Abstract
Background: Colorectal cancer (CRC) is one of the most common tumors globally and a leading cause of cancer-related death. In China, CRC is the third most common cancer type. Sauchinone is known to exhibit anti-tumor and anti-inflammatory activity, but its effects on CRC have not been investigated to-date
Objective: To investigate the effects of Sauchinone on CRC development and metastasis and its underlying mechanism( s) of action.
Methods: SW480 and HCT116 cells were treated with a range of concentrations of Sauchinone. Cell proliferation was measured using EDU assays and flow cytometry.Results: Treatment with 50 μM Sauchinone decreased the expression of MMP2 and MMP9 and downregulated PD-L1 expression (PD-1/PD-L1) leading to checkpoint inhibition. Sauchinone treatment also enhanced the cytotoxicity of SW840 and HCT116 cells co-cultured with CD8+ T cells. The overexpression of PD-L1 rescued the anti-proliferative and cytotoxic effects of Sauchinone in both types.
Conclusions: We show that Sauchinone suppresses CRC cell growth through the downregulation of MMP2 and MM9 expression and PD-1/PD-L1 mediated checkpoint inhibition. Collectively, these data highlight the promise of Sauchinone as a future anti-CRC therapeutic.
Graphical Abstract
[http://dx.doi.org/10.1016/j.tranon.2021.101174] [PMID: 34243011]
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[http://dx.doi.org/10.1007/s12272-018-1093-4] [PMID: 30610615];
(b) Cheng, Y.; Yin, Z.; Jiang, F.; Xu, J.; Chen, H.; Gu, Q. Two new lignads from the aerial parts of Saururus chinensis with cytotoxicity toward nasopharyngeal carcinoma. Fitoterapia, 2020, 141, 104344.
[http://dx.doi.org/10.1016/j.fitote.2019.104344] [PMID: 31465814];
(c) Kim, N.H.; Sung, N.J.; Shin, S.; Ryu, D.S.; Youn, H.S.; Park, S.A. Sauchinone inhibits the proliferation, migration and invasion of breast cancer cells by suppressing Akt-CREB-MMP13 signaling pathway. Biosci. Rep., 2021, 41(10), BSR20211067.
[http://dx.doi.org/10.1042/BSR20211067] [PMID: 34643237]
[http://dx.doi.org/10.1021/np400757k] [PMID: 24359277];
(b) Park, H.J.; Kim, R.G.; Seo, B.R.; Ha, J.; Ahn, B.T.; Bok, S.H.; Lee, Y.S.; Kim, H.J.; Lee, K.T. Saucernetin-7 and saucernetin-8 isolated from Saururus chinensis inhibit the LPS-induced production of nitric oxide and prostaglandin E2 in macrophage RAW264.7 cells. Planta Med., 2003, 69(10), 947-950.
[http://dx.doi.org/10.1055/s-2003-45106] [PMID: 14648400];
(c) Ryu, S.Y.; Oh, K.S.; Kim, Y.S.; Lee, B.H. Antihypertensive, vasorelaxant and inotropic effects of an ethanolic extract of the roots of Saururus chinensis. J. Ethnopharmacol., 2008, 118(2), 284-289.
[http://dx.doi.org/10.1016/j.jep.2008.04.011] [PMID: 18495395];
(d) Lee, Y.J.; Kim, J.; Yi, J.M.; Oh, S.M.; Kim, N.S.; Kim, H.; Oh, D.S.; Bang, O.S.; Lee, J. Anti-proliferative neolignans from Saururus chinensis against human cancer cell lines. Biol. Pharm. Bull., 2012, 35(8), 1361-1366.
[http://dx.doi.org/10.1248/bpb.b110670] [PMID: 22863938];
(e) Seo, C.S.; Lee, Y.K.; Kim, Y.J.; Jung, J.S.; Jahng, Y.; Chang, H.W.; Song, D.K.; Son, J.K. Protective effect of lignans against sepsis from the roots of Saururus chinensis. Biol. Pharm. Bull., 2008, 31(3), 523-526.
[http://dx.doi.org/10.1248/bpb.31.523] [PMID: 18310923]
[http://dx.doi.org/10.1016/j.cbi.2016.11.016] [PMID: 27871897]
[http://dx.doi.org/10.1007/s11418-020-01435-4] [PMID: 32666278]
[http://dx.doi.org/10.3390/ijms21093379] [PMID: 32403220]
[http://dx.doi.org/10.3390/ijms21249739] [PMID: 33419373]
[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D] [PMID: 12730128]
[http://dx.doi.org/10.1186/s13287-016-0393-1] [PMID: 27612636];
(b) Singer, C.F.; Kronsteiner, N.; Marton, E.; Kubista, M.; Cullen, K.J.; Hirtenlehner, K.; Seifert, M.; Kubista, E. MMP-2 and MMP-9 expression in breast cancer-derived human fibroblasts is differentially regulated by stromal-epithelial interactions. Breast Cancer Res. Treat., 2002, 72(1), 69-77.
[http://dx.doi.org/10.1023/A:1014918512569] [PMID: 12000221]
[http://dx.doi.org/10.3390/s18103249] [PMID: 30262739];
(b) Hicklin, D.J.; Ellis, L.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol., 2005, 23(5), 1011-1027.
[http://dx.doi.org/10.1200/JCO.2005.06.081] [PMID: 15585754];
(c) Han, I.; Lee, M.R.; Nam, K.W.; Oh, J.H.; Moon, K.C.; Kim, H.S. Expression of macrophage migration inhibitory factor relates to survival in high-grade osteosarcoma. Clin. Orthop. Relat. Res., 2008, 466(9), 2107-2113.
[http://dx.doi.org/10.1007/s11999-008-0333-1] [PMID: 18563508];
(d) Loukopoulos, P.; Mungall, B.A.; Straw, R.C.; Thornton, J.R.; Robinson, W.F. Matrix metalloproteinase-2 and -9 involvement in canine tumors. Vet. Pathol., 2003, 40(4), 382-394.
[http://dx.doi.org/10.1354/vp.40-4-382] [PMID: 12824510];
(e) Chen, Q.; Jin, M.; Yang, F.; Zhu, J.; Xiao, Q.; Zhang, L. Matrix metalloproteinases: Inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators Inflamm., 2013, 2013, 928315.
[http://dx.doi.org/10.1155/2013/928315] [PMID: 23840100]
[http://dx.doi.org/10.1007/s00262-004-0593-x] [PMID: 15599732];
(b) Iwai, Y.; Ishida, M.; Tanaka, Y.; Okazaki, T.; Honjo, T.; Minato, N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. USA, 2002, 99(19), 12293-12297.
[http://dx.doi.org/10.1073/pnas.192461099] [PMID: 12218188];
(c) Husain, N.; Srivastava, P.; Shukla, S.; Chauhan, S.; Pandey, A.; Masood, S. PD-L1 Expression in colorectal carcinoma and its correlation with clinicopathological parameters, microsatellite instability and BRAF mutation. Indian J. Pathol. Microbiol., 2021, 64(3), 490-496.
[http://dx.doi.org/10.4103/IJPM.IJPM_521_20] [PMID: 34341259]
[http://dx.doi.org/10.2217/imt.14.9] [PMID: 24815784];
(b) Lipson, E.J.; Forde, P.M.; Hammers, H.J.; Emens, L.A.; Taube, J.M.; Topalian, S.L. Antagonists of PD-1 and PD-L1 in cancer treatment. Semin. Oncol., 2015, 42(4), 587-600.
[http://dx.doi.org/10.1053/j.seminoncol.2015.05.013] [PMID: 26320063]
[http://dx.doi.org/10.1084/jem.20112741] [PMID: 22641383]
[http://dx.doi.org/10.1182/blood-2006-10-051482] [PMID: 17363736];
(b) Qian, Y.; Deng, J.; Geng, L.; Xie, H.; Jiang, G.; Zhou, L.; Wang, Y.; Yin, S.; Feng, X.; Liu, J.; Ye, Z.; Zheng, S. TLR4 signaling induces B7-H1 expression through MAPK pathways in bladder cancer cells. Cancer Invest., 2008, 26(8), 816-821.
[http://dx.doi.org/10.1080/07357900801941852] [PMID: 18608206]
[http://dx.doi.org/10.1002/cbdv.201800024] [PMID: 29495104]
[http://dx.doi.org/10.1016/j.bbrc.2009.05.039] [PMID: 19450563]
[http://dx.doi.org/10.1016/j.phymed.2010.10.013] [PMID: 21111586]
[http://dx.doi.org/10.5487/TR.2010.26.4.245] [PMID: 24278531]
[http://dx.doi.org/10.1186/s12885-017-3418-y] [PMID: 28633655]
[http://dx.doi.org/10.1007/s10911-010-9177-x] [PMID: 20440544]
[PMID: 32266087]
[http://dx.doi.org/10.7150/jca.57334] [PMID: 33854633]
[PMID: 31933995]
[http://dx.doi.org/10.1016/j.csbj.2018.11.004] [PMID: 30581539];
(b) Nolz, J.C. Molecular mechanisms of CD8+ T cell trafficking and localization. Cell. Mol. Life Sci., 2015, 72(13), 2461-2473.
[http://dx.doi.org/10.1007/s00018-015-1835-0] [PMID: 25577280];
(c) Kim, P.S.; Ahmed, R. Features of responding T cells in cancer and chronic infection. Curr. Opin. Immunol., 2010, 22(2), 223-230.
[http://dx.doi.org/10.1016/j.coi.2010.02.005] [PMID: 20207527]