147146]
[193]
Navya, P.N.; Daima, H.K. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Converg., 2016, 3(1), 1-4.
[http://dx.doi.org/10.1186/s40580-016-0064-z] [PMID: 28191411]
[194]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[195]
Ruozi, B.; Belletti, D.; Sharma, H.S.; Sharma, A.; Muresanu, D.F.; Mössler, H.; Forni, F.; Vandelli, M.A.; Tosi, G. PLGA nanoparticles loaded cerebrolysin: studies on their preparation and investigation of the effect of storage and serum stability with reference to traumatic brain injury. Mol. Neurobiol., 2015, 52(2), 899-912.
[http://dx.doi.org/10.1007/s12035-015-9235-x] [PMID: 26108180]
[196]
Ma, S.; Zhou, J.; Zhang, Y.; He, Y.; Jiang, Q.; Yue, D.; Xu, X.; Gu, Z. Highly stable fluorinated nanocarriers with iRGD for overcoming the stability dilemma and enhancing tumor penetration in an orthotopic breast cancer. ACS Appl. Mater. Interfaces, 2016, 8(42), 28468-28479.
[http://dx.doi.org/10.1021/acsami.6b09633] [PMID: 27712073]
[197]
Wang, Y.; Santos, A.; Evdokiou, A.; Losic, D. An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(36), 7153-7172.
[http://dx.doi.org/10.1039/C5TB00956A] [PMID: 32262822]
[198]
Coradeghini, R.; Gioria, S.; García, C.P.; Nativo, P.; Franchini, F.; Gilliland, D.; Ponti, J.; Rossi, F. Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol. Lett., 2013, 217(3), 205-216.
[http://dx.doi.org/10.1016/j.toxlet.2012.11.022] [PMID: 23246733]
[199]
Pepic, I.; Hafner, A.; Lovric, J.; Perina Lakos, G. Nanotherapeutics in the EU: an overview on current state and future directions. Int. J. Nanomedicine, 2014, 9, 1005-1023.
[http://dx.doi.org/10.2147/IJN.S55359] [PMID: 24600222]
[200]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy