Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

In-situ Photo-deposition of Nd-modified Hexahydroxy Strontium Stannate Nanorods with Enhanced Photocatalytic Performance

Author(s): Zizhan Sun, Xiaoyu Wang, Zeyang Xue, Zhengyu Cai, Chuangang Fan and Lizhai Pei*

Volume 15, Issue 2, 2023

Published on: 05 May, 2023

Page: [142 - 152] Pages: 11

DOI: 10.2174/1876402915666230320103405

Price: $65

conference banner
Abstract

Background: Metal surface modification of the photocatalysts is effective for enhancing the photocatalytic properties of the semiconductor photocatalysts. Nd can be used as the modified metal for the enhancement of catalytic performance of the strontium tin hydroxide (SrSn(OH)6) nanorods due to expanding the light absorption range and reducing the recombination of the photo-generated electrons and holes.

Objective: The aim of the research is to synthesize Nd-modified SrSn(OH)6 nanorods and investigate the enhanced photocatalytic performance for crystal violet degradation.

Methods: Nd modified SrSn(OH)6 nanorods were prepared via a facile one-step in-situ photodeposition route. The obtained nanorods were analyzed by X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, solid diffuse reflectance spectra, photoluminescence spectroscopy, and electrochemical impedance spectroscopy.

Results: Nd attached to the surface of nanorods. The band gap of the Nd-modified SrSn(OH)6 nanorods was reduced due to Nd modification at the surface of nanorods. The Nd-modified SrSn(OH)6 nanorods showed enhanced photocatalytic properties for crystal violet (CV) degradation under ultraviolet (UV) light irradiation than the SrSn(OH)6 nanorods. Nd modified SrSn(OH)6 nanorods have lower charge transfer resistance and more efficient charge separation ability, thus hindering the recombination of the electrons and holes (e/h+) pairs. Scavenger experiments reported that the holes, superoxide, and hydroxyl radicals are the main reactive species during the photocatalytic reaction. The Ndmodified SrSn(OH)6 nanorods were found to be recoverable and reusable for CV degradation.

Conclusion: The Nd modified SrSn(OH)6 nanorods showed enhanced photocatalytic performance towards crystal violet than un-modified nanorods.

[1]
Lee, J.; Seong, S.; Jin, S.; Jeong, Y.; Noh, J. Synergetic photocatalytic-activity enhancement of lanthanum doped TiO2 on halloysite nanocomposites for degradation of organic dye. J. Ind. Eng. Chem., 2021, 100, 126-133.
[http://dx.doi.org/10.1016/j.jiec.2021.05.029]
[2]
Bilal Tahir, M.; Sagir, M. Carbon nanodots and rare metals (RM = La, Gd, Er) doped tungsten oxide nanostructures for photocatalytic dyes degradation and hydrogen production. Separ. Purif. Tech., 2019, 209, 94-102.
[http://dx.doi.org/10.1016/j.seppur.2018.07.029]
[3]
Liu, X.; Chen, C. Mxene enhanced the photocatalytic activity of ZnO nanorods under visible light. Mater. Lett., 2020, 261, 127127.
[http://dx.doi.org/10.1016/j.matlet.2019.127127]
[4]
Pei, L.; Yu, C.; Xue, Z.; Zhang, Y. A review on ternary bismuthate nanoscale materials. Recent Pat. Nanotechnol., 2021, 15(2), 142-153.
[http://dx.doi.org/10.2174/1872210514666200929144352] [PMID: 32990550]
[5]
Quinlivan, P.A.; Li, L.; Knappe, D.R.U. Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Res., 2005, 39(8), 1663-1673.
[http://dx.doi.org/10.1016/j.watres.2005.01.029] [PMID: 15878039]
[6]
Hamann, E.; Stuyfzand, P.J.; Greskowiak, J.; Timmer, H.; Massmann, G. The fate of organic micropollutants during long-term/long-distance river bank filtration. Sci. Total Environ., 2016, 545-546, 629-640.
[http://dx.doi.org/10.1016/j.scitotenv.2015.12.057] [PMID: 26766391]
[7]
Martínez-Huitle, C.A.; Ferro, S. Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev., 2006, 35(12), 1324-1340.
[http://dx.doi.org/10.1039/B517632H] [PMID: 17225891]
[8]
Chen, C.; Mei, W.; Wang, C.; Yang, Z.; Chen, X.; Chen, X.; Liu, T. Synthesis of a flower-like SnO/ZnO nanostructure with high catalytic activity and stability under natural sunlight. J. Alloys Compd., 2020, 826, 154122.
[http://dx.doi.org/10.1016/j.jallcom.2020.154122]
[9]
Pei, L.Z.; Wang, S.; Lin, N.; Lin, H.D.; Yu, H.Y. Calcium germanate nanowires by vanadium doping with improved photocatalytic activity. J. Exp. Nanosci., 2015, 10(16), 1223-1231.
[http://dx.doi.org/10.1080/17458080.2014.989553]
[10]
Chen, C.S.; Xie, X.D.; Zhao, G.J.; Zeng, B.; Ning, X.T.; Cao, S.Y.; Xiao, Y.; Mei, Y.P.; Meng, X.M.; Huang, M.X. Graphene/multi-walled carbon nanotube composite as an effective supports to enhance the photocatalytic property of Cu-doped ZnO nanoparticles. Funct. Mater. Lett., 2013, 6(6), 1350062.
[http://dx.doi.org/10.1142/S1793604713500628]
[11]
Junploy, P.; Thongtem, S.; Thongtem, T. Photoabsorption and photocatalysis of SrSnO3 produced by a cyclic microwave radiation. Superlattices Microstruct., 2013, 57, 1-10.
[http://dx.doi.org/10.1016/j.spmi.2013.01.008]
[12]
Fu, X.; Wang, X.; Ding, Z.; Leung, D.Y.C.; Zhang, Z.; Long, J.; Zhang, W.; Li, Z.; Fu, X. Hydroxide ZnSn(OH)6: A promising new photocatalyst for benzene degradation. Appl. Catal. B, 2009, 91(1-2), 67-72.
[http://dx.doi.org/10.1016/j.apcatb.2009.05.007]
[13]
Xue, H.; Li, Z.; Wu, L.; Ding, Z.; Wang, X.; Fu, X. Nanocrystalline ternary wide band gap p-block metal semiconductor Sr2Sb2O7: Hydrothermal syntheses and photocatalytic benzene degradation. J. Phys. Chem. C, 2008, 112(15), 5850-5855.
[http://dx.doi.org/10.1021/jp712186r]
[14]
Hu, X.; Tang, Y.; Xiao, T.; Jiang, J.; Jia, Z.; Li, D.; Li, B.; Luo, L. Rapid synthesis of single crystalline SrSn(OH)6 nanowires and the performance of SrSnO3 nanorods used as anode materials for Li-ion battery. J. Phys. Chem. C, 2010, 114(2), 947-952.
[http://dx.doi.org/10.1021/jp909903k]
[15]
Luo, Y.; Chen, J.; Liu, J.; Shao, Y.; Li, X.; Li, D. Hydroxide SrSn(OH)6: A new photocatalyst for degradation of benzene and rhodamine B. Appl. Catal. B, 2016, 182, 533-540.
[http://dx.doi.org/10.1016/j.apcatb.2015.09.051]
[16]
Patel, D.K.; Nuwad, J.; Rajeswari, B.; Vishwanadh, B.; Sudarsan, V.; Vatsa, R.K.; Kadam, R.M.; Pillai, C.G.S.; Kulshreshtha, S.K. Blue light emitting SrSn(OH)6 nano-rods doped with lanthanide ions (Eu3+, Tb3+ and Dy3+). Mater. Res. Bull., 2013, 48(2), 566-573.
[http://dx.doi.org/10.1016/j.materresbull.2012.11.047]
[17]
Xue, Z.; Li, F.; Yu, C.; Huang, J.; Tao, F.; Cai, Z.; Pei, L. Synthesis of hexahydroxy strontium stannate nanorods for photocatalytic degradation of organic pollutants. Toxicol. Environ. Chem., 2021, 103(4), 326-341.
[http://dx.doi.org/10.1080/02772248.2021.1999453]
[18]
Chun, H.; Yuchao, T.; Hongxiao, T. Characterization and photocatalytic activity of transition-metal-supported surface bond-conjugated TiO2/SiO2. Catal. Today, 2004, 90(3-4), 325-330.
[http://dx.doi.org/10.1016/j.cattod.2004.04.042]
[19]
Dugandžić I.M.; Jovanović D.J.; Mančić L.T.; Zheng, N.; Ahrenkiel, S.P.; Milošević O.B.; Šaponjić Z.V.; Nedeljković J.M. Surface modification of submicronic TiO2 particles prepared by ultrasonic spray pyrolysis for visible light absorption. J. Nanopart. Res., 2012, 14(10), 1157.
[http://dx.doi.org/10.1007/s11051-012-1157-1]
[20]
Liu, T.; Li, B.; Hao, Y.; Han, F.; Zhang, L.; Hu, L. A general method to diverse silver/mesoporous–metal–oxide nanocomposites with plasmon-enhanced photocatalytic activity. Appl. Catal. B, 2015, 165, 378-388.
[http://dx.doi.org/10.1016/j.apcatb.2014.10.041]
[21]
Chen, Y.; Wang, Y.; Li, W.; Yang, Q.; Hou, Q.; Wei, L.; Liu, L.; Huang, F.; Ju, M. Enhancement of photocatalytic performance with the use of noble-metal-decorated TiO2 nanocrystals as highly active catalysts for aerobic oxidation under visible-light irradiation. Appl. Catal. B, 2017, 210, 352-367.
[http://dx.doi.org/10.1016/j.apcatb.2017.03.077]
[22]
Deng, A.; Yu, C.; Xue, Z.; Huang, J.; Pan, H.; Pei, L. Rare metal doping of the hexahydroxy strontium stannate with enhanced photocatalytic performance for organic pollutants. J. Mater. Res. Technol., 2022, 19, 1073-1089.
[http://dx.doi.org/10.1016/j.jmrt.2022.05.104]
[23]
Yu, L.; Wang, Y.; Xia, X.; Chen, X.; Huang, Z.; Homewood, K.P.; Gao, Y. Achieving high performance anticorrosive nanosheet photo-catalysts via a metal, surfactant co-modification approach. Mater. Res. Bull., 2021, 142, 111422.
[http://dx.doi.org/10.1016/j.materresbull.2021.111422]
[24]
Karácsonyi, É.; Baia, L.; Dombi, A.; Danciu, V.; Mogyorósi, K.; Pop, L.C.; Kovács, G. Coşoveanu, V.; Vulpoi, A.; Simon, S.; Pap, Z. The photocatalytic activity of TiO2/WO3/noble metal (Au or Pt) nanoarchitectures obtained by selective photodeposition. Catal. Today, 2013, 208, 19-27.
[http://dx.doi.org/10.1016/j.cattod.2012.09.038]
[25]
Wang, J.; Rao, P.; An, W.; Xu, J.; Men, Y. Boosting photocatalytic activity of Pd decorated TiO2 nanocrystal with exposed (001) facets for selective alcohol oxidations. Appl. Catal. B, 2016, 195, 141-148.
[http://dx.doi.org/10.1016/j.apcatb.2016.05.018]
[26]
Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95(1), 69-96.
[http://dx.doi.org/10.1021/cr00033a004]
[27]
Wang, S.; Wang, Z.; Wang, Y.; Xia, C.; Hong, E.; Bai, L.; Li, T.; Wang, B. Study on the controlled synthesis and photocatalytic performance of rare earth Nd deposited on mesoporous TiO2 photocatalysts. Sci. Total Environ., 2019, 652, 85-92.
[http://dx.doi.org/10.1016/j.scitotenv.2018.10.154] [PMID: 30359805]
[28]
Liang, R.; Jing, F.; Shen, L.; Qin, N.; Wu, L. M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water. Nano Res., 2015, 8(10), 3237-3249.
[http://dx.doi.org/10.1007/s12274-015-0824-9]
[29]
Ohyama, J.; Yamamoto, A.; Teramura, K.; Shishido, T.; Tanaka, T. Modification of metal nanoparticles with TiO2 and metal-support interaction in photodeposition. ACS Catal., 2011, 1(3), 187-192.
[http://dx.doi.org/10.1021/cs100072k]
[30]
Chen, H.; Yu, C.; Xue, Z.; Wang, P.; Wang, Z.; Cong, Q.; Pei, L.; Fan, C. Synthesis of Li-doped bismuth oxide nanoplates, Co nanoparticles modification, and good photocatalytic activity toward organic pollutants. Toxicol. Environ. Chem., 2020, 102(7-8), 356-385.
[http://dx.doi.org/10.1080/02772248.2020.1798448]
[31]
Saruyama, M.; Pelicano, C.M.; Teranishi, T. Bridging electrocatalyst and cocatalyst studies for solar hydrogen production via water splitting. Chem. Sci., 2022, 13(10), 2824-2840.
[http://dx.doi.org/10.1039/D1SC06015E] [PMID: 35382478]
[32]
Liu, X.; Lv, J.; Wang, S.; Li, X.; Lang, J.; Su, Y.; Chai, Z.; Wang, X. A novel contractive effect of KTaO3 nanocrystals via La3+ doping and an enhanced photocatalytic performance. J. Alloys Compd., 2015, 622, 894-901.
[http://dx.doi.org/10.1016/j.jallcom.2014.11.005]
[33]
Shaw, E.A.; Ormerod, R.M.; Lambert, R.M. Oxidation of neodymium overlayers and Nd/Cu alloy films on Cu(111): observation of chemisorbed oxygen on top of NdOx/Cu(111). Surf. Sci., 1992, 275(3), 157-169.
[http://dx.doi.org/10.1016/0039-6028(92)90790-D]
[34]
Iwanowski, R.J.; Heinonen, M.H.; Pracka, I.; Kachniarz, J. XPS characterization of single crystalline SrLaGa3O7. Nd. Appl. Surf. Sci., 2013, 283, 168-174.
[http://dx.doi.org/10.1016/j.apsusc.2013.06.075]
[35]
Chen, C.; Liu, X.; Fang, Q.; Chen, X.; Liu, T.; Zhang, M. Self-assembly synthesis of CuO/ZnO hollow microspheres and their photocatalytic performance under natural sunlight. Vacuum, 2020, 174, 109198.
[http://dx.doi.org/10.1016/j.vacuum.2020.109198]
[36]
Diamandescu, L.; Cernea, M.; Tolea, F.; Secu, E.C.; Trusca, R.; Secu, M.; Enculescu, M. (Fe, Nd) codoped ZnO micro– and nanostructures with multifunctional characteristics like photocatalytic activity, optical and ferromagnetic properties. Ceram. Int., 2018, 44(17), 21962-21975.
[http://dx.doi.org/10.1016/j.ceramint.2018.08.310]
[37]
Bouaine, A.; Brihi, N.; Schmerber, G.; Ulhaq-Bouillet, C.; Colis, S.; Dinia, A. Structural, optical, and magnetic properties of Co-doped SnO2 powders synthesized by the coprecipitation technique. J. Phys. Chem. C, 2007, 111(7), 2924-2928.
[http://dx.doi.org/10.1021/jp066897p]
[38]
Shao, X.; Pan, F.; Zheng, L.; Zhang, R.; Zhang, W. Nd-doped TiO 2 -C hybrid aerogels and their photocatalytic properties. N. Carbon Mater., 2018, 33(2), 116-124.
[http://dx.doi.org/10.1016/S1872-5805(18)60329-4]
[39]
Zhang, T.; Zeng, X.; Xia, Y.; Zhang, H.; Sun, B.; Wang, H.; Zhao, Y. Morphology evolution and photocatalytic applications of W-doped Bi2O3 films prepared using unique oblique angle co-sputtering technology. Ceram. Int., 2019, 45(17), 21968-21974.
[http://dx.doi.org/10.1016/j.ceramint.2019.07.211]
[40]
Pei, L.Z.; Wang, S.; Jiang, Y.X.; Xie, Y.K.; Li, Y.; Guo, Y.H. Single crystalline Sr germanate nanowires and their photocatalytic performance for the degradation of methyl blue. CrystEngComm, 2013, 15(38), 7815-7823.
[http://dx.doi.org/10.1039/c3ce40989a]
[41]
Ahmed, S.; Rasul, M.G.; Brown, R.; Hashib, M.A. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review. J. Environ. Manage., 2011, 92(3), 311-330.
[http://dx.doi.org/10.1016/j.jenvman.2010.08.028] [PMID: 20950926]
[42]
Ebrahimi, R.; Maleki, A.; Zandsalimi, Y.; Ghanbari, R.; Shahmoradi, B.; Rezaee, R.; Safari, M.; Joo, S.W.; Daraei, H.; Harikaranahalli Puttaiah, S.; Giahi, O. Photocatalytic degradation of organic dyes using WO3-doped ZnO nanoparticles fixed on a glass surface in aqueous solution. J. Ind. Eng. Chem., 2019, 73, 297-305.
[http://dx.doi.org/10.1016/j.jiec.2019.01.041]
[43]
Chen, H.; Xue, Z.; Yu, C.; Mao, Y.; Qiu, F.; Pei, L. Synthesis of vanadium doped lanthanum bismuthate nanorods for enhanced photocatalytic activity. J. Nanosci. Nanotechnol., 2021, 21(10), 5329-5336.
[http://dx.doi.org/10.1166/jnn.2021.19312] [PMID: 33875126]
[44]
Zou, W.; Shao, Y.; Pu, Y.; Luo, Y.; Sun, J.; Ma, K.; Tang, C.; Gao, F.; Dong, L. Enhanced visible light photocatalytic hydrogen evolution via cubic CeO2 hybridized g-C3N4 composite. Appl. Catal. B, 2017, 218, 51-59.
[http://dx.doi.org/10.1016/j.apcatb.2017.03.085]
[45]
Fang, Q.; Chen, C.; Yang, Z.; Chen, X.; Chen, X.; Liu, T. Synthetization and electrochemical performance of pomegranate-like ZnMn2O4 porous microspheres. J. Alloys Compd., 2020, 826, 154084.
[http://dx.doi.org/10.1016/j.jallcom.2020.154084]
[46]
Pei, L.Z.; Lin, F.F.; Qiu, F.L.; Wang, W.L.; Zhang, Y.; Fan, C.G. Formation of Ba bismuthate nanobelts and sensitive electrochemical determination of tartaric acid. Mater. Res. Express, 2017, 4(7), 075047.
[http://dx.doi.org/10.1088/2053-1591/aa7e04]
[47]
Pei, L.Z.; Wei, T.; Lin, N.; Cai, Z.Y.; Fan, C.G.; Yang, Z. Synthesis of zinc bismuthate nanorods and electrochemical performance for sensitive determination of L-cysteine. J. Electrochem. Soc., 2016, 163(2), H1-H8.
[http://dx.doi.org/10.1149/2.0041602jes]
[48]
Chen, C.S.; Xie, X.D.; Cao, S.Y.; Liu, T.G.; Lin, L.W.; Chen, X.H.; Liu, Q.C.; Kuang, J.C.; Xiao, Y. Preparation and photocatalytic activity of multi-walled carbon nanotubes/Mg-doped ZnO nanohybrids. Mater. Sci. Pol., 2015, 33(3), 460-469.
[http://dx.doi.org/10.1515/msp-2015-0083]
[49]
Nie, X.; Yin, S.; Duan, W.; Zhao, Z.; Li, L.; Zhang, Z. Recent progress in anodic oxidation of TiO2 nanotubes and enhanced photocatalytic performance: A short review. Nano, 2021, 16(1), 2130002.
[http://dx.doi.org/10.1142/S1793292021300024]
[50]
Song, C.; Wang, X.; Zhang, J.; Chen, X.; Li, C. Enhanced performance of direct Z-scheme CuS-WO3 system towards photocatalytic decomposition of organic pollutants under visible light. Appl. Surf. Sci., 2017, 425, 788-795.
[http://dx.doi.org/10.1016/j.apsusc.2017.07.082]
[51]
Chaudhari, S.M.; Gonsalves, O.S.; Nemade, P.R. Enhanced photocatalytic degradation of Diclofenac with Agl/CeO2: A comparison with Mn, Cu and Ag-doped CeO2. Mater. Res. Bull., 2021, 143, 111463.
[http://dx.doi.org/10.1016/j.materresbull.2021.111463]
[52]
Dhanalakshmi, M.; Saravanakumar, K.; Prabavathi, S.L.; Muthuraj, V. Iridium doped ZnO nanocomposites: Synergistic effect induced photocatalytic degradation of methylene blue and crystal violet. Inorg. Chem. Commun., 2020, 111, 107601.
[http://dx.doi.org/10.1016/j.inoche.2019.107601]
[53]
Zhang, N.; Liu, S.; Fu, X.; Xu, Y.J. Synthesis of M@TiO2 (M = Au, Pd, Pt) core–shell nanocomposites with tunable photoreactivity. J. Phys. Chem. C, 2011, 115(18), 9136-9145.
[http://dx.doi.org/10.1021/jp2009989]
[54]
Pelicano, C.M.; Saruyama, M.; Takahata, R.; Sato, R.; Kitahama, Y.; Matsuzaki, H.; Yamada, T.; Hisatomi, T.; Domen, K.; Teranishi, T. Bimetallic synergy in ultrafine cocatalyst alloy nanoparticles for efficient photocatalytic water splitting. Adv. Funct. Mater., 2022, 32(31), 2202987.
[http://dx.doi.org/10.1002/adfm.202202987]
[55]
Ullah, R.; Sun, J.; Gul, A.; Bai, S. One-step hydrothermal synthesis of TiO2-supported clinoptilolite: An integrated photocatalytic adsorbent for removal of crystal violet dye from aqueous media. J. Environ. Chem. Eng., 2020, 8(4), 103852.
[http://dx.doi.org/10.1016/j.jece.2020.103852]
[56]
Zhang, J.; Deng, S.J.; Liu, S.Y.; Chen, J.M.; Han, B.Q.; Wang, Y.; Wang, Y.D. Preparation and photocatalytic activity of Nd doped ZnO nanoparticles. Mater. Technol., 2014, 29(5), 262-268.
[http://dx.doi.org/10.1179/1753555713Y.0000000122]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy