Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Research Article

Circ_0070203 Promotes Epithelial-mesenchymal Transition in Ovarian Serous Cystadenocarcinoma through miR-370-3p/TGFβR2 Axis

Author(s): Qiong Tang, Huiting Wen, Haoyue Hu, Xiaoli Chen, Shuxiu Xu, Li Fan, Longyang Liu* and Jing Li*

Volume 19, Issue 2, 2024

Published on: 11 April, 2023

Page: [233 - 246] Pages: 14

DOI: 10.2174/1574892818666230328124804

Price: $65

Abstract

Introduction: Circular RNAs (circRNAs) are important biological molecules associated with the pathogenesis of multiple cancers.

Objective: This work aimed to investigate the function and molecular mechanism of circ_0070203 in high-grade serous ovarian cystadenocarcinoma (HGSOC).

Methods: circRNA microarray was conducted to detect the circ_0070203 expression in HGSOC tissues. Bioinformatics analysis was used to find the binding sites between circ_0070203, miR- 370-3p and TGFβR2. Real-time quantitative reverse transcription PCR (RT-qPCR) was executed to detect the expressions of circ_0070203, miR-370-3p and TGFβR2 in HGSOC tissues and SKOV3 cells. Dual-luciferase reporter gene assay was used to validate the relationships between miR-370-3p and circ_0070203 or TGFβR2. Besides, transwell assays were conducted to assess the migrative, invasive abilities of ovarian cancer (OC) cells. Western blotting was adopted to detect the expression of epithelial-mesenchymal transition (EMT)-related proteins. The related patents were also studied during the research.

Results: Circ_0070203 and TGFβR2 were upregulated, while miR-370-3p was downregulated in FIGO stage III-IV HGSOC tissues and SKOV-3 cell lines. circ_0070203 overexpression changed the expression of other EMT-related proteins and enhanced the migrative, invasive abilities of OC cells, while silencing circ_0070203 worked oppositely. Mechanistically, circ_0070203 could upregulate TGFβR2 expression in OC cells via sponging miR-370-3p.

Conclusion: Circ_0070203 could promote the epithelial-mesenchymal transition, invasion, and metastasis of HGSOC via regulating the miR-370-3p/TGFβR2 axis. Our findings provided a potential biomarker for HGSOC therapy.

[1]
Hennessy BT, Coleman RL, Markman M. Ovarian cancer. Lancet 2009; 374(9698): 1371-82.
[http://dx.doi.org/10.1016/S0140-6736(09)61338-6] [PMID: 19793610]
[2]
Bowtell DDL. The genesis and evolution of high-grade serous ovarian cancer. Nat Rev Cancer 2010; 10(11): 803-8.
[http://dx.doi.org/10.1038/nrc2946] [PMID: 20944665]
[3]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[4]
Kebapcı E, Gülseren V, Tuğmen C, et al. Outcomes of patients with advanced stage ovarian cancer with intestinal metastasis. Ginekol Pol 2017; 88(10): 537-42.
[http://dx.doi.org/10.5603/GP.a2017.0098] [PMID: 29192414]
[5]
Gloss BS, Samimi G. Epigenetic biomarkers in epithelial ovarian cancer. Cancer Lett 2014; 342(2): 257-63.
[http://dx.doi.org/10.1016/j.canlet.2011.12.036] [PMID: 22245949]
[6]
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15(3): 178-96.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[7]
Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 2019; 20(2): 69-84.
[http://dx.doi.org/10.1038/s41580-018-0080-4] [PMID: 30459476]
[8]
Xu Q, Deng F, Qin Y, et al. Long non-coding RNA regulation of epithelial-mesenchymal transition in cancer metastasis. Cell Death Dis 2016; 7(6): e2254.
[http://dx.doi.org/10.1038/cddis.2016.149] [PMID: 27277676]
[9]
Liu L, Wu N, Wang Y, et al. TRPM7 promotes the epithelial–mesenchymal transition in ovarian cancer through the calcium-related PI3K/AKT oncogenic signaling. J Exp Clin Cancer Res 2019; 38(1): 106.
[http://dx.doi.org/10.1186/s13046-019-1061-y] [PMID: 30819230]
[10]
Liang H, Yu T, Han Y, et al. LncRNA PTAR promotes EMT and invasion-metastasis in serous ovarian cancer by competitively binding miR-101-3p to regulate ZEB1 expression. Mol Cancer 2018; 17(1): 119.
[http://dx.doi.org/10.1186/s12943-018-0870-5] [PMID: 30098599]
[11]
Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 2020; 21(8): 475-90.
[http://dx.doi.org/10.1038/s41580-020-0243-y] [PMID: 32366901]
[12]
Wang X, Wang X, Li W, Zhang Q, Chen J, Chen T. Up-regulation of hsa_circ_0000517 predicts adverse prognosis of hepatocellular carcinoma. Front Oncol 2019; 9: 1105.
[http://dx.doi.org/10.3389/fonc.2019.01105] [PMID: 31750237]
[13]
Huang M, He YR, Liang LC, Huang Q, Zhu ZQ. Circular RNA hsa_circ_0000745 may serve as a diagnostic marker for gastric cancer. World J Gastroenterol 2017; 23(34): 6330-8.
[http://dx.doi.org/10.3748/wjg.v23.i34.6330] [PMID: 28974900]
[14]
Fan L, Cao Q, Liu J, Zhang J, Li B. Circular RNA profiling and its potential for esophageal squamous cell cancer diagnosis and prognosis. Mol Cancer 2019; 18(1): 16.
[http://dx.doi.org/10.1186/s12943-018-0936-4] [PMID: 30674324]
[15]
Lin C, Xu X, Yang Q, Liang L, Qiao S. Circular RNA ITCH suppresses proliferation, invasion, and glycolysis of ovarian cancer cells by up-regulating CDH1 via sponging miR-106a. Cancer Cell Int 2020; 20(1): 336.
[http://dx.doi.org/10.1186/s12935-020-01420-7] [PMID: 32714095]
[16]
Zhao Y, Hu Y, Shen Q, et al. CircRNA_MYLK promotes malignant progression of ovarian cancer through regulating microRNA-652. Eur Rev Med Pharmacol Sci 2020; 24(10): 5281-91.
[PMID: 32495861]
[17]
Zhang C, Liu W, Li F, Feng Y, Li Y, Wang J. Hsa_circ_0015326 promotes the proliferation, invasion and migration of ovarian cancer through miR-127-3p/MYB. Cancer Manag Res 2021; 13: 2265-77.
[http://dx.doi.org/10.2147/CMAR.S291218] [PMID: 33732019]
[18]
Wang L, Tong X, Zhou Z, et al. Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF-β-induced epithelial-mesenchymal transition and metastasis by controlling TIF1γ in non-small cell lung cancer. Mol Cancer 2018; 17(1): 140.
[http://dx.doi.org/10.1186/s12943-018-0889-7] [PMID: 30261900]
[19]
Shang BQ, Li ML, Quan H, et al. Functional roles of circular RNAs during epithelial-to-mesenchymal transition. Mol Cancer 2019; 18(1): 138.
[http://dx.doi.org/10.1186/s12943-019-1071-6] [PMID: 31526370]
[20]
Li X, Lin S, Mo Z, et al. CircRNA_100395 inhibits cell proliferation and metastasis in ovarian cancer via regulating miR-1228/p53/epithelial-mesenchymal transition (EMT) axis. J Cancer 2020; 11(3): 599-609.
[http://dx.doi.org/10.7150/jca.35041] [PMID: 31942183]
[21]
Wang W, Zhang W, Guo H, Chu D, Zhang R, Guo R. RETRACTED ARTICLE: CircLNPEP promotes the progression of ovarian cancer through regulating miR-876-3p/WNT5A axis. Cell Cycle 2021; 20(19): 2021-39.
[http://dx.doi.org/10.1080/15384101.2021.1965723] [PMID: 34465271]
[22]
Yokoi A, Matsuzaki J, Yamamoto Y, et al. Integrated extracellular microRNA profiling for ovarian cancer screening. Nat Commun 2018; 9(1): 4319.
[http://dx.doi.org/10.1038/s41467-018-06434-4] [PMID: 30333487]
[23]
Shin VY, Chu KM. MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J Gastroenterol 2014; 20(30): 10432-9.
[http://dx.doi.org/10.3748/wjg.v20.i30.10432] [PMID: 25132759]
[24]
Iqbal MA, Arora S, Prakasam G, Calin GA, Syed MA. MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med 2019; 70: 3-20.
[http://dx.doi.org/10.1016/j.mam.2018.07.003] [PMID: 30102929]
[25]
Zhao L, Liang X, Wang L, Zhang X. The role of miRNA in ovarian cancer: An overview. Reprod Sci 2022; 29(10): 2760-7.
[http://dx.doi.org/10.1007/s43032-021-00717-w] [PMID: 34973152]
[26]
Sun G, Hou YB, Jia HY, Bi XH, Yu L, Chen DJ. MiR-370 promotes cell death of liver cancer cells by Akt/FoxO3a signalling pathway. Eur Rev Med Pharmacol Sci 2016; 20(10): 2011-9.
[PMID: 27249599]
[27]
Fan C, Liu S, Zhao Y, et al. Upregulation of miR-370 contributes to the progression of gastric carcinoma via suppression of FOXO1. Biomed Pharmacother 2013; 67(6): 521-6.
[http://dx.doi.org/10.1016/j.biopha.2013.04.014] [PMID: 23721824]
[28]
Zhang H, Jiang L, Sun D, Hou J, Ji Z. CircRNA: A novel type of biomarker for cancer. Breast Cancer 2018; 25(1): 1-7.
[http://dx.doi.org/10.1007/s12282-017-0793-9] [PMID: 28721656]
[29]
Kumari A, Shonibare Z, Monavarian M, et al. TGFβ signaling networks in ovarian cancer progression and plasticity. Clin Exp Metastasis 2021; 38(2): 139-61.
[http://dx.doi.org/10.1007/s10585-021-10077-z] [PMID: 33590419]
[30]
Cao F, Yin LX. PAK1 promotes proliferation, migration and invasion of hepatocellular carcinoma by facilitating EMT via directly up-regulating Snail. Genomics 2020; 112(1): 694-702.
[http://dx.doi.org/10.1016/j.ygeno.2019.05.002] [PMID: 31071459]
[31]
Liu Z, Chen X, Song H, et al. Snail regulated by PKC/GSK-3β pathway is crucial for EGF-induced epithelial-mesenchymal transition (EMT) of cancer cells. Cell Tissue Res 2014; 358(2): 491-502.
[http://dx.doi.org/10.1007/s00441-014-1953-2] [PMID: 25124796]
[32]
(a) Grunewald T, Ledermann JA. Targeted therapies for ovarian cancer. Best Pract Res Clin Obstet Gynaecol 2017; 41: 139-52.;
(b) Xie D. Medicament for targeted therapy of ovarian cancer and preparation method of medicament. CN10755093 0A, 2018.;
c) Burger RA. Combination therapy of carboplatin and NAPI2B-targeted polymer antibody-drug conjugate for the treatment of ovarian cancer. WO2022235636A1, 2022.
[http://dx.doi.org/10.1016/j.bpobgyn.2016.12.001] [PMID: 28111228]
[33]
Pan C, Stevic I, Müller V, et al. Exosomal micro RNAs as tumor markers in epithelial ovarian cancer. Mol Oncol 2018; 12(11): 1935-48.
[http://dx.doi.org/10.1002/1878-0261.12371] [PMID: 30107086]
[34]
Ding J, Wang Q, Guo N, et al. CircRNA circ_0072995 promotes the progression of epithelial ovarian cancer by modulating miR-147a/CDK6 axis. Aging 2020; 12(17): 17209-23.
[http://dx.doi.org/10.18632/aging.103668] [PMID: 32877369]
[35]
Zeng XY, Yuan J, Wang C, et al. circCELSR1 facilitates ovarian cancer proliferation and metastasis by sponging miR-598 to activate BRD4 signals. Mol Med 2020; 26(1): 70.
[http://dx.doi.org/10.1186/s10020-020-00194-y] [PMID: 32640974]
[36]
Bai F, Wang C, Liu X, et al. Loss of function of BRCA1 promotes EMT in mammary tumors through activation of TGFβR2 signaling pathway. Cell Death Dis 2022; 13(3): 195.
[http://dx.doi.org/10.1038/s41419-022-04646-7] [PMID: 35236825]
[37]
Yu Y, Kanwar SS, Patel BB, et al. MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGF R2) in colon cancer cells. Carcinogenesis 2012; 33(1): 68-76.
[http://dx.doi.org/10.1093/carcin/bgr246] [PMID: 22072622]
[38]
Luo Y, Wu J, Wu Q, et al. miR-577 regulates TGF-β induced cancer progression through a SDPR-modulated positive-feedback loop with ERK-NF-κB in gastric cancer. Mol Ther 2019; 27(6): 1166-82.
[http://dx.doi.org/10.1016/j.ymthe.2019.02.002] [PMID: 30879950]
[39]
Wu M, Liang G, Duan H, Yang X, Qin G, Sang N. Synergistic effects of sulfur dioxide and polycyclic aromatic hydrocarbons on pulmonary pro-fibrosis via mir-30c-1-3p/transforming growth factor β type II receptor axis. Chemosphere 2019; 219: 268-76.
[http://dx.doi.org/10.1016/j.chemosphere.2018.12.016] [PMID: 30543962]
[40]
Lyu X, Fang W, Cai L, et al. TGFβR2 is a major target of miR-93 in nasopharyngeal carcinoma aggressiveness. Mol Cancer 2014; 13(1): 51.
[http://dx.doi.org/10.1186/1476-4598-13-51] [PMID: 24606633]
[41]
Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495(7441): 333-8.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[42]
Kosik KS. Circles reshape the RNA world. Nature 2013; 495(7441): 322-4.
[http://dx.doi.org/10.1038/nature11956] [PMID: 23446351]
[43]
(a) Wang Z, Deng M, Chen L, et al. Circular RNA Circ-03955 promotes epithelial-mesenchymal transition in osteosarcoma by regulating miR-3662/metadherin pathway. Front Oncol 2020; 10: 545460.;
(b) Zhou Z, Xiao J, Zhang W, et al. Osteosarcoma biomarker circular RNAcirc_0006633 and application thereof. CN109762897A, 2019.
[http://dx.doi.org/10.3389/fonc.2020.545460] [PMID: 33312941]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy