Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Abstract

Monkeypox is a zoonosis that re-emerged in 2022, generating cases in non-endemic countries for the disease and creating a public health issue. The rapid increase in the number of cases kindles a need for quick, inexpensive diagnostic tests for the epidemiological control of the disease. The high cost of molecular tests can make this control more difficult to access in poorer regions, with immunological tests being a more viable option. In this mini-review, a search was conducted in the main databases for peptide and protein options that could be used in the development of serological diagnostic tests. Nine viable registres were found, and seven were selected (two patents and five studies). The main studies used the B21R peptide sequence as it is a high immunogenic epitope. In addition, studies on the improvement of these sequences were also found to avoid cross-reactions against other viruses of the same family, proposing a rational approach using multiepitope recombinant proteins. These approaches demonstrated high sensitivity and specificity values and are seen as viable options for developing new tests. New effective serological testing options, when combined with awareness, disease surveillance, early diagnosis, and rapid communication, form a set of key strategies used by health systems to control the spread of the monkeypox virus.

Graphical Abstract

[1]
Bunge, E.M.; Hoet, B.; Chen, L.; Lienert, F.; Weidenthaler, H.; Baer, L.R.; Steffen, R. The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLoS Negl. Trop. Dis., 2022, 16(2), e0010141.
[http://dx.doi.org/10.1371/journal.pntd.0010141] [PMID: 35148313]
[2]
Orthopoxvirus . Viralzone. [Internet] SIB - Swiss Institute of Bioinformatics. Available from: https://viralzone.expasy.org/149?outline=all_by_species (accessed April 5, 2023).
[3]
King, A.M.; Adams, M.J.; Carstens, E.B.; Lefkowitz, E.J. International Committee on Taxonomy of Viruses. Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses (ICTV), 2011.
[4]
Wenner, H.A.; Macasaet, F.D.; Kamitsuka, P.S.; Kidd, P. Monkey pox. I. Clinical, virologic and immunologic studies. Am. J. Epidemiol., 1968, 87(3), 551-566.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a120846] [PMID: 4297615]
[5]
Wenner, H.A.; Kamitsuka, P.; Macasaet, F.; Kidd, P. Pathogenesis of monkey pox. Antimicrob. Agents Chemother., 1967, 7, 40-44.
[PMID: 4299355]
[6]
Shchelkunov, S.N.; Totmenin, A.V.; Babkin, I.V.; Safronov, P.F.; Ryazankina, O.I.; Petrov, N.A.; Gutorov, V.V.; Uvarova, E.A.; Mikheev, M.V.; Sisler, J.R.; Esposito, J.J.; Jahrling, P.B.; Moss, B.; Sandakhchiev, L.S. Human monkeypox and smallpox viruses: Genomic comparison. FEBS Lett., 2001, 509(1), 66-70.
[http://dx.doi.org/10.1016/S0014-5793(01)03144-1] [PMID: 11734207]
[7]
McCollum, A.M.; Damon, I.K.; McCollum, A.M.; Damon, I.K. Human monkeypox. Clin. Infect. Dis., 2014, 58(2), 260-267.
[http://dx.doi.org/10.1093/cid/cit703] [PMID: 24158414]
[8]
Rizk, J.G.; Lippi, G.; Henry, B.M.; Forthal, D.N.; Rizk, Y. Prevention and treatment of monkeypox. Drugs, 2022, 82(9), 957-963.
[http://dx.doi.org/10.1007/s40265-022-01742-y] [PMID: 35763248]
[9]
Earl, P.L.; Americo, J.L.; Wyatt, L.S.; Eller, L.A.; Whitbeck, J.C.; Cohen, G.H.; Eisenberg, R.J.; Hartmann, C.J.; Jackson, D.L.; Kulesh, D.A.; Martinez, M.J.; Miller, D.M.; Mucker, E.M.; Shamblin, J.D.; Zwiers, S.H.; Huggins, J.W.; Jahrling, P.B.; Moss, B. Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature, 2004, 428(6979), 182-185.
[http://dx.doi.org/10.1038/nature02331] [PMID: 15014500]
[10]
Vivancos, R.; Anderson, C.; Blomquist, P.; Balasegaram, S.; Bell, A.; Bishop, L.; Brown, C.S.; Chow, Y.; Edeghere, O.; Florence, I.; Logan, S.; Manley, P.; Crowe, W.; McAuley, A.; Shankar, A.G.; Mora-Peris, B.; Paranthaman, K.; Prochazka, M.; Ryan, C.; Simons, D.; Vipond, R.; Byers, C.; Watkins, N.A.; Welfare, W.; Whittaker, E.; Dewsnap, C.; Wilson, A.; Young, Y.; Chand, M.; Riley, S.; Hopkins, S. Community transmission of monkeypox in the United Kingdom, April to May 2022. Euro Surveill., 2022, 27(22), 2200422.
[http://dx.doi.org/10.2807/1560-7917.ES.2022.27.22.2200422] [PMID: 35656834]
[11]
Centers of Disease Control and Prevention Vaccines | Mpox | Poxvirus | CDC. Available from: https://www.cdc.gov/poxvirus/monkeypox/vaccines/index.html (Accessed on: 26 January 2023).
[12]
Andrei, G.; Snoeck, R. Cidofovir activity against poxvirus infections. Viruses, 2010, 2(12), 2803-2830.
[http://dx.doi.org/10.3390/v2122803] [PMID: 21994641]
[13]
Centers of Disease Control and Prevention Treatment Information for Healthcare Professionals | Mpox | Poxvirus | CDC. Available from: https://www.cdc.gov/poxvirus/monkeypox/clinicians/treatment.html#anchor_1666886364947 (Accessed on: 26 January 2023).
[14]
Nakhaie, M.; Arefinia, N.; Charostad, J.; Bashash, D.; Haji Abdolvahab, M.; Zarei, M. Monkeypox virus diagnosis and laboratory testing. Rev. Med. Virol., 2022, 33(1), e2404.
[http://dx.doi.org/10.1002/rmv.2404] [PMID: 36331049]
[15]
Magnus, P.; Andersen, E.K.; Petersen, K.B.; Birch-Andersen, A. A pox-like disease in Cynomolgus monkeys. Acta Pathol. Microbiol. Scand., 1959, 46(2), 156-176.
[http://dx.doi.org/10.1111/j.1699-0463.1959.tb00328.x]
[16]
Petersen, E.; Kantele, A.; Koopmans, M.; Asogun, D.; Yinka-Ogunleye, A.; Ihekweazu, C.; Zumla, A. Human Monkeypox. Infect. Dis. Clin. North Am., 2019, 33(4), 1027-1043.
[http://dx.doi.org/10.1016/j.idc.2019.03.001] [PMID: 30981594]
[17]
Tesh, R.B.; Watts, D.M.; Sbrana, E.; Siirin, M.; Popov, V.L.; Xiao, S.Y. Experimental infection of ground squirrels (Spermophilus tridecemlineatus) with monkeypox virus. Emerg. Infect. Dis., 2004, 10(9), 1563-1567.
[http://dx.doi.org/10.3201/eid1009.040310] [PMID: 15498157]
[18]
World Health Organization WHO Emergency Appeal: Monkeypox - July 2022 - June 2023.
[19]
Ahmed, M.; Naseer, H.; Arshad, M.; Ahmad, A. Monkeypox in 2022: A new threat in developing. Ann. Med. Surg., 2022, 78, 103975.
[http://dx.doi.org/10.1016/j.amsu.2022.103975] [PMID: 35734647]
[20]
Antinori, A.; Mazzotta, V.; Vita, S.; Carletti, F.; Tacconi, D.; Lapini, L.E.; D’Abramo, A.; Cicalini, S.; Lapa, D.; Pittalis, S.; Puro, V.; Rivano Capparuccia, M.; Giombini, E.; Gruber, C.E.M.; Garbuglia, A.R.; Marani, A.; Vairo, F.; Girardi, E.; Vaia, F.; Nicastri, E. Epidemiological, clinical and virological characteristics of four cases of monkeypox support transmission through sexual contact, Italy, May 2022. Euro Surveill., 2022, 27(22), 2200421.
[http://dx.doi.org/10.2807/1560-7917.ES.2022.27.22.2200421] [PMID: 35656836]
[21]
Thornhill, J.P.; Barkati, S.; Walmsley, S.; Rockstroh, J.; Antinori, A.; Harrison, L.B.; Palich, R.; Nori, A.; Reeves, I.; Habibi, M.S.; Apea, V.; Boesecke, C.; Vandekerckhove, L.; Yakubovsky, M.; Sendagorta, E.; Blanco, J.L.; Florence, E.; Moschese, D.; Maltez, F.M.; Goorhuis, A.; Pourcher, V.; Migaud, P.; Noe, S.; Pintado, C.; Maggi, F.; Hansen, A.B.E.; Hoffmann, C.; Lezama, J.I.; Mussini, C.; Cattelan, A.; Makofane, K.; Tan, D.; Nozza, S.; Nemeth, J.; Klein, M.B.; Orkin, C.M. Monkeypox virus infection in humans across 16 countries-April-June 2022. N. Engl. J. Med., 2022, 387(8), 679-691.
[http://dx.doi.org/10.1056/NEJMoa2207323] [PMID: 35866746]
[22]
World Health Organization Multi-country Outbreak of Monkeypox, External Situation Report. 2022.
[23]
Farahat, R.A.; Sah, R.; El-Sakka, A.A.; Benmelouka, A.Y.; Kundu, M.; Labieb, F.; Shaheen, R.S.; Abdelaal, A.; Abdelazeem, B.; Bonilla-Aldana, D.K.; Franco-Paredes, C.; Henao-Martinez, A.F.; Garout, M.A.; León-Figueroa, D.A.; Pachar, M.; Suárez, J.A.; Ramirez, J.D.; Paniz-Mondolfi, A.; Rabaan, A.A.; Al-Tawfiq, J.A.; Nishiura, H.; Ortiz-Martínez, Y.; Garcia-Robledo, J.E.; Cimerman, S.; Barbosa, A.N.; Pagliano, P.; Zambrano-Sanchez, G.; Cardona-Ospina, J.A.; Bížová, B.; Rodriguez-Morales, A.J. Human monkeypox disease (MPX). Infez. Med., 2022, 30(3), 372-391.
[http://dx.doi.org/10.53854/liim-3003-6] [PMID: 36148174]
[24]
Seang, S.; Burrel, S.; Todesco, E.; Leducq, V.; Monsel, G.; Le Pluart, D.; Cordevant, C.; Pourcher, V.; Palich, R. Evidence of human-to-dog transmission of monkeypox virus. Lancet, 2022, 400(10353), 658-659.
[http://dx.doi.org/10.1016/S0140-6736(22)01487-8] [PMID: 35963267]
[25]
Stittelaar, K.J.; Neyts, J.; Naesens, L.; van Amerongen, G.; van Lavieren, R.F.; Holý, A.; De Clercq, E.; Niesters, H.G.M.; Fries, E.; Maas, C.; Mulder, P.G.H.; van der Zeijst, B.A.M.; Osterhaus, A.D.M.E. Antiviral treatment is more effective than smallpox vaccination upon lethal monkeypox virus infection. Nature, 2006, 439(7077), 745-748.
[http://dx.doi.org/10.1038/nature04295] [PMID: 16341204]
[26]
Yang, G.; Pevear, D.C.; Davies, M.H.; Collett, M.S.; Bailey, T.; Rippen, S.; Barone, L.; Burns, C.; Rhodes, G.; Tohan, S.; Huggins, J.W.; Baker, R.O.; Buller, R.L.M.; Touchette, E.; Waller, K.; Schriewer, J.; Neyts, J.; DeClercq, E.; Jones, K.; Hruby, D.; Jordan, R. An orally bioavailable antipoxvirus compound (ST-246) inhibits extracellular virus formation and protects mice from lethal Orthopoxvirus Challenge. J. Virol., 2005, 79(20), 13139-13149.
[http://dx.doi.org/10.1128/JVI.79.20.13139-13149.2005] [PMID: 16189015]
[27]
Centers for Disease Control and Prevention - CDC Monkeypox in the U.S. Centers for Disease Control and Prevention.
[28]
Gong, F.; Wei, H.; Li, Q.; Liu, L.; Li, B. Evaluation and comparison of serological methods for COVID-19 diagnosis. Front. Mol. Biosci., 2021, 8, 682405.
[http://dx.doi.org/10.3389/fmolb.2021.682405] [PMID: 34368226]
[29]
Food and Drug Administration. Policy for Monkeypox Tests to Address the Public Health Emergency. US Food and Drug Administration [Internet] 2022. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/policy-monkeypox-tests-address-public-health-emergency (accessed April 5, 2023).
[30]
World Health Organization Monkeypox, Available from: https://www.who.int/news-room/fact-sheets/detail/monkeypox (Accessed on: 26 January 2023).
[31]
Sidiq, Z.; Hanif, M.; Dwivedi, K.K.; Chopra, K.K. Benefits and limitations of serological assays in COVID-19 infection. Indian J. Tuberc., 2020, 67(4), S163-S166.
[http://dx.doi.org/10.1016/j.ijtb.2020.07.034] [PMID: 33308664]
[32]
Carvalho, A.M.R.S.; Costa, L.E.; Salles, B.C.S.; Santos, T.T.O.; Ramos, F.F.; Lima, M.P.; Chávez-Fumagalli, M.A.; Silvestre, B.T.; Portela, Á.S.B.; Roatt, B.M.; Silveira, J.A.G.; Gonçalves, D.U.; Magalhães-Soares, D.F.; Duarte, M.C.; Menezes-Souza, D.; Coelho, E.A.F. An ELISA immunoassay employing a conserved leishmania hypothetical protein for the serodiagnosis of visceral and tegumentary leishmaniasis in dogs and humans. Cell. Immunol., 2017, 318, 42-48.
[http://dx.doi.org/10.1016/j.cellimm.2017.06.001] [PMID: 28602279]
[33]
Camussone, C.; Gonzalez, V.; Belluzo, M.S.; Pujato, N.; Ribone, M.E.; Lagier, C.M.; Marcipar, I.S. Comparison of recombinant Trypanosoma cruzi peptide mixtures versus multiepitope chimeric proteins as sensitizing antigens for immunodiagnosis. Clin. Vaccine Immunol., 2009, 16(6), 899-905.
[http://dx.doi.org/10.1128/CVI.00005-09] [PMID: 19339486]
[34]
Daltro, R.T.; Leony, L.M.; Freitas, N.E.M.; Silva, Â.A.O.; Santos, E.F.; Del-Rei, R.P.; Brito, M.E.F.; Brandão-Filho, S.P.; Gomes, Y.M.; Silva, M.S.; Donato, S.T.; Jeronimo, S.M.B.; Monteiro, G.R.G.; Carvalho, L.P.; Magalhães, A.S.; Zanchin, N.I.T.; Celedon, P.A.F.; Santos, F.L.N. Cross-reactivity using chimeric Trypanosoma cruzi Antigens: Diagnostic performance in settings where chagas disease and American cutaneous or visceral leishmaniasis are coendemic. J. Clin. Microbiol., 2019, 57(8), e00762-19.
[http://dx.doi.org/10.1128/JCM.00762-19] [PMID: 31189586]
[35]
Dipti, C.A.; Jain, S.K.; Navin, K. A novel recombinant multiepitope protein as a hepatitis C diagnostic intermediate of high sensitivity and specificity. Protein Expr. Purif., 2006, 47(1), 319-328.
[http://dx.doi.org/10.1016/j.pep.2005.12.012] [PMID: 16504539]
[36]
Slifka, M.; Yoshihara, P.; Hammarlund, E. inventor(s). Compositions and Methods for Diagnosis and Treatment of Orthopoxviruses. World Intellectual Property patent WO2005123966A2, 2005 December 29.
[37]
Hammarlund, E.; Lewis, M.W.; Carter, S.V.; Amanna, I.; Hansen, S.G.; Strelow, L.I.; Wong, S.W.; Yoshihara, P.; Hanifin, J.M.; Slifka, M.K. Multiple diagnostic techniques identify previously vaccinated individuals with protective immunity against monkeypox. Nat. Med., 2005, 11(9), 1005-1011.
[http://dx.doi.org/10.1038/nm1273] [PMID: 16086024]
[38]
Dubois, M.E.; Slifka, M.K. Retrospective analysis of monkeypox infection. Emerg. Infect. Dis., 2008, 14(4), 592-599.
[http://dx.doi.org/10.3201/eid1404.071044] [PMID: 18394277]
[39]
Dubois, M.E.; Hammarlund, E.; Slifka, M.K. Optimization of peptide-based ELISA for serological diagnostics: A retrospective study of human monkeypox infection. Vector Borne Zoonotic Dis., 2012, 12(5), 400-409.
[http://dx.doi.org/10.1089/vbz.2011.0779] [PMID: 22217169]
[40]
Miller, L.; Michel, J.; Vogt, G.; Döllinger, J.; Stern, D.; Piesker, J.; Nitsche, A. Identification and characterization of a phage display-derived peptide for orthopoxvirus detection. Anal. Bioanal. Chem., 2014, 406(29), 7611-7621.
[http://dx.doi.org/10.1007/s00216-014-8150-8] [PMID: 25311190]
[41]
Stern, D.; Pauly, D.; Zydek, M.; Miller, L.; Piesker, J.; Laue, M.; Lisdat, F.; Dorner, M.B.; Dorner, B.G.; Nitsche, A. Development of a genus-specific antigen capture ELISA for orthopoxviruses - target selection and optimized screening. PLoS One, 2016, 11(3), e0150110.
[http://dx.doi.org/10.1371/journal.pone.0150110] [PMID: 26930499]
[42]
Fan, Y.; Jinfang, D.; Wen, L.; Ting, W.; Wanjian, L.; Aihua, L. inventor(s). Specific Fusion Protein Antigen of Monkey Pox Virus as Well as Preparation Method and Application of Specific Fusion Protein Antigen. China patent CN115043948A. 2022 June 24.
[43]
Simpson, K.; Heymann, D.; Brown, C.S.; Edmunds, W.J.; Elsgaard, J.; Fine, P.; Hochrein, H.; Hoff, N.A.; Green, A.; Ihekweazu, C.; Jones, T.C.; Lule, S.; Maclennan, J.; McCollum, A.; Mühlemann, B.; Nightingale, E.; Ogoina, D.; Ogunleye, A.; Petersen, B.; Powell, J.; Quantick, O.; Rimoin, A.W.; Ulaeato, D.; Wapling, A. Human monkeypox - After 40 years, an unintended consequence of smallpox eradication. Vaccine, 2020, 38(33), 5077-5081.
[http://dx.doi.org/10.1016/j.vaccine.2020.04.062] [PMID: 32417140]
[44]
Alakunle, E.; Moens, U.; Nchinda, G.; Okeke, M.I. Monkeypox virus in Nigeria: Infection biology, epidemiology, and evolution. Viruses, 2020, 12(11), 1257.
[http://dx.doi.org/10.3390/v12111257] [PMID: 33167496]
[45]
Kumar, S.; Subramaniam, G.; Karuppanan, K. Human monkeypox outbreak in 2022. J. Med. Virol., 2023, 95(1), e27894.
[http://dx.doi.org/10.1002/jmv.27894] [PMID: 35637363]
[46]
Galdino, A.S.; Santos, J.C.; Souza, M.Q.; Nóbrega, Y.K.M.; Xavier, M.A.E.; Felipe, M.S.S.; Freitas, S.M.; Torres, F.A.G. A novel structurally stable multiepitope protein for detection of HCV. Hepat. Res. Treat., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/6592143] [PMID: 26942007]
[47]
Lemes, M.R.; Rodrigues, T.C.V.; Jaiswal, A.K.; Tiwari, S.; Sales-Campos, H.; Andrade-Silva, L.E.; Oliveira, C.J.F.; Azevedo, V.; Rodrigues, V.; Soares, S.C.; da Silva, M.V. In silico designing of a recombinant multi-epitope antigen for leprosy diagnosis. J. Genet. Eng. Biotechnol., 2022, 20(1), 128.
[http://dx.doi.org/10.1186/s43141-022-00411-7] [PMID: 36053342]
[48]
Nieto-Gómez, R.; Angulo, C.; Monreal-Escalante, E.; Govea-Alonso, D.O.; De Groot, A.S.; Rosales-Mendoza, S. Design of a multiepitopic Zaire ebolavirus protein and its expression in plant cells. J. Biotechnol., 2019, 295, 41-48.
[http://dx.doi.org/10.1016/j.jbiotec.2019.02.003] [PMID: 30826446]
[49]
Lopes-Luz, L.; Junqueira, I.C.; da Silveira, L.A.; de Melo Pereira, B.R.; da Silva, L.A.; Ribeiro, B.M.; Nagata, T. Dengue and Zika virus multi-epitope antigen expression in insect cells. Mol. Biol. Rep., 2020, 47(10), 7333-7340.
[http://dx.doi.org/10.1007/s11033-020-05772-1] [PMID: 32997310]
[50]
Silva, L.A.; Lima, M.R.Q.; de Camargo, B.R.; Guimarães, D.K.S.C.; Barbastefano, A.A.L.; Lima, R.C.; Damasco, P.V.; Cunha, R.V.; de Souza, L.J.; de Azeredo, E.L.; de-Oliveira-Pinto, L.M.; Nagata, T.; Ardisson-Araújo, D.M.P.; dos Santos, F.B.; Morais Ribeiro, B. A Chikungunya virus multiepitope recombinant protein expressed from the binary system insect cell/recombinant Baculovirus is useful for laboratorial diagnosis of chikungunya. Microorganisms, 2022, 10(7), 1451.
[http://dx.doi.org/10.3390/microorganisms10071451] [PMID: 35889170]
[51]
AnandaRao. R.; Swaminathan, S.; Fernando, S.; Jana, A.M.; Khanna, N. Recombinant multiepitope protein for early detection of dengue infections. Clin. Vaccine Immunol., 2006, 13(1), 59-67.
[http://dx.doi.org/10.1128/CVI.13.1.59-67.2006]
[52]
Gomes, L.R.; Durans, A.M.; Napoleão-Pêgo, P.; Waterman, J.A.; Freitas, M.S.; De Sá, N.B.R.; Pereira, L.V.; Furtado, J.S.; Aquino, R.G.; Machado, M.C.R.; Fintelman-Rodrigues, N.; Souza, T.M.L.; Morel, C.M.; Provance, D.W.; De-Simone, S.G. Multiepitope proteins for the differential detection of IgG antibodies against RBD of the spike protein and non-RBD regions of SARS-CoV-2. Vaccines, 2021, 9(9), 986.
[http://dx.doi.org/10.3390/vaccines9090986] [PMID: 34579223]
[53]
de Souza, M.Q.; Galdino, A.S.; dos Santos, J.C.; Soares, M.V.; Nóbrega, Y.C.; Álvares, A.C.M.; de Freitas, S.M.; Torres, F.A.G.; Felipe, M.S.S. A recombinant multiepitope protein for hepatitis B diagnosis. BioMed Res. Int., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/148317] [PMID: 24294596]
[54]
Thomasini, R.L.; Souza, H.G.A.; Bruna-Romero, O.; Totola, A.H.; Gonçales, N.S.L.; Lima, C.X.; Teixeira, M.M. Evaluation of a recombinant multiepitope antigen for diagnosis of hepatitis C virus: A lower cost alternative for antigen production. J. Clin. Lab. Anal., 2018, 32(6), e22410.
[http://dx.doi.org/10.1002/jcla.22410] [PMID: 29453831]
[55]
Taherkhani, R.; Farshadpour, F.; Makvandi, M. Design and production of a multiepitope construct derived from hepatitis E virus capsid protein. J. Med. Virol., 2015, 87(7), 1225-1234.
[http://dx.doi.org/10.1002/jmv.24171] [PMID: 25784455]
[56]
Napoleão-Pêgo, P.; Carneiro, F.R.G.; Durans, A.M.; Gomes, L.R.; Morel, C.M.; Provance, D.W., Jr; De-Simone, S.G. Performance assessment of a multi-epitope chimeric antigen for the serological diagnosis of acute Mayaro fever. Sci. Rep., 2021, 11(1), 15374.
[http://dx.doi.org/10.1038/s41598-021-94817-x] [PMID: 34321560]
[57]
Franco, G.M.; Rocha, A.S.; Cox, L.J.; Daian e Silva, D.S.O. da Silveira e Santos, D.M.; Martins, M.L.; Romanelli, L.C.; Ishak, R.; Vallinoto, A.C.R.; Bomfim, M.R.Q.; Caterino-de-Araujo, A.; Coelho-dos-Reis, J.G.A.; da Fonseca, F.G.; Barbosa-Stancioli, E.F. Multi-epitope protein as a tool of serological diagnostic development for HTLV-1 and HTLV-2 infections. Front. Public Health, 2022, 10, 884701.
[http://dx.doi.org/10.3389/fpubh.2022.884701] [PMID: 35677763]
[58]
Duthie, M.S.; Guderian, J.A.; Vallur, A.C.; Misquith, A.; Liang, H.; Mohamath, R.; Luquetti, A.O.; Carter, D.; Tavares, S.N.B.; Reed, S.G. Multi-epitope proteins for improved serological detection of Trypanosoma cruzi infection and Chagas Disease. Diagn. Microbiol. Infect. Dis., 2016, 84(3), 191-196.
[http://dx.doi.org/10.1016/j.diagmicrobio.2015.11.006] [PMID: 26658314]
[59]
Peverengo, L.M.; Garcia, V.; Rodeles, L.M.; Mendicino, D.; Vicco, M.; Lagier, C.; Gonzalez, V.; Gugliotta, L.; Marcipar, I. Development and assessment of an improved recombinant multiepitope antigen-based immunoassay to diagnose chronic Chagas disease. Parasitology, 2018, 145(12), 1594-1599.
[http://dx.doi.org/10.1017/S0031182018000458] [PMID: 29587896]
[60]
Dai, J.; Jiang, M.; Wang, Y.; Qu, L.; Gong, R.; Si, J. Evaluation of a recombinant multiepitope peptide for serodiagnosis of Toxoplasma gondii infection. Clin. Vaccine Immunol., 2012, 19(3), 338-342.
[http://dx.doi.org/10.1128/CVI.05553-11] [PMID: 22219311]
[61]
Alibakhshi, A.; Bandehpour, M.; Sharifnia, Z.; Kazemi, B. The development and evaluation of a multi-epitope antigen as a serodiagnostic marker of Toxoplasma gondii infection. Adv. Clin. Exp. Med., 2020, 29(6), 669-675.
[http://dx.doi.org/10.17219/acem/104554] [PMID: 32573993]
[62]
Yasin, N.; Sugerappa Laxmanappa, H.; Muddapur, U.M.; Cheruvathur, J.; Uday Prakash, S.M.; Venkataramaiah Thulasiram, H. Design, expression, and evaluation of novel multiepitope chimeric antigen of Wuchereria bancrofti for the diagnosis of lymphatic filariasis - A structure-based strategy. Int. Immunopharmacol., 2020, 83, 106431.
[http://dx.doi.org/10.1016/j.intimp.2020.106431] [PMID: 32222640]
[63]
Faria, A.R.; de Castro Veloso, L.; Coura-Vital, W.; Reis, A.B.; Damasceno, L.M.; Gazzinelli, R.T.; Andrade, H.M. Novel recombinant multiepitope proteins for the diagnosis of asymptomatic Leishmania infantum-infected dogs. PLoS Negl. Trop. Dis., 2015, 9(1), e3429.
[http://dx.doi.org/10.1371/journal.pntd.0003429] [PMID: 25569685]
[64]
Jameie, F.; Dalimi, A.; Pirestani, M.; Mohebali, M. Detection of Leishmania infantum infection in reservoir dogs using a multiepitope recombinant protein (PQ10). Arch. Razi Inst., 2020, 75(3), 327-338.
[http://dx.doi.org/10.22092/ari.2019.126524.1346] [PMID: 33025773]
[65]
Yao, M.; Liu, M.; Chen, X.; Li, J.; Li, Y.; Wei, Y.R.; Liu, Y.; Yang, K.L.; Duan, X.; Shao, W.; Sun, X.; Fan, X.; Sun, S.; Tian, L.; Yin, D.; Sun, M. Comparison of BP26, Omp25 and Omp31 and a multiepitope-based fusion protein in the serological detection of Canine Brucellosis. Infect. Drug Resist., 2022, 15, 5301-5308.
[http://dx.doi.org/10.2147/IDR.S374432] [PMID: 36101776]
[66]
Zhang, X.; Guo, J.; Wang, L.; Li, Z.; Liu, Y.; Tian, L.; Xiao, C.; Li, Y.; Cai, X.; Meng, Q.; Qiao, J. Development and evaluation of multi-epitope protein p72 (MeP72) for the serodiagnosis of African swine fever. Acta Virol., 2021, 65(3), 273-278.
[http://dx.doi.org/10.4149/av_2021_304] [PMID: 34565155]
[67]
Garcia, V.S.; Gonzalez, V.D.G.; Caudana, P.C.; Vega, J.R.; Marcipar, I.S.; Gugliotta, L.M. Synthesis of latex-antigen complexes from single and multiepitope recombinant proteins. Application in immunoagglutination assays for the diagnosis of Trypanosoma cruzi infection. Colloids Surf. B Biointerfaces, 2013, 101, 384-391.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.018] [PMID: 23010045]
[68]
Javadi Mamaghani, A.; Arab-Mazar, Z.; Heidarzadeh, S.; Ranjbar, M.M.; Molazadeh, S.; Rashidi, S.; Niazpour, F.; Naghi Vishteh, M.; Bashiri, H.; Bozorgomid, A.; Behniafar, H.; Ashrafi, M. In-silico design of a multi-epitope for developing sero-diagnosis detection of SARS-CoV-2 using spike glycoprotein and nucleocapsid antigens. Netw. Model. Anal. Health Inform. Bioinform., 2021, 10(1), 61.
[http://dx.doi.org/10.1007/s13721-021-00347-x] [PMID: 34849326]
[69]
Gao, Z.; Shao, J.J.; Zhang, G.L.; Ge, S.D.; Chang, Y.Y.; Xiao, L.; Chang, H.Y. Development of an indirect ELISA to specifically detect antibodies against African swine fever virus: Bioinformatics approaches. Virol. J., 2021, 18(1), 97.
[http://dx.doi.org/10.1186/s12985-021-01568-2] [PMID: 33952293]
[70]
Abdi, S.A.H.; Ali, A.; Sayed, S.F. Abutahir; Ali, A.; Alam, P. Multi-epitope-based vaccine candidate for monkeypox: An in silico approach. Vaccines, 2022, 10(9), 1564.
[http://dx.doi.org/10.3390/vaccines10091564] [PMID: 36146643]
[71]
Aiman, S.; Alhamhoom, Y.; Ali, F.; Rahman, N.; Rastrelli, L.; Khan, A.; Farooq, Q.A.; Ahmed, A.; Khan, A.; Li, C. Multi-epitope chimeric vaccine design against emerging Monkeypox virus via reverse vaccinology techniques - a bioinformatics and immunoinformatics approach. Front. Immunol., 2022, 13, 985450.
[http://dx.doi.org/10.3389/fimmu.2022.985450] [PMID: 36091024]
[72]
Shantier, S.W.; Mustafa, M.I.; Abdelmoneim, A.H.; Fadl, H.A.; Elbager, S.G.; Makhawi, A.M. Novel multi epitope-based vaccine against monkeypox virus: Vaccinomic approach. Sci. Rep., 2022, 12(1), 15983.
[http://dx.doi.org/10.1038/s41598-022-20397-z] [PMID: 36156077]
[73]
Aziz, S.; Almajhdi, F.N.; Waqas, M.; Ullah, I.; Salim, M.A.; Khan, N.A.; Ali, A. Contriving multi-epitope vaccine ensemble for monkeypox disease using an immunoinformatics approach. Front. Immunol., 2022, 13, 1004804.
[http://dx.doi.org/10.3389/fimmu.2022.1004804] [PMID: 36311762]
[74]
Ullah, A.; Shahid, F.A.; Haq, M.U. Tahir ul Qamar, M.; Irfan, M.; Shaker, B.; Ahmad, S.; Alrumaihi, F.; Allemailem, K.S.; Almatroudi, A. An integrative reverse vaccinology, immunoinformatic, docking and simulation approaches towards designing of multi-epitopes based vaccine against monkeypox virus. J. Biomol. Struct. Dyn., 2022, 1-14.
[http://dx.doi.org/10.1080/07391102.2022.2125441] [PMID: 36129135]
[75]
Soria-Guerra, R.E.; Nieto-Gomez, R.; Govea-Alonso, D.O.; Rosales-Mendoza, S. An overview of bioinformatics tools for epitope prediction: Implications on vaccine development. J. Biomed. Inform., 2015, 53, 405-414.
[http://dx.doi.org/10.1016/j.jbi.2014.11.003] [PMID: 25464113]
[76]
Safavi, A.; Kefayat, A.; Sotoodehnejadnematalahi, F.; Salehi, M.; Modarressi, M.H. Production, purification, and in vivo evaluation of a novel multiepitope peptide vaccine consisted of immunodominant epitopes of SYCP1 and ACRBP antigens as a prophylactic melanoma vaccine. Int. Immunopharmacol., 2019, 76, 105872.
[http://dx.doi.org/10.1016/j.intimp.2019.105872] [PMID: 31499268]
[77]
Ashfaq, U.A.; Ahmed, B. De novo structural modeling and conserved epitopes prediction of Zika virus envelop protein for vaccine development. Viral Immunol., 2016, 29(7), 436-443.
[http://dx.doi.org/10.1089/vim.2016.0033] [PMID: 27438351]
[78]
Pandey, R.K.; Bhatt, T.K.; Prajapati, V.K. Novel immuno-informatics approaches to design multi-epitope subunit vaccine for malaria by investigating anopheles salivary protein. Sci. Rep., 2018, 8(1), 1125.
[http://dx.doi.org/10.1038/s41598-018-19456-1] [PMID: 29348555]
[79]
de Serpa Brandão, R.M.S.; Faria, A.R.; de Andrade, H.M.; Soares Martins, L.M.; da Silva, A.S.; do Monte, S.J.H. Novel recombinant multiepitope proteins for the detection of anti-Cryptococcus antibodies. Future Microbiol., 2018, 13(4), 429-436.
[http://dx.doi.org/10.2217/fmb-2017-0184] [PMID: 29125786]
[80]
Bahrami, A.A.; Payandeh, Z.; Khalili, S.; Zakeri, A.; Bandehpour, M. Immunoinformatics: In silico approaches and computational design of a multi-epitope, immunogenic protein. Int. Rev. Immunol., 2019, 38(6), 307-322.
[http://dx.doi.org/10.1080/08830185.2019.1657426] [PMID: 31478759]
[81]
Phan, I.Q.; Subramanian, S.; Kim, D.; Murphy, M.; Pettie, D.; Carter, L.; Anishchenko, I.; Barrett, L.K.; Craig, J.; Tillery, L.; Shek, R.; Harrington, W.E.; Koelle, D.M.; Wald, A.; Veesler, D.; King, N.; Boonyaratanakornkit, J.; Isoherranen, N.; Greninger, A.L.; Jerome, K.R.; Chu, H.; Staker, B.; Stewart, L.; Myler, P.J.; Van Voorhis, W.C. In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19. Sci. Rep., 2021, 11(1), 4290.
[http://dx.doi.org/10.1038/s41598-021-83730-y] [PMID: 33619344]
[82]
Hughes, L.J.; Goldstein, J.; Pohl, J.; Hooper, J.W.; Lee Pitts, R.; Townsend, M.B.; Bagarozzi, D.; Damon, I.K.; Karem, K.L. A highly specific monoclonal antibody against monkeypox virus detects the heparin binding domain of A27. Virology, 2014, 464-465, 264-273.
[http://dx.doi.org/10.1016/j.virol.2014.06.039] [PMID: 25108113]
[83]
Jiang, Z.; Sun, J.; Zhang, L.; Yan, S.; Li, D.; Zhang, C.; Lai, A.; Su, S. Laboratory diagnostics for monkeypox: An overview of sensitivities from various published tests. Travel Med. Infect. Dis., 2022, 49, 102425.
[http://dx.doi.org/10.1016/j.tmaid.2022.102425] [PMID: 35963557]
[84]
Velavan, T.P.; Meyer, C.G. Monkeypox 2022 outbreak: An update. Trop. Med. Int. Health, 2022, 27(7), 604-605.
[http://dx.doi.org/10.1111/tmi.13785] [PMID: 35633308]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy