Abstract
The neurosteroids progesterone and allopregnanolone control numerous neuroprotective functions in neural tissues, including inhibition of epileptic seizures and cell death. Ganaxolone (3α-hydroxy-3β-methyl-5α-pregnan-20-one) (GNX) is the 3β- methylated synthetic analog of allopregnanolone and an allosteric GABAA positive modulator. Ganaxolone reduces the frequency of CDD-associated seizures.
[1]
Knight, E.M.P.; Amin, S.; Bahi-Buisson, N.; Benke, T.A.; Cross, J.H.; Demarest, S.T.; Olson, H.E.; Specchio, N.; Fleming, T.R.; Aimetti, A.A.; Gasior, M.; Devinsky, O.; Belousova, E.; Belyaev, O.; Ben-Zeev, B.; Brunklaus, A.; Ciliberto, M.A.; Darra, F.; Davis, R.; De Giorgis, V.; Doronina, O.; Fahey, M.; Guerrini, R.; Heydemann, P.; Khaletskaya, O.; Lisewski, P.; Marsh, E.D.; Moosa, A.N.; Perry, S.; Philip, S.; Rajaraman, R.R.; Renfroe, B.; Saneto, R.P.; Scheffer, I.E.; Sogawa, Y.; Suter, B.; Sweney, M.T.; Tarquinio, D.; Veggiotti, P.; Wallace, G.; Weisenberg, J.; Wilfong, A.; Wirrell, E.C.; Zafar, M.; Zolnowska, M. Safety and efficacy of ganaxolone in patients with CDKL5 deficiency disorder: Results from the double-blind phase of a randomised, placebo-controlled, phase 3 trial. Lancet Neurol., 2022, 21(5), 417-427.
[http://dx.doi.org/10.1016/S1474-4422(22)00077-1] [PMID: 35429480]
[http://dx.doi.org/10.1016/S1474-4422(22)00077-1] [PMID: 35429480]
[2]
Olson, H.E.; Demarest, S.T.; Pestana-Knight, E.M.; Swanson, L.C.; Iqbal, S.; Lal, D.; Leonard, H.; Cross, J.H.; Devinsky, O.; Benke, T.A. Cyclin-dependent kinase-like 5 deficiency disorder: Clinical review. Pediatr. Neurol., 2019, 97, 18-25.
[http://dx.doi.org/10.1016/j.pediatrneurol.2019.02.015] [PMID: 30928302]
[http://dx.doi.org/10.1016/j.pediatrneurol.2019.02.015] [PMID: 30928302]
[3]
Hong, W.; Haviland, I.; Pestana-Knight, E.; Weisenberg, J.L.; Demarest, S.; Marsh, E.D.; Olson, H.E. CDKL5 deficiency disorder-related epilepsy: A review of current and emerging treatment. CNS Drugs, 2022, 36(6), 591-604.
[http://dx.doi.org/10.1007/s40263-022-00921-5] [PMID: 35633486]
[http://dx.doi.org/10.1007/s40263-022-00921-5] [PMID: 35633486]
[4]
Leonard, H.; Downs, J.; Benke, T.A.; Swanson, L.; Olson, H.; Demarest, S. CDKL5 deficiency disorder: Clinical features, diagnosis, and management. Lancet Neurol., 2022, 21(6), 563-576.
[http://dx.doi.org/10.1016/S1474-4422(22)00035-7] [PMID: 35483386]
[http://dx.doi.org/10.1016/S1474-4422(22)00035-7] [PMID: 35483386]
[5]
Perucca, E.; French, J.; Bialer, M. Development of new antiepileptic drugs: Challenges, incentives, and recent advances. Lancet Neurol., 2007, 6(9), 793-804.
[http://dx.doi.org/10.1016/S1474-4422(07)70215-6] [PMID: 17706563]
[http://dx.doi.org/10.1016/S1474-4422(07)70215-6] [PMID: 17706563]
[6]
Thomas, P.; Pang, Y. Anti-apoptotic actions of allopregnanolone and ganaxolone mediated through membrane progesterone receptors (PAQRs) in neuronal cells. Front. Endocrinol., 2020, 11, 417.
[http://dx.doi.org/10.3389/fendo.2020.00417] [PMID: 32670200]
[http://dx.doi.org/10.3389/fendo.2020.00417] [PMID: 32670200]
[7]
Katayama, S.; Sueyoshi, N.; Inazu, T.; Kameshita, I. Cyclin-Dependent Kinase-Like 5 (CDKL5): Possible cellular signalling targets and involvement in CDKL5 deficiency disorder. Neural Plast., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/6970190] [PMID: 32587608]
[http://dx.doi.org/10.1155/2020/6970190] [PMID: 32587608]
[8]
Tascini, G.; Dell’Isola, G.B.; Mencaroni, E.; Di Cara, G.; Striano, P.; Verrotti, A. Sleep disorders in rett syndrome and rett-related disorders: A narrative review. Front. Neurol., 2022, 13, 817195.
[http://dx.doi.org/10.3389/fneur.2022.817195] [PMID: 35299616]
[http://dx.doi.org/10.3389/fneur.2022.817195] [PMID: 35299616]
[9]
Terzic, B.; Davatolhagh, M.F.; Ho, Y.; Tang, S.; Liu, Y.T.; Xia, Z.; Cui, Y.; Fuccillo, M.V.; Zhou, Z. Temporal manipulation of CDKL5 reveals essential postdevelopmental functions and reversible CDKL5 deficiency disorder–related deficits. J. Clin. Invest., 2021, 131(20), e143655.
[http://dx.doi.org/10.1172/JCI143655] [PMID: 34651584]
[http://dx.doi.org/10.1172/JCI143655] [PMID: 34651584]
[10]
Cerne, R.; Lippa, A.; Poe, M.M.; Smith, J.L.; Jin, X.; Ping, X.; Golani, L.K.; Cook, J.M.; Witkin, J.M. GABAkines – Advances in the discovery, development, and commercialization of positive allosteric modulators of GABAA receptors. Pharmacol. Ther., 2022, 234, 108035.
[http://dx.doi.org/10.1016/j.pharmthera.2021.108035] [PMID: 34793859]
[http://dx.doi.org/10.1016/j.pharmthera.2021.108035] [PMID: 34793859]
[11]
Lattanzi, S.; Riva, A.; Striano, P. Ganaxolone treatment for epilepsy patients: From pharmacology to place in therapy. Expert Rev. Neurother., 2021, 21(11), 1317-1332.
[http://dx.doi.org/10.1080/14737175.2021.1904895] [PMID: 33724128]
[http://dx.doi.org/10.1080/14737175.2021.1904895] [PMID: 33724128]
[12]
Strzelczyk, A.; Schubert-Bast, S. Expanding the treatment landscape for lennox-gastaut syndrome: Current and future strategies. CNS Drugs, 2021, 35(1), 61-83.
[http://dx.doi.org/10.1007/s40263-020-00784-8] [PMID: 33479851]
[http://dx.doi.org/10.1007/s40263-020-00784-8] [PMID: 33479851]
[13]
Belelli, D.; Lambert, J.J. Neurosteroids: Endogenous regulators of the GABAA receptor. Nat. Rev. Neurosci., 2005, 6(7), 565-575.
[http://dx.doi.org/10.1038/nrn1703] [PMID: 15959466]
[http://dx.doi.org/10.1038/nrn1703] [PMID: 15959466]
[14]
Pieribone, V.A.; Tsai, J.; Soufflet, C.; Rey, E.; Shaw, K.; Giller, E.; Dulac, O. Clinical evaluation of ganaxolone in pediatric and adolescent patients with refractory epilepsy. Epilepsia, 2007, 48(10), 1870-1874.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01182.x] [PMID: 17634060]
[http://dx.doi.org/10.1111/j.1528-1167.2007.01182.x] [PMID: 17634060]
[15]
Carter, R.B.; Wood, P.L.; Wieland, S.; Hawkinson, J.E.; Belelli, D.; Lambert, J.J.; White, H.S.; Wolf, H.H.; Mirsadeghi, S.; Tahir, S.H.; Bolger, M.B.; Lan, N.C.; Gee, K.W. Characterization of the anticonvulsant properties of ganaxolone (CCD 1042; 3alpha-hydroxy-3beta-methyl-5alpha-pregnan-20-one), a selective, high-affinity, steroid modulator of the gamma-aminobutyric acid(A) receptor. J. Pharmacol. Exp. Ther., 1997, 280(3), 1284-1295.
[PMID: 9067315]
[PMID: 9067315]
[16]
Kaminski, R.M.; Livingood, M.R.; Rogawski, M.A. Allopregnanolone analogs that positively modulate GABA receptors protect against partial seizures induced by 6-Hz electrical stimulation in mice. Epilepsia, 2004, 45(7), 864-867.
[http://dx.doi.org/10.1111/j.0013-9580.2004.04504.x] [PMID: 15230714]
[http://dx.doi.org/10.1111/j.0013-9580.2004.04504.x] [PMID: 15230714]
[17]
Reddy, D.S.; Rogawski, M.A. Ganaxolone suppression of behavioral and electrographic seizures in the mouse amygdala kindling model. Epilepsy Res., 2010, 89(2-3), 254-260.
[http://dx.doi.org/10.1016/j.eplepsyres.2010.01.009] [PMID: 20172694]
[http://dx.doi.org/10.1016/j.eplepsyres.2010.01.009] [PMID: 20172694]
[18]
Monaghan, E.P.; Navalta, L.A.; Shum, L.; Ashbrook, D.W.; Lee, D.A. Initial human experience with ganaxolone, a neuroactive steroid with antiepileptic activity. Epilepsia, 1997, 38(9), 1026-1031.
[http://dx.doi.org/10.1111/j.1528-1157.1997.tb01486.x] [PMID: 9579942]
[http://dx.doi.org/10.1111/j.1528-1157.1997.tb01486.x] [PMID: 9579942]
[19]
Nohria, V.; Giller, E. Ganaxolone. Neurotherapeutics, 2007, 4(1), 102-105.
[http://dx.doi.org/10.1016/j.nurt.2006.11.003] [PMID: 17199022]
[http://dx.doi.org/10.1016/j.nurt.2006.11.003] [PMID: 17199022]
[20]
Vaitkevicius, H.; Ramsay, R.E.; Swisher, C.B.; Husain, A.M.; Aimetti, A.; Gasior, M. Intravenous ganaxolone for the treatment of refractory status epilepticus: Results from an OPEN-LABEL, DOSE-FINDING, phase 2 trial. Epilepsia, 2022, 63(9), 2381-2391.
[http://dx.doi.org/10.1111/epi.17343] [PMID: 35748707]
[http://dx.doi.org/10.1111/epi.17343] [PMID: 35748707]
[21]
Shaw, K.; Hutchison, A. Method for making 3α-hydroxy, 3β- substituted-5α-pregnan-20-ones. US Patent 8362286B2, 2013.
[22]
Gasior, M.; Ungard, J.T.; Beekman, M.; Carter, R.B.; Witkin, J.M. Acute and chronic effects of the synthetic neuroactive steroid, ganaxolone, against the convulsive and lethal effects of pentylenetetrazol in seizure-kindled mice: Comparison with diazepam and valproate. Neuropharmacology, 2000, 39(7), 1184-1196.
[http://dx.doi.org/10.1016/S0028-3908(99)00190-2] [PMID: 10760361]
[http://dx.doi.org/10.1016/S0028-3908(99)00190-2] [PMID: 10760361]
[23]
Fusco, F.; Perottoni, S.; Giordano, C.; Riva, A.; Iannone, L.F.; De Caro, C.; Russo, E.; Albani, D.; Striano, P. The microbiota-gut-brain axis and epilepsy from a multidisciplinary perspective: Clinical evidence and technological solutions for improvement of in vitro preclinical models. Bioeng. Transl. Med., 2022, 7(2), e10296.
[http://dx.doi.org/10.1002/btm2.10296] [PMID: 35600638]
[http://dx.doi.org/10.1002/btm2.10296] [PMID: 35600638]
[24]
Anderson, G.; Maes, M. Gut dysbiosis dysregulates central and systemic homeostasis via suboptimal mitochondrial function: Assessment, treatment and classification implications. Curr. Top. Med. Chem., 2020, 20(7), 524-539.
[http://dx.doi.org/10.2174/1568026620666200131094445] [PMID: 32003689]
[http://dx.doi.org/10.2174/1568026620666200131094445] [PMID: 32003689]
[25]
Bohnsack, J.P.; Hughes, B.A.; O’Buckley, T.K.; Edokpolor, K.; Besheer, J.; Morrow, A.L. Histone deacetylases mediate GABAA receptor expression, physiology, and behavioral maladaptations in rat models of alcohol dependence. Neuropsychopharmacology, 2018, 43(7), 1518-1529.
[http://dx.doi.org/10.1038/s41386-018-0034-8] [PMID: 29520058]
[http://dx.doi.org/10.1038/s41386-018-0034-8] [PMID: 29520058]