Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Perspective

NAD+ Consuming Enzymes: Involvement in Therapies and Prevention of Human Diseases

Author(s): Mitsuko Masutani, Masanao Miwa and Palmiro Poltronieri*

Volume 23, Issue 12, 2023

Published on: 03 May, 2023

Page: [1351 - 1354] Pages: 4

DOI: 10.2174/1871520623666230320153757

Price: $65

Abstract

Neuroprotection is one of the hot topics in medicine. Alzheimer’s disease, amyotrophic lateral sclerosis, retinal pigment epithelial (RPE) degeneration, and axonal degeneration have been studied for the involvement of NAD depletion. Localized NAD+ depletion could lead to overactivation and crowding of local NAD+ salvage pathways. It has been stated that NAD+ depletion caused by PARPs and PAR cycling has been related to metabolic diseases and cancer. Additionally, it is now acknowledged that SARM1 dependent NAD+ depletion causes axon degeneration. New targeted therapeutics, such as SARM1 inhibitors, and NAD+ salvage drugs will help alleviate the dysfunctions affecting cell life and death in neurodegeneration as well as in metabolic diseases and cancer.

Next »
Graphical Abstract

[1]
Poltronieri, P.; Miwa, M.; Masutani, M. ADP-ribosylation as posttranslational modification of proteins: Use of inhibitors in cancer control. Int. J. Mol. Sci., 2021, 22(19), 10829.
[http://dx.doi.org/10.3390/ijms221910829] [PMID: 34639169]
[2]
Antolín, A.A.; Mestres, J. Linking off-target kinase pharmacology to the differential cellular effects observed among PARP inhibitors. Oncotarget, 2014, 5(10), 3023-3028.
[http://dx.doi.org/10.18632/oncotarget.1814] [PMID: 24632590]
[3]
Sandhu, D.; Antolin, A.A.; Cox, A.R.; Jones, A.M. Identification of different side effects between PARP inhibitors and their polypharmacological multitarget rationale. Br. J. Clin. Pharmacol., 2022, 88(2), 742-752.
[http://dx.doi.org/10.1111/bcp.15015] [PMID: 34327724]
[4]
Palve, V.; Knezevic, C.E.; Bejan, D.S.; Luo, Y.; Li, X.; Novakova, S.; Welsh, E.A.; Fang, B.; Kinose, F.; Haura, E.B.; Monteiro, A.N.; Koomen, J.M.; Cohen, M.S.; Lawrence, H.R.; Rix, U. The non-canonical target PARP16 contributes to polypharmacology of the PARP inhibitor talazoparib and its synergy with WEE1 inhibitors. Cell Chem. Biol., 2022, 29(2), 202-214.
[http://dx.doi.org/10.1016/j.chembiol.2021.07.008] [PMID: 34329582]
[5]
Figley, M.D.; Gu, W.; Nanson, J.D.; Shi, Y.; Sasaki, Y.; Cunnea, K.; Malde, A.K.; Jia, X.; Luo, Z.; Saikot, F.K.; Mosaiab, T.; Masic, V.; Holt, S.; Hartley-Tassell, L.; McGuinness, H.Y.; Manik, M.K.; Bosanac, T.; Landsberg, M.J.; Kerry, P.S.; Mobli, M.; Hughes, R.O.; Milbrandt, J.; Kobe, B.; DiAntonio, A.; Ve, T. SARM1 is a metabolic sensor activated by an increased NMN/NAD+ ratio to trigger axon degeneration. Neuron, 2021, 109(7), 1118-1136.
[http://dx.doi.org/10.1016/j.neuron.2021.02.009] [PMID: 33657413]
[6]
Horsefield, S.; Burdett, H.; Zhang, X.; Manik, M.K.; Shi, Y.; Chen, J.; Qi, T.; Gilley, J.; Lai, J.S.; Rank, M.X.; Casey, L.W.; Gu, W.; Ericsson, D.J.; Foley, G.; Hughes, R.O.; Bosanac, T.; von Itzstein, M.; Rathjen, J.P.; Nanson, J.D.; Boden, M.; Dry, I.B.; Williams, S.J.; Staskawicz, B.J.; Coleman, M.P.; Ve, T.; Dodds, P.N.; Kobe, B. NAD + cleavage activity by animal and plant TIR domains in cell death pathways. Science, 2019, 365(6455), 793-799.
[http://dx.doi.org/10.1126/science.aax1911] [PMID: 31439792]
[7]
Eastman, S.; Bayless, A. Guo, M. The nucleotide revolution: Immunity at the intersection of TIR-domains, nucleotides, and Ca2. Mol. Plant Microbe Interact., 2022, 35(11), 964-976.
[http://dx.doi.org/10.1094/MPMI-06-22-0132-CR] [PMID: 35881867]
[8]
Li, W.H.; Huang, K.; Cai, Y.; Wang, Q.W.; Zhu, W.J.; Hou, Y.N.; Wang, S.; Cao, S.; Zhao, Z.Y.; Xie, X.J.; Du, Y.; Lee, C.S.; Lee, H.C.; Zhang, H.; Zhao, Y.J. Permeant fluorescent probes visualize the activation of SARM1 and uncover an anti-neurodegenerative drug candidate. eLife, 2021, 10, e67381.
[http://dx.doi.org/10.7554/eLife.67381] [PMID: 33944777]
[9]
Carreras-Puigvert, J.; Zitnik, M.; Jemth, A.S.; Carter, M.; Unterlass, J.E.; Hallström, B.; Loseva, O.; Karem, Z.; Calderón-Montaño, J.M.; Lindskog, C.; Edqvist, P.H.; Matuszewski, D.J.; Ait Blal, H.; Berntsson, R.P.A.; Häggblad, M.; Martens, U.; Studham, M.; Lundgren, B.; Wählby, C.; Sonnhammer, E.L.L.; Lundberg, E.; Stenmark, P.; Zupan, B.; Helleday, T. A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family. Nat. Commun., 2017, 8(1), 1541.
[http://dx.doi.org/10.1038/s41467-017-01642-w] [PMID: 29142246]
[10]
Kulikova, V.A.; Nikiforov, A.A. Role of NUDIX Hydrolases in NAD and ADP-ribose metabolism in mammals. Biochemistry, 2020, 85(8), 883-894.
[http://dx.doi.org/10.1134/S0006297920080040] [PMID: 33045949]
[11]
Sharma, S.; Grudzien-Nogalska, E.; Hamilton, K.; Jiao, X.; Yang, J.; Tong, L.; Kiledjian, M. Mammalian Nudix proteins cleave nucleotide metabolite caps on RNAs. Nucleic Acids Res., 2020, 48(12), 6788-6798.
[http://dx.doi.org/10.1093/nar/gkaa402] [PMID: 32432673]
[12]
Poltronieri, P.; Mezzolla, V.; Farooqi, A.A.; Di Girolamo, M. NAD precursors, mitochondria targeting compounds and ADP-ribosylation inhibitors in treatment of inflammatory diseases and cancer. Curr. Med. Chem., 2021, 28(41), 8453-8479.
[http://dx.doi.org/10.2174/0929867328666210118152653] [PMID: 33461448]
[13]
Zhao, Q.; Capelli, R.; Carloni, P.; Lüscher, B.; Li, J.; Rossetti, G. Enhanced sampling approach to the induced-fit docking problem in protein–ligand binding: The case of mono-adp-ribosylation hydrolase inhibitors. J. Chem. Theory Comput., 2021, 17(12), 7899-7911.
[http://dx.doi.org/10.1021/acs.jctc.1c00649] [PMID: 34813698]
[14]
Seydel, C. Diving deeper into the proteome. Nat. Methods, 2022, 19(9), 1036-1040.
[http://dx.doi.org/10.1038/s41592-022-01599-9] [PMID: 36008631]
[15]
Rhine, K.; Dasovich, M.; Yoniles, J.; Badiee, M.; Skanchy, S.; Ganser, L.R.; Ge, Y.; Fare, C.M.; Shorter, J.; Leung, A.K.L.; Myong, S. Poly(ADP-ribose) drives condensation of FUS via a transient interaction. Mol. Cell, 2022, 82(5), 969-985.e11.
[http://dx.doi.org/10.1016/j.molcel.2022.01.018] [PMID: 35182479]
[16]
Feldman, H.C.; Merlini, E.; Guijas, C.; DeMeester, K.E.; Njomen, E.; Kozina, E.M.; Yokoyama, M.; Vinogradova, E.; Reardon, H.T.; Melillo, B.; Schreiber, S.L.; Loreto, A.; Blankman, J.L.; Cravatt, B.F. Selective inhibitors of SARM1 targeting an allosteric cysteine in the autoregulatory ARM domain. Proc. Natl. Acad. Sci., 2022, 119(35), e2208457119.
[http://dx.doi.org/10.1073/pnas.2208457119] [PMID: 35994671]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy