Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

5-Membered Heterocyclic Compounds as Antiviral Agents

Author(s): Christophe Tratrat, Anthi Petrou, Maria Fesatidou, Michelyne Haroun, Geronikaki Athina*, Katharigatta Venugopala, Nagaraja Sreeharsha and Jad Chemali

Volume 23, Issue 7, 2023

Published on: 05 May, 2023

Page: [520 - 538] Pages: 19

DOI: 10.2174/1568026623666230325153927

Price: $65

Abstract

Viral infections range from self-limiting to more serious and fatal infections; therefore, some viral infections are of great public health concern worldwide, e.g., Hepatitis B virus, Hepatitis C virus, and HIV. Recently, the world faced a new infection due to the coronavirus, COVID-19, which was announced as a pandemic in early 2020. This virus infected more than 500 million people, killing around 6 million people worldwide. On the other hand, the increase in drug-resistant strains is also creating serious health problems. Thus, developing new selective antiviral agents with a different mode of action to fight against mutated and novel viruses is a primary goal of many researchers. Taking into account the role of heterocyclic compounds in drug discovery as a key structural component of most of the bioactive molecules; herein, we report an extensive review of the antiviral activity of five-membered heterocyclic compounds reported from 2015 to date. In this review, the antiviral activities of the agents containing the specified ring systems thiadiazoles, triazoles, oxadiazoles, and thiazoles are discussed.

Graphical Abstract

[1]
Krishnan, N.; Devadasan, V.; Raman, P. Plant-derived alkaloids as anti-viral agents. Int. J. Pharm. Sci. Res., 2020, 11(4), 6174-6182.
[http://dx.doi.org/10.26452/ijrps.v11i4.3291]
[2]
Martinez, J.P.; Sasse, F.; Brönstrup, M.; Diez, J.; Meyerhans, A. Antiviral drug discovery: Broad-spectrum drugs from nature. Nat. Prod. Rep., 2015, 32(1), 29-48.
[http://dx.doi.org/10.1039/C4NP00085D] [PMID: 25315648]
[3]
Worldometers. COVID-19 Coronavirus Outbreak. Worldometers. 2020 2020. Available from: https://www.worldometers.info/coronavirus/#countries
[4]
De Clercq, E. Fifty years in search of selective antiviral drugs. J. Med. Chem., 2019, 62(16), 7322-7339.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00175] [PMID: 30939009]
[5]
Zhan, P.; Pannecouque, C.; De Clercq, E.; Liu, X. Anti-HIV drug discovery and development: Current innovations and future trends. J. Med. Chem., 2016, 59(7), 2849-2878.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00497] [PMID: 26509831]
[6]
Wang, Q.Y.; Bushell, S.; Qing, M.; Xu, H.Y.; Bonavia, A.; Nunes, S.; Zhou, J.; Poh, M.K.; Florez de Sessions, P.; Niyomrattanakit, P.; Dong, H.; Hoffmaster, K.; Goh, A.; Nilar, S.; Schul, W.; Jones, S.; Kramer, L.; Compton, T.; Shi, P.Y. Inhibition of dengue virus through suppression of host pyrimidine biosynthesis. J. Virol., 2011, 85(13), 6548-6556.
[http://dx.doi.org/10.1128/JVI.02510-10] [PMID: 21507975]
[7]
Sarafianos, S.G.; Marchand, B.; Das, K.; Himmel, D.M.; Parniak, M.A.; Hughes, S.H.; Arnold, E. Structure and function of HIV-1 reverse transcriptase: Molecular mechanisms of polymerization and inhibition. J. Mol. Biol., 2009, 385(3), 693-713.
[http://dx.doi.org/10.1016/j.jmb.2008.10.071] [PMID: 19022262]
[8]
Ma, Y.; Frutos-Beltrán, E.; Kang, D.; Pannecouque, C.; De Clercq, E.; Menéndez-Arias, L.; Liu, X.; Zhan, P. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem. Soc. Rev., 2021, 50(7), 4514-4540.
[http://dx.doi.org/10.1039/D0CS01084G] [PMID: 33595031]
[9]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[10]
Guo, Z.; Song, X.; Zhao, L.M.; Piao, M.G.; Quan, J.; Piao, H.R.; Jin, C.H. Synthesis and biological evaluation of novel benzo[c][1,2,5]thiadiazol-5-yl and thieno[3,2-c]- pyridin-2-yl imidazole derivatives as ALK5 inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(16), 2070-2075.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.015] [PMID: 31303386]
[11]
Takate, S.J.; Shinde, A.D.; Karale, B.K.; Akolkar, H.; Nawale, L.; Sarkar, D.; Mhaske, P.C. Thiazolyl-pyrazole derivatives as potential antimycobacterial agents. Bioorg. Med. Chem. Lett., 2019, 29(10), 1199-1202.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.020] [PMID: 30910461]
[12]
Bhagdev, K.; Sarkar, B. Benzothiazole: As an antidiabetic agent. Ann. Rom. Soc. Cell Biol., 2021, 25, 20269-20285.
[13]
Ullah, S.; Mirza, S.; Salar, U.; Hussain, S.; Javaid, K.; Khan, K.M.; Khalil, R.; Atia-tul-Wahab; Ul-Haq, Z.; Perveen, S.; Choudhary, M.I. 2-mercapto benzothiazole derivatives: As potential leads for the diabetic management. Med. Chem., 2020, 16(6), 826-840.
[http://dx.doi.org/10.2174/1573406415666190612153150] [PMID: 31195949]
[14]
Evaluation of some novel benzothiazole derivatives as anti tubercular agents targeting glutamine synthetase-I. J. Pharm Chem. Biol. Sci, 2018, 5, 312-319.
[15]
Haroun, M.; Tratrat, C.; Kositsi, K.; Tsolaki, E.; Petrou, A.; AlDhubiab, B.; Attimarad, M.; Harsha, S.; Elsewedy, H.; Gavalas, A. New benzothiazole-based thiazolidinones as potent dual anti-inflammatory/antimicrobial agents. Design, synthesis and biological evaluation. Curr. Top. Med. Chem., 2018, 18, 75-87.
[http://dx.doi.org/10.2174/1568026618666180206101814] [PMID: 29412109]
[16]
Glomb, T.; Świątek, P. Antimicrobial activity of 1,3,4-oxadiazole derivatives. Int. J. Mol. Sci., 2021, 22(13), 6979.
[http://dx.doi.org/10.3390/ijms22136979] [PMID: 34209520]
[17]
Nagaraju, B.; Kovvuri, J.; Kumar, C.G.; Routhu, S.R.; Shareef, M.A.; Kadagathur, M.; Adiyala, P.R.; Alavala, S.; Nagesh, N.; Kamal, A. Synthesis and biological evaluation of pyrazole linked benzothiazole-β-naphthol derivatives as topoisomerase I inhibitors with DNA binding ability. Bioorg. Med. Chem., 2019, 27(5), 708-720.
[http://dx.doi.org/10.1016/j.bmc.2019.01.011] [PMID: 30679134]
[18]
Chaudhry, F.; Naureen, S.; Ashraf, M.; Al-Rashida, M.; Jahan, B.; Munawar, M.A.; Khan, M.A. Imidazole-pyrazole hybrids: Synthesis, characterization and in vitro bioevaluation against α-glucosidase enzyme with molecular docking studies. Bioorg. Chem., 2019, 82, 267-273.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.047] [PMID: 30396060]
[19]
Zhu, W.J.; Cui, B.W.; Wang, H.M.; Nan, J.X.; Piao, H.R.; Lian, L.H.; Jin, C.H. Design, synthesis, and antifibrosis evaluation of 4-(benzo-[c][1,2,5]thiadiazol-5-yl)-3(5)-(6-methyl- pyridin-2-yl)pyrazole and 3(5)-(6-methylpyridin- 2-yl)-4-(thieno-[3,2,-c]pyridin-2-yl)pyrazole derivatives. Eur. J. Med. Chem., 2019, 180, 15-27.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.013] [PMID: 31299584]
[20]
Gedawy, E.M.; Kassab, A.E.; El Kerdawy, A.M. Design, synthesis and biological evaluation of novel pyrazole sulfonamide derivatives as dual COX-2/5-LOX inhibitors. Eur. J. Med. Chem., 2020, 189, 112066.
[http://dx.doi.org/10.1016/j.ejmech.2020.112066] [PMID: 31982653]
[21]
Saeedi, M.; Mohammadi-Khanaposhtani, M.; Pourrabia, P.; Razzaghi, N.; Ghadimi, R.; Imanparast, S.; Faramarzi, M.A.; Bandarian, F.; Esfahani, E.N.; Safavi, M.; Rastegar, H.; Larijani, B.; Mahdavi, M.; Akbarzadeh, T. Design and synthesis of novel quinazolinone-1,2,3-triazole hybrids as new anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and docking study. Bioorg. Chem., 2019, 83, 161-169.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.023] [PMID: 30366316]
[22]
Sun, L.; Huang, T.; Dick, A.; Meuser, M.E.; Zalloum, W.A.; Chen, C.H.; Ding, X.; Gao, P.; Cocklin, S.; Lee, K.H.; Zhan, P.; Liu, X. Design, synthesis and structure-activity relationships of 4-phenyl-1H-1,2,3-triazole phenylalanine derivatives as novel HIV-1 capsid inhibitors with promising antiviral activities. Eur. J. Med. Chem., 2020, 190, 112085.
[http://dx.doi.org/10.1016/j.ejmech.2020.112085] [PMID: 32066010]
[23]
Tageldin, G.N.; Ibrahim, T.M.; Fahmy, S.M.; Ashour, H.M.; Khalil, M.A.; Nassra, R.A.; Labouta, I.M. Synthesis, modeling and biological evaluation of some pyrazolo[3,4-d]pyrimidinones and pyrazolo[4,3-e][1,2,4]triazolo[4,3-a]pyrimidinones as anti-inflamma-tory agents. Bioorg. Chem., 2019, 90, 102844.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.018] [PMID: 31229797]
[24]
Fan, C.; Zhong, T.; Yang, H.; Yang, Y.; Wang, D.; Yang, X.; Xu, Y.; Fan, Y. Design, synthesis, biological evaluation of 6-(2-amino-1H-benzo[d]imidazole-6-yl)quinazolin-4(3H)-one derivatives as novel anticancer agents with Aurora kinase inhibition. Eur. J. Med. Chem., 2020, 190, 112108.
[http://dx.doi.org/10.1016/j.ejmech.2020.112108] [PMID: 32058239]
[25]
Ding, H.W.; Yu, L.; Bai, M.; Qin, X.C.; Song, M.; Zhao, Q.C. Design, synthesis and evaluation of some 1,6-disubstituted-1H-benzo[d]imidazoles derivatives targeted PI3K as anticancer agents. Bioorg. Chem., 2019, 93, 103283.
[http://dx.doi.org/10.1016/j.bioorg.2019.103283] [PMID: 31585260]
[26]
Dincel, E.D.; Ulusoy-Güzeldemirci, N.; Şatana, D.; Küçükbasmacı, Ö. Design, synthesis, characterization and antimicrobial evaluation of some novel hydrazinecarbothioamide, 4‐thiazolidinone and 1,2,4‐triazole‐3‐thione derivatives. J. Heterocycl. Chem., 2021, 58(1), 195-205.
[http://dx.doi.org/10.1002/jhet.4159]
[27]
Sunil Kumar, A.; Kudva, J.; Bharath, B.R.; Ananda, K.; Sadashiva, R.; Madan Kumar, S.; Revanasiddappa, B.C.; Kumar, V.; Rekha, P.D.; Naral, D. Synthesis, structural, biological and in silico studies of new 5-arylidene-4-thiazolidinone derivatives as possible anticancer, antimicrobial and antitubercular agents. New J. Chem., 2019, 43(3), 1597-1610.
[http://dx.doi.org/10.1039/C8NJ03671C]
[28]
Karaburun, A.; Acar Çevik, U.; Osmaniye, D.; Sağlık, B.; Kaya Çavuşoğlu, B.; Levent, S.; Özkay, Y.; Koparal, A.; Behçet, M.; Kaplancıklı, Z. Synthesis and evaluation of new 1,3,4-thiadiazole derivatives as potent antifungal agents. Molecules, 2018, 23(12), 3129-3147.
[http://dx.doi.org/10.3390/molecules23123129] [PMID: 30501053]
[29]
Biernasiuk, A. Berecka-Rycerz, A.; Gumieniczek, A.; Malm, M.; Łączkowski, K.Z.; Szymańska, J.; Malm, A. The newly synthesized thiazole derivatives as potential antifungal compounds against Candida albicans. Appl. Microbiol. Biotechnol., 2021, 105(16-17), 6355-6367.
[http://dx.doi.org/10.1007/s00253-021-11477-7] [PMID: 34410437]
[30]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.; Baptista, P.; Fernandes, A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s toolbox. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[31]
Saeedi, M.; Mohammadi-Khanaposhtani, M.; Asgari, M.S.; Eghbalnejad, N.; Imanparast, S.; Faramarzi, M.A.; Larijani, B.; Mahdavi, M.; Akbarzadeh, T. Design, synthesis, in vitro, and in silico studies of novel diarylimidazole-1,2,3-triazole hybrids as potent α-glucosidase inhibitors. Bioorg. Med. Chem., 2019, 27(23), 115148.
[http://dx.doi.org/10.1016/j.bmc.2019.115148] [PMID: 31679980]
[32]
Wu, J.; Tang, H.; Xu, J. Rapid synthesis of curcuminoid pyrazoles with antiviral effects through one-pot combinatorial modification of total curcuminoids. Res. Rep. Med. Chem., 2015, 5, 41-47.
[33]
Bhadoriya, K.S.; Sharma, M.C.; Jain, S.V. 2,4-Dihydropyrano[2,3-c]pyrazole: Discovery of new lead as through pharmacophore modelling, atom-based 3D-QSAR, virtual screening and docking strategies for improved anti-HIV-1 chemotherapy. J. Taibah Univ. Sci., 2015, 9(4), 521-530.
[http://dx.doi.org/10.1016/j.jtusci.2014.12.005]
[34]
Fioravanti, R.; Desideri, N.; Biava, M.; Droghini, P.; Atzori, E.M.; Ibba, C.; Collu, G.; Sanna, G.; Delogu, I.; Loddo, R.N. -((1,3-Diphenyl-1H-pyrazol-4-yl)methyl)anilines: A novel class of anti-RSV agents. Bioorg. Med. Chem. Lett., 2015, 25(11), 2401-2404.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.006] [PMID: 25913116]
[35]
Han, C.; Guo, Y.C.; Wang, D.D.; Dai, X.J.; Wu, F.J.; Liu, H.F.; Dai, G.F.; Tao, J.C. Novel pyrazole fused heterocyclic ligands: Synthesis, characterization, DNA binding/cleavage activity and anti-BVDV activity. Chin. Chem. Lett., 2015, 26(5), 534-538.
[http://dx.doi.org/10.1016/j.cclet.2015.01.006]
[36]
Manvar, D.; Pelliccia, S.; La Regina, G.; Famiglini, V.; Coluccia, A.; Ruggieri, A.; Anticoli, S.; Lee, J.C.; Basu, A.; Cevik, O.; Nencioni, L.; Palamara, A.T.; Zamperini, C.; Botta, M.; Neyts, J.; Leyssen, P.; Kaushik-Basu, N.; Silvestri, R. New 1-phenyl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides inhibit hepatitis C virus replication via suppression of cyclooxygenase-2. Eur. J. Med. Chem., 2015, 90, 497-506.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.042] [PMID: 25483263]
[37]
Chuang, H.; Huang, L.C.S.; Kapoor, M.; Liao, Y.J.; Yang, C.L.; Chang, C.C.; Wu, C.Y.; Hwu, J.R.; Huang, T.J.; Hsu, M.H. Design and synthesis of pyridine-pyrazole-sulfonate derivatives as potential anti-HBV agents. MedChemComm, 2016, 7(5), 832-836.
[http://dx.doi.org/10.1039/C6MD00008H]
[38]
Jia, H.; Bai, F.; Liu, N.; Liang, X.; Zhan, P.; Ma, C.; Jiang, X.; Liu, X. Design, synthesis and evaluation of pyrazole derivatives as non-nucleoside hepatitis B virus inhibitors. Eur. J. Med. Chem., 2016, 123, 202-210.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.048] [PMID: 27484509]
[39]
Liu, G.N.; Luo, R.H.; Zhou, Y.; Zhang, X.J.; Li, J.; Yang, L.M.; Zheng, Y.T.; Liu, H. Synthesis and anti-HIV-1 activity evaluation for novel 3a,6a-Dihydro-1H-pyrrolo[3,4-c]pyrazole-4,6-dione derivatives. Molecules, 2016, 21(9), 1198-1209.
[http://dx.doi.org/10.3390/molecules21091198] [PMID: 27617994]
[40]
Corona, A.; Onnis, V.; Deplano, A.; Bianco, G.; Demurtas, M.; Distinto, S.; Cheng, Y.C.; Alcaro, S.; Esposito, F.; Tramontano, E. Design, synthesis and antiviral evaluation of novel heteroarylcarbothioamide derivatives as dual inhibitors of HIV-1 reverse transcriptase-associated RNase H and RDDP functions. Pathog. Dis., 2017, 75(6), ftx078.
[http://dx.doi.org/10.1093/femspd/ftx078] [PMID: 28859311]
[41]
Cocco, M.T.; Congiu, C.; Onnis, V. Synthesis and in vitro antitumoral activity of new N-phenyl-3-pyrrolecarbothioamides. Bioorg. Med. Chem., 2003, 11(4), 495-503.
[http://dx.doi.org/10.1016/S0968-0896(02)00465-0] [PMID: 12538014]
[42]
Cocco, M.T.; Congiu, C.; Lilliu, V.; Onnis, V. Amidrazones as precursors of biologically active compounds--synthesis of diaminopyrazoles for evaluation of anticancer activity. Arch. Pharm. (Weinheim), 2006, 339(1), 7-13.
[http://dx.doi.org/10.1002/ardp.200500179] [PMID: 16411176]
[43]
Mosaad, S.; Yasser, M.; Waleed, M. Synthesis and biological screening of novel pyrazoles and their precursors as potential antiviral agents. Pharmacophore, 2018, 9(1), 126-139.
[44]
Walum, E.; Strenberg, K.J.D. Understanding Cell Toxicology: Principles and Pratice; Ellis Howood: New York, 1990, pp. 97-111.
[45]
Vlietinck, A.J.; Vanden Berghe, D.A. Can ethnopharmacology contribute to the development of antiviral drugs? J. Ethnopharmacol., 1991, 32(1-3), 141-153.
[46]
Yang, Z.; Li, P.; Gan, X. Novel pyrazole-hydrazone derivatives containing an isoxazole moiety: Design, synthesis, and antiviral activity. Molecules, 2018, 23(7), 1798-1810.
[http://dx.doi.org/10.3390/molecules23071798] [PMID: 30037021]
[47]
Da Costa, L.; Scheers, E.; Coluccia, A.; Casulli, A.; Roche, M.; Di Giorgio, C.; Neyts, J.; Terme, T.; Cirilli, R.; La Regina, G.; Silvestri, R.; Mirabelli, C.; Vanelle, P. Structure-based drug design of potent pyrazole derivatives against rhinovirus replication. J. Med. Chem., 2018, 61(18), 8402-8416.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00931] [PMID: 30153009]
[48]
Desideri, N.; Fioravanti, R.; Proietti Monaco, L.; Atzori, E.M.; Carta, A.; Delogu, I.; Collu, G.; Loddo, R. Design, synthesis, antiviral evaluation, and SAR studies of new 1-(Phenylsulfonyl)-1H-pyrazol−4-yl-methylaniline derivatives. Front Chem., 2019, 7, 214.
[http://dx.doi.org/10.3389/fchem.2019.00214] [PMID: 31024899]
[49]
Wassel, M.; El-Din, W.; Raga, A. Antiviral activity of adamantane-pyrazole derivatives against foot and mouth disease virus infection in vivo and in vitro with molecular docking study. J. App Vet Sci., 2020, 5(4), 37-46.
[50]
Wassel, M.M.S.; Ragab, A.; Elhag Ali, G.A.M.; Mehany, A.B.M.; Ammar, Y.A. Novel adamantane-pyrazole and hydrazone hybridized: Design, synthesis, cytotoxic evaluation, SAR study and molecular docking simulation as carbonic anhydrase inhibitors. J. Mol. Struct., 2021, 1223, 128966.
[http://dx.doi.org/10.1016/j.molstruc.2020.128966]
[51]
Youssif, B.G.M.; Mohamed, Y.A.M.; Salim, M.T.A.; Inagaki, F.; Mukai, C.; Abdu-Allah, H.H.M. Synthesis of some benzimidazole derivatives endowed with 1,2,3-triazole as potential inhibitors of hepatitis C virus. Acta Pharm., 2016, 66(2), 219-231.
[http://dx.doi.org/10.1515/acph-2016-0014] [PMID: 27279065]
[52]
Shaker, Y.M.; Omar, M.A.; Mahmoud, K.; Elhallouty, S.M.; El-Senousy, W.M.; Ali, M.M.; Mahmoud, A.E.; Abdel-Halim, A.H.; Soliman, S.M.; El Diwani, H.I. Synthesis, in vitro and in vivo antitumor and antiviral activity of novel 1-substituted benzimidazole derivatives. J. Enzyme Inhib. Med. Chem., 2015, 30(5), 826-845.
[http://dx.doi.org/10.3109/14756366.2014.979344] [PMID: 25567722]
[53]
Kharitonova, M.; Аntonov, K.; Fateev, I.; Berzina, М.; Kaushin, A.; Paramonov, A.; Kotovskaya, S.; Аndronova, V.; Konstantinova, I.; Galegov, G.; Charushin, V.; Miroshnikov, A. Chemoenzymatic Synthesis of Modified 2′-Deoxy-2′-fluoro-β-darabinofuranosyl Benzimidazoles and Evaluation of Their Activity Against Herpes Simplex Virus Type 1. Synthesis, 2016, 49(5), 1043-1052.
[http://dx.doi.org/10.1055/s-0036-1588625]
[54]
Tsay, S.C.; Lin, S.Y.; Huang, W.C.; Hsu, M.H.; Hwang, K.; Lin, C.C.; Horng, J.C.; Chen, I.C.; Hwu, J.; Shieh, F.K.; Leyssen, P.; Neyts, J. Synthesis and structure-activity relationships of imidazole-coumarin conjugates against Hepatitis C virus. Molecules, 2016, 21(2), 228.
[http://dx.doi.org/10.3390/molecules21020228] [PMID: 26901180]
[55]
Paeshuyse, J.; Kaul, A.; De Clercq, E.; Rosenwirth, B.; Dumont, J.M.; Scalfaro, P.; Bartenschlager, R.; Neyts, J. The non-immunosuppressive cyclosporin DEBIO-025 is a potent inhibitor of hepatitis C virus replication in vitro. Hepatology, 2006, 43(4), 761-770.
[http://dx.doi.org/10.1002/hep.21102] [PMID: 16557546]
[56]
Güzeldemirci, N.U. Küçükbasmacı Ö. Synthesis and antimicrobial activity evaluation of new 1,2,4-triazoles and 1,3,4-thiadiazoles bearing imidazo[2,1-b]thiazole moiety. Eur. J. Med. Chem., 2010, 45(1), 63-68.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.024] [PMID: 19939519]
[57]
Ulusoy, N. Synthesis and antituberculosis activity of cycloalkylidenehydrazide and 4-aza-1-thiaspiro[4.5]decan-3-one derivatives of imidazo[2,1-b]thiazole. Arzneimittelforschung, 2002, 52(7), 565-571.
[PMID: 12189781]
[58]
Ulusoy, G.N.; Karaman, B.; Küçükbasmaci, Ö. Antibacterial, antitubercular and antiviral activity evaluations of some arylidenehydrazide derivatives bearing imidazo[2,1-b]thiazole moiety. Turk. J. Pharm. Sci., 2017, 14(2), 157-163.
[http://dx.doi.org/10.4274/tjps.25743] [PMID: 32454607]
[59]
Ferro, S.; Buemi, M.R.; De Luca, L.; Agharbaoui, F.E.; Pannecouque, C.; Monforte, A.M. Searching for novel N 1 -substituted benzimidazol-2-ones as non-nucleoside HIV-1 RT inhibitors. Bioorg. Med. Chem., 2017, 25(14), 3861-3870.
[http://dx.doi.org/10.1016/j.bmc.2017.05.040] [PMID: 28559060]
[60]
Monforte, A.M.; Logoteta, P.; Luca, L.D.; Iraci, N.; Ferro, S.; Maga, G.; De Clercq, E.; Pannecouque, C.; Chimirri, A. Novel 1,3-dihydro-benzimidazol-2-ones and their analogues as potent non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg. Med. Chem., 2010, 18(4), 1702-1710.
[http://dx.doi.org/10.1016/j.bmc.2009.12.059] [PMID: 20097079]
[61]
Monforte, A.M.; Logoteta, P.; Ferro, S.; Luca, L.D.; Iraci, N.; Maga, G.; Clercq, E.D.; Pannecouque, C.; Chimirri, A. Design, synthesis, and structure-activity relationships of 1,3-dihydro-benzimidazol-2-one analogues as anti-HIV agents. Bioorg. Med. Chem., 2009, 17(16), 5962-5967.
[http://dx.doi.org/10.1016/j.bmc.2009.06.068] [PMID: 19616956]
[62]
Monforte, A.M.; Logoteta, P.; Ferro, S.; De Luca, L. Novel N1-substituted 1,3-dihydro-2H-benzimidazol-2-ones as potent non-nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem., 2008, 16, 7429-7502.
[http://dx.doi.org/10.1016/j.bmc.2008.06.012] [PMID: 18585918]
[63]
Monforte, A.M.; De Luca, L.; Buemi, M.R.; Agharbaoui, F.E.; Pannecouque, C.; Ferro, S. Structural optimization of N1-aryl-benzimidazoles for the discovery of new non-nucleoside reverse transcriptase inhibitors active against wild-type and mutant HIV-1 strains. Bioorg. Med. Chem., 2018, 26(3), 661-674.
[http://dx.doi.org/10.1016/j.bmc.2017.12.033] [PMID: 29291935]
[64]
Ibba, R.; Piras, S.; Delogu, I.; Loddo, R.; Carta, A. Anti-BVDV activity evaluation of naphthoimidazole derivatives compared with parental imidazoquinoline compounds. Open Med. Chem. J., 2020, 14(1), 65-70.
[http://dx.doi.org/10.2174/1874104502014010065]
[65]
Briguglio, I.; Loddo, R.; Laurini, E.; Fermeglia, M.; Piras, S.; Corona, P.; Giunchedi, P.; Gavini, E.; Sanna, G.; Giliberti, G.; Ibba, C.; Farci, P.; La Colla, P.; Pricl, S.; Carta, A. Synthesis, cytotoxicity and antiviral evaluation of new series of imidazo[4,5-g]quinoline and pyrido[2,3-g]quinoxalinone derivatives. Eur. J. Med. Chem., 2015, 105, 63-79.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.002] [PMID: 26479028]
[66]
Srivastava, R.; Gupta, S.K.; Naaz, F.; Sen Gupta, P.S.; Yadav, M.; Singh, V.K.; Singh, A.; Rana, M.K.; Gupta, S.K.; Schols, D.; Singh, R.K. Alkylated benzimidazoles: Design, synthesis, docking, DFT analysis, ADMET property, molecular dynamics and activity against HIV and YFV. Comput. Biol. Chem., 2020, 89, 107400.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107400] [PMID: 33068917]
[67]
Srivastava, R.; Gupta, S.K.; Naaz, F.; Singh, A.; Singh, V.K.; Verma, R.; Singh, N.; Singh, R.K. Synthesis, antibacterial activity, synergistic effect, cytotoxicity, docking and molecular dynamics of benzimidazole analogues. Comput. Biol. Chem., 2018, 76, 1-16.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.05.021] [PMID: 29857255]
[68]
Kachaeva, M.V.; Pilyo, S.G.; Hartline, C.B.; Harden, E.A.; Prichard, M.N.; Zhirnov, V.V.; Brovarets, V.S. In vitro activity of novel derivatives of 1,3-oxazole-4-carboxylate and1,3-oxazole-4-carbonitrile against human cytomegalovirus. Med. Chem. Res., 2019, 28, 1205-1211.
[http://dx.doi.org/10.1007/s00044-019-02365-x]
[69]
Rawle, D.J.; Li, D.; Wu, Z.; Wang, L.; Choong, M.; Lor, M.; Reid, R.C.; Fairlie, D.P.; Harris, J.; Tachedjian, G.; Poulsen, S.A.; Harrich, D. Oxazole-benzenesulfonamide derivatives inhibit HIV-1 reverse transcriptase interaction with cellular eEF1A and reduce viral replication. J. Virol., 2019, 93(12), e00239-e19.
[http://dx.doi.org/10.1128/JVI.00239-19] [PMID: 30918071]
[70]
Warren, K.; Wei, T.; Li, D.; Qin, F.; Warrilow, D.; Lin, M.H.; Sivakumaran, H.; Apolloni, A.; Abbott, C.M.; Jones, A.; Anderson, J.L.; Harrich, D. Eukaryotic elongation factor 1 complex subunits are critical HIV-1 reverse transcription cofactors. Proc. Natl. Acad. Sci. USA, 2012, 109(24), 9587-9592.
[http://dx.doi.org/10.1073/pnas.1204673109] [PMID: 22628567]
[71]
Li, D.; Wei, T.; Rawle, D.J.; Qin, F.; Wang, R.; Soares, D.C.; Jin, H.; Sivakumaran, H.; Lin, M.H.; Spann, K.; Abbott, C.M.; Harrich, D. Specific interactionbetween eEF1A and HIV RT is critical for HIV-1 reverse transcription anda potential anti-HIV target. PLoS Pathog., 2015, 11(12), e1005289.
[http://dx.doi.org/10.1371/journal.ppat.1005289] [PMID: 26624286]
[72]
García-Ramírez, V.G.; Suarez-Castro, A.; Villa-Lopez, M.G.; Díaz-Cervantes, E.; Chacón-García, L.; Cortes-García, C.J. Synthesis of novel acylhydrazone-oxazole hybrids and docking studies of SARS-CoV-2 main protease. Chem. Proc., 2020, 3, 1.
[http://dx.doi.org/10.3390/ecsoc-24-08329]
[73]
Creager, A.N.H.; Scholthof, K.B.G.; Citovsky, V.; Scholthof, H.B. Tobacco mosaic virus. Pioneering research for a century. Plant Cell, 1999, 11(3), 301-308.
[http://dx.doi.org/10.1105/tpc.11.3.301] [PMID: 10072391]
[74]
Chen, M.H.; Chen, Z.; Song, B.A.; Bhadury, P.S.; Yang, S.; Cai, X.J.; Hu, D.Y.; Xue, W.; Zeng, S. Synthesis and antiviral activities of chiral thiourea derivatives containing an alpha-aminophos-phonate moiety. J. Agric. Food Chem., 2009, 57(4), 1383-1388.
[http://dx.doi.org/10.1021/jf803215t] [PMID: 19199594]
[75]
Yang, Z.B.; Li, P.; He, Y.J. Design, synthesis, and bioactivity evaluation of novel isoxazole-amide derivatives containing an acylhydrazone moiety as new active antiviral agents. Molecules, 2019, 24(20), 3766.
[http://dx.doi.org/10.3390/molecules24203766] [PMID: 31635044]
[76]
Egorova, A.; Kazakova, E.; Jahn, B.; Ekins, S.; Makarov, V.; Schmidtke, M. Novel pleconaril derivatives: Influence of substituents in the isoxazole and phenyl rings on the antiviral activity against enteroviruses. Eur. J. Med. Chem., 2020, 188, 112007.
[http://dx.doi.org/10.1016/j.ejmech.2019.112007] [PMID: 31881489]
[77]
Makarov, V.A.; Riabova, O.B.; Granik, V.G.; Wutzler, P.; Schmidtke, M. Novel [(biphenyloxy)propyl]isoxazole derivatives for inhibition of human rhinovirus 2 and coxsackievirus B3 replication. J. Antimicrob. Chemother., 2005, 55(4), 483-488.
[http://dx.doi.org/10.1093/jac/dki055] [PMID: 15743897]
[78]
Schmidtke, M.; Wutzler, P.; Zieger, R.; Riabova, O.B.; Makarov, V.A. New pleconaril and [(biphenyloxy)propyl]isoxazole derivatives with substitutions in the central ring exhibit antiviral activity against pleconaril-resistant coxsackievirus B3. Antiviral Res., 2009, 81(1), 56-63.
[http://dx.doi.org/10.1016/j.antiviral.2008.09.002] [PMID: 18840470]
[79]
Cascella, M.; Rajnik, M.; Cuomo, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation and Treatment Coronavirus (COVID-19); Stat Pearls Publishing: Treasure Island, FL, USA, 2020.
[80]
Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg., 2020, 76, 71-76.
[http://dx.doi.org/10.1016/j.ijsu.2020.02.034] [PMID: 32112977]
[81]
Algethami, F.K.; Cherif, M.; Jlizi, S.; Ben Hamadi, N.; Romdhane, A.; Elamin, M.R.; Alghamdi, M.A.; Ben Jannet, H. Design, microwave-assisted synthesis and in silico prediction study of novel isoxazole linked pyranopyrimidinone conjugates as new targets for searching potential Anti-SARS-CoV-2 agents. Molecules, 2021, 26(20), 6103-6121.
[http://dx.doi.org/10.3390/molecules26206103] [PMID: 34684683]
[82]
Sokolova, A.S.; Yarovaya, O.I.; Bormotov, N.I.; Shishkina, L.N.; Salakhutdinov, N.F. Synthesis and antiviral activity of camphor-based 1,3-thiazolidin-4-one and thiazole derivatives as Orthopoxvirus -reproduction inhibitors. MedChemComm, 2018, 9(10), 1746-1753.
[http://dx.doi.org/10.1039/C8MD00347E] [PMID: 30429979]
[83]
Kasralikar, H.M.; Jadhavar, S.C.; Goswami, S.V.; Kaminwar, N.S.; Bhusare, S.R. Design, synthesis and molecular docking of pyrazolo [3,4d] thiazole hybrids as potential anti-HIV-1 NNRT inhibitors. Bioorg. Chem., 2019, 86, 437-444.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.006] [PMID: 30771690]
[84]
Gürsoy, E.; Dincel, E.D.; Naesens, L.; Ulusoy Güzeldemirci, N. Design and synthesis of novel Imidazo[2,1-b]thiazole derivatives as potent antiviral and antimycobacterial agents. Bioorg. Chem., 2020, 95, 103496.
[http://dx.doi.org/10.1016/j.bioorg.2019.103496] [PMID: 31862455]
[85]
Kumar, M.; Chung, S.M.; Enkhtaivan, G.; Patel, R.V.; Shin, H.S.; Mistry, B.M. Molecular docking studies and biological evaluation of berberine-benzothiazole derivatives as an anti-influenza agent via blocking of neuraminidase. Int. J. Mol. Sci., 2021, 22(5), 2368.
[http://dx.doi.org/10.3390/ijms22052368] [PMID: 33673431]
[86]
Petrou, A.; Zagaliotis, P.; Theodoroula, N.F.; Mystridis, G.A.; Vizirianakis, I.S.; Walsh, T.J.; Geronikaki, A. Thiazole/thiadiazole/benzothiazole based thiazolidin-4-one derivatives as potential inhibitors of main protease of SARS-CoV-2. Molecules, 2022, 27(7), 2180.
[http://dx.doi.org/10.3390/molecules27072180] [PMID: 35408577]
[87]
Manvar, D. Küçükgüzel, İ.; Erensoy, G.; Tatar, E.; Deryabaşoğulları G.; Reddy, H.; Talele, T.T.; Cevik, O.; Kaushik-Basu, N. Discovery of conjugated thiazolidinone-thiadiazole scaffold as anti-dengue virus polymerase inhibitors. Biochem. Biophys. Res. Commun., 2016, 469(3), 743-747.
[http://dx.doi.org/10.1016/j.bbrc.2015.12.042] [PMID: 26697747]
[88]
Gan, X.; Hu, D.; Chen, Z.; Wang, Y.; Song, B. Synthesis and antiviral evaluation of novel 1,3,4-oxadiazole/thiadiazole-chalcone conjugates. Bioorg. Med. Chem. Lett., 2017, 27(18), 4298-4301.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.038] [PMID: 28838690]
[89]
Zhang, J.P.; Li, X-Y.; Dong, Y-W.; Qin, Y-G.; Li, X-L.; Song, B-A.; Yang, X-L. Synthesis and biological evaluation of 4-methyl-1,2,3-thiadiazole-5-carboxaldehyde benzoyl hydrazone derivatives. Chin. Chem. Lett., 2017, 28(6), 1238-1242.
[http://dx.doi.org/10.1016/j.cclet.2017.02.002]
[90]
Fascio, M.L.; Sepúlveda, C.S.; Damonte, E.B.; D’Accorso, N.B. Synthesis and antiviral activity of some imidazo[1,2-b][1,3,4]thiadiazole carbohydrate derivatives. Carbohydr. Res., 2019, 480, 61-66.
[http://dx.doi.org/10.1016/j.carres.2019.05.003] [PMID: 31176191]
[91]
Buemi, M.R.; Gitto, R.; Ielo, L.; Pannecouque, C.; De Luca, L. Inhibition of HIV-1 RT activity by a new series of 3-(1,3,4-thiadiazol-2-yl)thiazolidin-4-one derivatives. Bioorg. Med. Chem., 2020, 28(8), 115431.
[http://dx.doi.org/10.1016/j.bmc.2020.115431] [PMID: 32197813]
[92]
Tatar, E. Yaldız, S.; Kulabaş N.; Vanderlinden, E.; Naesens, L.; Küçükgüzel, İ. Synthesis and structure-activity relationship of L ‐methionine‐coupled 1,3,4‐thiadiazole derivatives with activity against influenza virus. Chem. Biol. Drug Des., 2022, 99(3), 398-415.
[http://dx.doi.org/10.1111/cbdd.13995] [PMID: 34873848]
[93]
Tatar, E. Kόηόkgόzel, G.; Karakuş S.; de Clercq, E.; Andrei, G.; Snoeck, R.; Pannecouque, C. Synthesis and biological evaluation of some new 1,3,4-thiadiazole and 1,2,4-triazole derivatives from L-methionine as antituberculosis and antiviral agents. Marmara Pharm. J., 2015, 19(2), 88-102.
[http://dx.doi.org/10.12991/mpj.2015199639]
[94]
Dong, J.; Xiao, M.; Ma, Q.; Zhang, G.; Zhao, W.; Kong, M.; Zhang, Y.; Qiu, L.; Hu, W. Design and synthesis of pinane oxime derivatives as novel anti-influenza agents. Bioorg. Chem., 2020, 102, 104106.
[http://dx.doi.org/10.1016/j.bioorg.2020.104106] [PMID: 32739481]
[95]
Dong, J.; Yan, F.; Li, S.; Li, Z.; Qin, Y. Multigram scale synthesis and anti-influenza activity of 3-indoleacetonitrile glucosides. Nat. Prod. Commun., 2020, 15(10), 1934578X2095328.
[http://dx.doi.org/10.1177/1934578X20953289]
[96]
Zhao, X.; Li, R.; Zhou, Y.; Xiao, M.; Ma, C.; Yang, Z.; Zeng, S.; Du, Q.; Yang, C.; Jiang, H.; Hu, Y.; Wang, K.; Mok, C.K.P.; Sun, P.; Dong, J.; Cui, W.; Wang, J.; Tu, Y.; Yang, Z.; Hu, W. Discovery of highly potent pinanamine-based inhibitors against amantadine- and oseltamivir-resistant influenza A viruses. J. Med. Chem., 2018, 61(12), 5187-5198.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00042] [PMID: 29799746]
[97]
Dong, J.; Chen, S.; Li, R.; Cui, W.; Jiang, H.; Ling, Y.; Yang, Z.; Hu, W. Imidazole-based pinanamine derivatives: Discovery of dual inhibitors of the wild-type and drug-resistant mutant of the influenza A virus. Eur. J. Med. Chem., 2016, 108, 605-615.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.013] [PMID: 26722757]
[98]
Dong, J.; Pei, Q.; Wang, P.; Ma, Q.; Hu, W. Optimized POCl3-assisted synthesis of 2-amino-1,3,4-thiadiazole/1,3,4-oxadiazole derivatives as anti-influenza agents. Arab. J. Chem., 2022, 15(4), 103712.
[http://dx.doi.org/10.1016/j.arabjc.2022.103712]
[99]
Benmansour, F.; Eydoux, C.; Querat, G.; de Lamballerie, X.; Canard, B.; Alvarez, K.; Guillemot, J.C.; Barral, K. Novel 2-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,3,4-oxadiazole and 3-phenyl-5-[(E)-2-(thiophen-2-yl)ethenyl]-1,2,4-oxadiazole derivatives as dengue virus inhibitors targeting NS5 polymerase. Eur. J. Med. Chem., 2016, 109, 146-156.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.046] [PMID: 26774922]
[100]
Wang, P.Y.; Shao, W.B.; Xue, H.T.; Fang, H.S.; Zhou, J.; Wu, Z.B.; Song, B.A.; Yang, S. Synthesis of novel 1,3,4-oxadiazole derivatives containing diamides as promising antibacterial and antiviral agents. Res. Chem. Intermed., 2017, 43(11), 6115-6130.
[http://dx.doi.org/10.1007/s11164-017-2980-x]
[101]
Kim, J.; Shin, J.S.; Ahn, S.; Han, S.B.; Jung, Y.S. 3-Aryl-1,2,4-oxadiazole derivatives active against human rhinovirus. ACS Med. Chem. Lett., 2018, 9(7), 667-672.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00134] [PMID: 30034598]
[102]
Hamdani, S.S.; Khan, B.A.; Hameed, S.; Batool, F.; Saleem, H.N.; Mughal, E.U.; Saeed, M. Synthesis and evaluation of novel S-benzyl- and S-alkylphthalimide- oxadiazole -benzenesulfonamide hybrids as inhibitors of dengue virus protease. Bioorg. Chem., 2020, 96, 103567.
[http://dx.doi.org/10.1016/j.bioorg.2020.103567] [PMID: 32062063]
[103]
Vernekar, S.K.V.; Qiu, L.; Zhang, J.; Kankanala, J.; Li, H.; Geraghty, R.J.; Wang, Z. 5′ - silylated 3′ -1,2,3-triazolyl thymidine analogues as inhibitors of West Nile Virus and Dengue virus. J. Med. Chem., 2015, 58(9), 4016-4028.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00327] [PMID: 25909386]
[104]
Chudinov, M.V.; Matveev, A.V.; Prutkov, A.N.; Konstantinova, I.D.; Fateev, I.V.; Prasolov, V.S.; Smirnova, O.A.; Ivanov, A.V.; Galegov, G.A.; Deryabin, P.G. Novel 5-alkyl(aryl)-substituted ribavirine analogues: Synthesis and antiviral evaluation. Mendeleev Commun., 2016, 26(3), 214-216.
[http://dx.doi.org/10.1016/j.mencom.2016.04.012]
[105]
Artyushin, O.I.; Sharova, E.V.; Vinogradova, N.M.; Genkina, G.K.; Moiseeva, A.A.; Klemenkova, Z.S.; Orshanskaya, I.R.; Shtro, A.A.; Kadyrova, R.A.; Zarubaev, V.V.; Yarovaya, O.I.; Salakhutdinov, N.F.; Brel, V.K. Synthesis of camphecene derivatives using click chemistry methodology and study of their antiviral activity. Bioorg. Med. Chem. Lett., 2017, 27(10), 2181-2184.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.051] [PMID: 28366530]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy