Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Dihydrotanshinone I Inhibits Pancreatic Cancer Progression via Hedgehog/ Gli Signal Pathway

Author(s): Wenqian Huang, Yile Dai, Liming Xu, Yefan Mao, Zhengwei Huang* and Xiaoke Ji*

Volume 23, Issue 9, 2023

Published on: 09 May, 2023

Page: [731 - 741] Pages: 11

DOI: 10.2174/1568009623666230328123915

Price: $65

Abstract

Introduction: Pancreatic cancer is highly fatal and its incidence is rising worldwide. Its poor prognosis is attributed to a lack of effective diagnostic and therapeutic strategies. Dihydrotanshinone I (DHT), a phenanthrene quinone liposoluble compound from Salvia miltiorrhiza Bunge (Danshen), exerts anti-tumor effects by inhibiting cell proliferation, enhancing apoptosis, and inducing cell differentiation. However, its effects on pancreatic cancer are unclear.

Methods: The role of DHT in the growth of tumor cells was explored using real-time cell analysis (RTCA), colony formation assay, and CCK-8. The effects of DHT on tumor cells invasion as well as migration were assessed by Transwell and migration assays. Expressions of pro-apoptosis and metastasis factors in tumor cells were examined using western blot. Tumor apoptosis rates were studied using flow cytometry. The anticancer effect of DHT in vivo was assessed by tumor transplantation into nude mice.

Results: Our analyses show that DHT has a suppressive role in epithelial-mesenchymal transition (EMT), invasiveness, proliferation, as well as migratory ability of Patu8988 and PANC-1 cells via Hedgehog/Gli signaling. Moreover, it drives apoptosis via caspases/BCL2/BAX signaling. Experiments in nude mice transplanted with tumors have shown DHT to have anticancer effects in vivo.

Conclusion: Our data show that DHT effectively suppresses pancreatic cancer cell proliferation as well as metastasis, and induces apoptosis via Hedgehog/Gli signaling. These effects have been reported to be dose- and time-dependent. Therefore, DHT can be exploited as a potential treatment for pancreatic cancer.

Graphical Abstract

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Lucas, A.L.; Malvezzi, M.; Carioli, G.; Negri, E.; La Vecchia, C.; Boffetta, P.; Bosetti, C. Global trends in pancreatic cancer mortality from 1980 through 2013 and predictions for 2017. Clin. Gastroenterol. Hepatol., 2016, 14(10), 1452-1462.
[http://dx.doi.org/10.1016/j.cgh.2016.05.034] [PMID: 27266982]
[3]
Yang, Y.; Bai, X.; Bian, D.; Cai, S.; Chen, R.; Cao, F.; Dai, M.; Fang, C.; Fu, D.; Ge, C.; Guo, X.; Hao, C.; Hao, J.; Huang, H.; Jian, Z.; Jin, G.; Li, F.; Li, H.; Li, S.; Li, W.; Li, Y.; Li, H.; Liang, T.; Liu, X.; Lou, W.; Miao, Y.; Mou, Y.; Peng, C.; Qin, R.; Shao, C.; Sun, B.; Tan, G.; Tian, X.; Wang, H.; Wang, L.; Wang, W.; Wang, W.; Wei, J.; Wu, H.; Wu, W.; Wu, Z.; Xu, J.; Yan, C.; Yin, X.; Yu, X.; Yuan, C.; Zhang, T.; Zhang, J.; Zhou, J.; Zhao, Y. Guidelines for the diagnosis and treatment of pancreatic cancer in China (2021). J. Pancreatol., 2021, 4(2), 49-66.
[http://dx.doi.org/10.1097/JP9.0000000000000072]
[4]
Vincent, A.; Herman, J.; Schulick, R.; Hruban, R.H.; Goggins, M. Pancreatic cancer. Lancet, 2011, 378(9791), 607-620.
[http://dx.doi.org/10.1016/S0140-6736(10)62307-0] [PMID: 21620466]
[5]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin., 2016, 66(1), 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[6]
McGuigan, A.; Kelly, P.; Turkington, R.C.; Jones, C.; Coleman, H.G.; McCain, R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol., 2018, 24(43), 4846-4861.
[http://dx.doi.org/10.3748/wjg.v24.i43.4846] [PMID: 30487695]
[7]
Xu, J.; Wei, K.; Zhang, G.; Lei, L.; Yang, D.; Wang, W.; Han, Q.; Xia, Y.; Bi, Y.; Yang, M.; Li, M. Ethnopharmacology, phytochemistry, and pharmacology of Chinese Salvia species: A review. J. Ethnopharmacol., 2018, 225, 18-30.
[http://dx.doi.org/10.1016/j.jep.2018.06.029] [PMID: 29935346]
[8]
Li, X.; Yang, J.H.; Jin, Y.; Jin, F.; Kim, D.Y.; Chang, J.H.; Kim, J.A.; Son, J.K.; Moon, T.C.; Son, K.H.; Chang, H.W. 15,16-Dihydrotanshinone I suppresses IgE-Ag stimulated mouse bone marrow-derived mast cell activation by inhibiting Syk kinase. J. Ethnopharmacol., 2015, 169, 138-144.
[http://dx.doi.org/10.1016/j.jep.2015.04.022] [PMID: 25917838]
[9]
Yue, H.; Yang, Z.; Ou, Y.; Liang, S.; Deng, W.; Chen, H.; Zhang, C.; Hua, L.; Hu, W.; Sun, P. Tanshinones inhibit NLRP3 inflammasome activation by alleviating mitochondrial damage to protect against septic and gouty inflammation. Int. Immunopharmacol., 2021, 97, 107819.
[http://dx.doi.org/10.1016/j.intimp.2021.107819] [PMID: 34098486]
[10]
Han, J.Y.; Fan, J.Y.; Horie, Y.; Miura, S.; Cui, D.H.; Ishii, H.; Hibi, T.; Tsuneki, H.; Kimura, I. Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol. Ther., 2008, 117(2), 280-295.
[http://dx.doi.org/10.1016/j.pharmthera.2007.09.008] [PMID: 18048101]
[11]
Jeong, H.; Koh, A.; Lee, J.; Park, D.; Lee, J.O.; Lee, M.N.; Jo, K.J.; Tran, H.N.K.; Kim, E.; Min, B.S.; Kim, H.S.; Berggren, P.O.; Ryu, S.H. Inhibition of C1-Ten PTPase activity reduces insulin resistance through IRS-1 and AMPK pathways. Sci. Rep., 2017, 7(1), 17777.
[http://dx.doi.org/10.1038/s41598-017-18081-8] [PMID: 29259227]
[12]
Sung, B.; Chung, H.S.; Kim, M.; Kang, Y.J.; Kim, D.H.; Hwang, S.Y.; Kim, M.J.; Kim, C.M.; Chung, H.Y.; Kim, N.D. Cytotoxic effects of solvent-extracted active components of Salvia miltiorrhiza Bunge on human cancer cell lines. Exp. Ther. Med., 2015, 9(4), 1421-1428.
[http://dx.doi.org/10.3892/etm.2015.2252] [PMID: 25780445]
[13]
Lee, D.S.; Lee, S.H. Biological activity of dihydrotanshinone I: Effect on apoptosis. J. Biosci. Bioeng., 2000, 89(3), 292-293.
[http://dx.doi.org/10.1016/S1389-1723(00)88838-6] [PMID: 16232748]
[14]
Tsai, S.L.; Suk, F.M.; Wang, C.I.; Liu, D.Z.; Hou, W.C.; Lin, P.J.; Hung, L.F.; Liang, Y.C. Anti-tumor potential of 15,16-dihydrotanshinone I against breast adenocarcinoma through inducing G1 arrest and apoptosis. Biochem. Pharmacol., 2007, 74(11), 1575-1586.
[http://dx.doi.org/10.1016/j.bcp.2007.08.009] [PMID: 17869226]
[15]
Hu, X.; Jiao, F.; Zhang, L.; Jiang, Y. Dihydrotanshinone inhibits hepatocellular carcinoma by suppressing the JAK2/STAT3 pathway. Front. Pharmacol., 2021, 12, 654986.
[http://dx.doi.org/10.3389/fphar.2021.654986] [PMID: 33995073]
[16]
Wang, X.; Xu, X.; Jiang, G.; Zhang, C.; Liu, L.; Kang, J.; Wang, J.; Owusu, L.; Zhou, L.; Zhang, L.; Li, W. Dihydrotanshinone I inhibits ovarian cancer cell proliferation and migration by transcriptional repression of PIK3CA gene. J. Cell. Mol. Med., 2020, 24(19), 11177-11187.
[http://dx.doi.org/10.1111/jcmm.15660] [PMID: 32860347]
[17]
Wang, L.; Hu, T.; Shen, J.; Zhang, L.; Chan, R.L.Y.; Lu, L.; Li, M.; Cho, C.H.; Wu, W.K.K. Dihydrotanshinone I induced apoptosis and autophagy through caspase dependent pathway in colon cancer. Phytomedicine, 2015, 22(12), 1079-1087.
[http://dx.doi.org/10.1016/j.phymed.2015.08.009] [PMID: 26547530]
[18]
Chuang, M.T.; Ho, F.M.; Wu, C.C.; Zhuang, S.Y.; Lin, S.Y.; Suk, F.M.; Liang, Y.C. 15,16-dihydrotanshinone I, a compound of Salvia miltiorrhiza bunge, induces apoptosis through inducing endoplasmic reticular stress in human prostate carcinoma cells. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-9.
[http://dx.doi.org/10.1155/2011/865435] [PMID: 21274285]
[19]
Tan, T.; Chen, J.; Hu, Y.; Wang, N.; Chen, Y.; Yu, T.; Lin, D.; Yang, S.; Luo, J.; Luo, X. Dihydrotanshinone I inhibits the growth of osteosarcoma through the Wnt/β-catenin signaling pathway. OncoTargets Ther., 2019, 12, 5111-5122.
[http://dx.doi.org/10.2147/OTT.S204574] [PMID: 31308689]
[20]
Guo, X.; Wang, X.F. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res., 2009, 19(1), 71-88.
[http://dx.doi.org/10.1038/cr.2008.302] [PMID: 19002158]
[21]
Arlt, A.; Schäfer, H.; Kalthoff, H. The ‘N-factors’ in pancreatic cancer: Functional relevance of NF-κB, NFAT and Nrf2 in pancreatic cancer. Oncogenesis, 2012, 1(11), e35.
[http://dx.doi.org/10.1038/oncsis.2012.35] [PMID: 23552468]
[22]
Georgiadou, D.; Sergentanis, T.N.; Sakellariou, S.; Vlachodimitropoulos, D.; Psaltopoulou, T.; Lazaris, A.C.; Gounaris, A.; Zografos, G.C. Prognostic role of sex steroid receptors in pancreatic adenocarcinoma. Pathol. Res. Pract., 2016, 212(1), 38-43.
[http://dx.doi.org/10.1016/j.prp.2015.11.007] [PMID: 26652605]
[23]
Ramacciato, G.; Nigri, G.; Petrucciani, N.; Pinna, A.D.; Ravaioli, M.; Jovine, E.; Minni, F.; Grazi, G.L.; Chirletti, P.; Tisone, G.; Napoli, N.; Boggi, U. Pancreatectomy with mesenteric and portal vein resection for borderline resectable pancreatic cancer: Multicenter study of 406 patients. Ann. Surg. Oncol., 2016, 23(6), 2028-2037.
[http://dx.doi.org/10.1245/s10434-016-5123-5] [PMID: 26893222]
[24]
Dhir, M.; Zenati, M.S.; Hamad, A.; Singhi, A.D.; Bahary, N.; Hogg, M.E.; Zeh, H.J., III; Zureikat, A.H. Folfirinox versus gemcitabine/nab-paclitaxel for neoadjuvant treatment of resectable and borderline resectable pancreatic head adenocarcinoma. Ann. Surg. Oncol., 2018, 25(7), 1896-1903.
[http://dx.doi.org/10.1245/s10434-018-6512-8] [PMID: 29761331]
[25]
Macedo, F.I.; Ryon, E.; Maithel, S.K.; Lee, R.M.; Kooby, D.A.; Fields, R.C.; Hawkins, W.G.; Williams, G.; Maduekwe, U.; Kim, H.J.; Ahmad, S.A.; Patel, S.H.; Abbott, D.E.; Schwartz, P.; Weber, S.M.; Scoggins, C.R.; Martin, R.C.G.; Dudeja, V.; Franceschi, D.; Livingstone, A.S.; Merchant, N.B. Survival outcomes associated with clinical and pathological response following neoadjuvant folfirinox or gemcitabine/nab-paclitaxel chemotherapy in resected pancreatic cancer. Ann. Surg., 2019, 270(3), 400-413.
[http://dx.doi.org/10.1097/SLA.0000000000003468] [PMID: 31283563]
[26]
Liu, J.; Wang, S.; Zhang, Y.; Fan, H.; Lin, H. Traditional chinese medicine and cancer: History, present situation, and development. Thorac. Cancer, 2015, 6(5), 561-569.
[http://dx.doi.org/10.1111/1759-7714.12270] [PMID: 26445604]
[27]
Liu, S.H.; Chen, P.S.; Huang, C.C.; Hung, Y.T.; Lee, M.Y.; Lin, W.H.; Lin, Y.C.; Lee, A.Y.L. Unlocking the mystery of the therapeutic effects of chinese medicine on cancer. Front. Pharmacol., 2021, 11, 601785.
[http://dx.doi.org/10.3389/fphar.2020.601785] [PMID: 33519464]
[28]
Tang, C.; Zhao, C.C.; Yi, H.; Geng, Z.J.; Wu, X.Y.; Zhang, Y.; Liu, Y.; Fan, G. Traditional tibetan medicine in cancer therapy by targeting apoptosis pathways. Front. Pharmacol., 2020, 11, 976.
[http://dx.doi.org/10.3389/fphar.2020.00976] [PMID: 32774302]
[29]
Solano-Gálvez, S.; Abadi-Chiriti, J.; Gutiérrez-Velez, L.; Rodríguez-Puente, E.; Konstat-Korzenny, E.; Álvarez-Hernández, D.A.; Franyuti-Kelly, G.; Gutiérrez-Kobeh, L.; Vázquez-López, R. Apoptosis: Activation and inhibition in health and disease. Med. Sci., 2018, 6(3), 54.
[http://dx.doi.org/10.3390/medsci6030054] [PMID: 29973578]
[30]
Peng Li, D.N.; Xiaodong, W. Mitochondrial activation of apoptosis. Cell, 2004, 2004(2 Suppl(116)), S57-S59.
[31]
Cain, K.; Bratton, S.B.; Cohen, G.M. The Apaf-1 apoptosome: A large caspase-activating complex. Biochimie, 2002, 84(2-3), 203-214.
[http://dx.doi.org/10.1016/S0300-9084(02)01376-7]
[32]
Slapak, E.J.; Duitman, J.; Tekin, C.; Bijlsma, M.F.; Spek, C.A. Matrix metalloproteases in pancreatic ductal adenocarcinoma: Key drivers of disease progression? Biology, 2020, 9(4), 80.
[http://dx.doi.org/10.3390/biology9040080] [PMID: 32325664]
[33]
Rodriguez-Aznar, E.; Wiesmüller, L.; Sainz, B., Jr; Hermann, P.C. EMT and stemness—key players in pancreatic cancer stem cells. Cancers, 2019, 11(8), 1136.
[http://dx.doi.org/10.3390/cancers11081136] [PMID: 31398893]
[34]
Puisieux, A.; Brabletz, T.; Caramel, J. Oncogenic roles of EMTinducing transcription factors. Nat. Cell Biol., 2014, 16(6), 488-494.
[http://dx.doi.org/10.1038/ncb2976] [PMID: 24875735]
[35]
Ng, Y.H.; Zhu, H.; Leung, P.C.K. Twist modulates human trophoblastic cell invasion via regulation of N-cadherin. Endocrinology, 2012, 153(2), 925-936.
[http://dx.doi.org/10.1210/en.2011-1488] [PMID: 22166980]
[36]
Yang, J.; Mani, S.A.; Donaher, J.L.; Ramaswamy, S.; Itzykson, R.A.; Come, C.; Savagner, P.; Gitelman, I.; Richardson, A.; Weinberg, R.A. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 2004, 117(7), 927-939.
[http://dx.doi.org/10.1016/j.cell.2004.06.006] [PMID: 15210113]
[37]
Rhim, A.D.; Mirek, E.T.; Aiello, N.M.; Maitra, A.; Bailey, J.M.; McAllister, F.; Reichert, M.; Beatty, G.L.; Rustgi, A.K.; Vonderheide, R.H.; Leach, S.D.; Stanger, B.Z. EMT and dissemination precede pancreatic tumor formation. Cell, 2012, 148(1-2), 349-361.
[http://dx.doi.org/10.1016/j.cell.2011.11.025] [PMID: 22265420]
[38]
Gulino, A.; Ferretti, E.; De Smaele, E. Hedgehog signalling in colon cancer and stem cells. EMBO Mol. Med., 2009, 1(6-7), 300-302.
[http://dx.doi.org/10.1002/emmm.200900042] [PMID: 20049733]
[39]
Briscoe, J.; Thérond, P.P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol., 2013, 14(7), 416-429.
[http://dx.doi.org/10.1038/nrm3598] [PMID: 23719536]
[40]
Bai, Y.; Bai, Y.; Dong, J.; Li, Q.; Jin, Y.; Chen, B.; Zhou, M. Hedgehog signaling in pancreatic fibrosis and cancer. Medicine, 2016, 95(10), e2996.
[http://dx.doi.org/10.1097/MD.0000000000002996] [PMID: 26962810]
[41]
Gorojankina, T. Hedgehog signaling pathway: A novel model and molecular mechanisms of signal transduction. Cell. Mol. Life Sci., 2016, 73(7), 1317-1332.
[http://dx.doi.org/10.1007/s00018-015-2127-4] [PMID: 26762301]
[42]
Ingham, P.W. Hedgehog signaling. Cold Spring Harb. Perspect. Biol., 2012, 4(6), a011221.
[http://dx.doi.org/10.1101/cshperspect.a011221] [PMID: 22661636]
[43]
Fendrich, V.; Esni, F.; Garay, M.V.R.; Feldmann, G.; Habbe, N.; Jensen, J.N.; Dor, Y.; Stoffers, D.; Jensen, J.; Leach, S.D.; Maitra, A. Hedgehog signaling is required for effective regeneration of exocrine pancreas. Gastroenterology, 2008, 135(2), 621-631.e8.
[http://dx.doi.org/10.1053/j.gastro.2008.04.011] [PMID: 18515092]
[44]
Stecca, B.; Ruiz i Altaba, A. Context-dependent regulation of the GLI code in cancer by hedgehog and non-hedgehog signals. J. Mol. Cell Biol., 2010, 2(2), 84-95.
[http://dx.doi.org/10.1093/jmcb/mjp052] [PMID: 20083481]
[45]
Ding, Q.; Motoyama, J.; Gasca, S.; Mo, R.; Sasaki, H.; Rossant, J.; Hui, C.C. Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development, 1998, 125(14), 2533-2543.
[http://dx.doi.org/10.1242/dev.125.14.2533] [PMID: 9636069]
[46]
Dosch, J.S.; Pasca di Magliano, M.; Simeone, D.M. Pancreatic cancer and hedgehog pathway signaling: New insights. Pancreatology, 2010, 10(2-3), 151-157.
[http://dx.doi.org/10.1159/000225923] [PMID: 20453550]
[47]
Lee, J.J.; Perera, R.M.; Wang, H.; Wu, D.C.; Liu, X.S.; Han, S.; Fitamant, J.; Jones, P.D.; Ghanta, K.S.; Kawano, S.; Nagle, J.M.; Deshpande, V.; Boucher, Y.; Kato, T.; Chen, J.K.; Willmann, J.K.; Bardeesy, N.; Beachy, P.A. Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc. Natl. Acad. Sci., 2014, 111(30), E3091-E3100.
[http://dx.doi.org/10.1073/pnas.1411679111] [PMID: 25024225]
[48]
Nakashima, H.; Nakamura, M.; Yamaguchi, H.; Yamanaka, N.; Akiyoshi, T.; Koga, K.; Yamaguchi, K.; Tsuneyoshi, M.; Tanaka, M.; Katano, M. Nuclear factor-kappaB contributes to hedgehog signaling pathway activation through sonic hedgehog induction in pancreatic cancer. Cancer Res., 2006, 66(14), 7041-7049.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4588] [PMID: 16849549]
[49]
Yamasaki, A.; Kameda, C.; Xu, R.; Tanaka, H.; Tasaka, T.; Chikazawa, N.; Suzuki, H.; Morisaki, T.; Kubo, M.; Onishi, H.; Tanaka, M.; Katano, M. Nuclear factor kappaB-activated monocytes contribute to pancreatic cancer progression through the production of Shh. Cancer Immunol. Immunother., 2010, 59(5), 675-686.
[http://dx.doi.org/10.1007/s00262-009-0783-7] [PMID: 19862523]
[50]
Feldmann, G.; Dhara, S.; Fendrich, V.; Bedja, D.; Beaty, R.; Mullendore, M.; Karikari, C.; Alvarez, H.; Iacobuzio-Donahue, C.; Jimeno, A.; Gabrielson, K.L.; Matsui, W.; Maitra, A. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: A new paradigm for combination therapy in solid cancers. Cancer Res., 2007, 67(5), 2187-2196.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3281] [PMID: 17332349]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy