Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

Ionizing Radiation: Chemical Kinetics, Chemical Bounds, and Radiation Chemistry on Polymers

Author(s): Martha Sahylí Ortega Pijeira, Tais Monteiro Magne, Natália Cristina Gomes da Silva, Elisabete Regina Fernandes Ramos Ribeiro, Yuri José Albuquerque Silva, Eduardo Ricci-Junior, Luciana Magalhães Rebelo Alencar and Ralph Santos-Oliveira*

Volume 23, Issue 15, 2023

Published on: 10 April, 2023

Page: [1414 - 1424] Pages: 11

DOI: 10.2174/1568026623666230315122855

Price: $65

Abstract

Ionizing radiation has been used for decades and expanded to several applications in multivariate sectors, becoming an important tool to promote controlled chemical reactions in polymeric structures, according to their chemical properties for developing new materials. In addition, the use of radiation can also be applied in order to reduce or eliminate compounds from solutions that may be harmful or of low interest. In this review, we overviewed the chemistry behind material irradiation and the attractive use of ionizing radiation in scientific and industrial development. In this regard, the review was divided into three main sections titled (1) chemical kinetics intermediated by radiation, (2) chemical bonds intermediated by radiation, and (3) radiation chemistry on polymers. We concluded that graft polymerization, crosslinking and chain scission reactions induced by ionizing radiation are very efficient and green strategies for developing new materials with improved properties. Furthermore, water radiolysis plays a key role in the degradation of several contaminants, including pharmaceuticals and microplastics, in aqueous solutions. However, more studies must be conducted to complement the existing theory about the proposed mechanisms responsible for modifying the chemical, mechanical, thermal, optical, and so forth properties of irradiated materials.

Graphical Abstract

[1]
Mc Laughlin, J.P. Some characteristics and effects of natural radiation. Radiat. Prot. Dosimetry, 2015, 167(1-3), 2-7.
[http://dx.doi.org/10.1093/rpd/ncv206] [PMID: 25904693]
[2]
Aljondi, R.; Alghamdi, S. Diagnostic value of imaging modalities for COVID-19: Scoping review. J. Med. Internet Res., 2020, 22(8), e19673.
[http://dx.doi.org/10.2196/19673] [PMID: 32716893]
[3]
Chen, C.P. Role of external beam radiotherapy in hepatocellular carcinoma. Clin. Liver Dis., 2020, 24(4), 701-717.
[http://dx.doi.org/10.1016/j.cld.2020.07.006] [PMID: 33012454]
[4]
Guo, K.; Baidak, A.; Yu, Z. Recent advances in green synthesis and modification of inorganic nanomaterials by ionizing and non-ionizing radiation. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(44), 23029-23058.
[http://dx.doi.org/10.1039/D0TA06742C]
[5]
Adlienė D. Radiation interaction with condensed matter. Appl. Ioniz. Radiat. Mater. Process., 2017, 1, 33-54.
[6]
Domenech, H. What does ionizing radiation mean?In: Radiation Safety; Springer International Publishing: Cham, 2017, pp. 1-8.
[7]
Pricaz, M. Uţă A-C. Gamma radiation for improvements in food industry, environmental quality and healthcare. Rom. J. Biophys., 2015, 25, 143-162.
[8]
Piri, I.; Babayan, M.; Tavassoli, A.; Javaheri, M. The use of gamma irradiation in agriculture. Afr. J. Microbiol. Res., 2011, 5, 5806-5811.
[9]
Abdillah, M.; Qonit, H.; Indiarto, R. A review of irradiation technologies on food and agricultural products. Int. J. Sci. Technol. Res., 2020, 9, 4411-4414.
[10]
Salgado, W.L.; Dam, R.S.F.; Barbosa, C.M.; da Silva, A.X.; Salgado, C.M. Monitoring system of oil by-products interface in pipelines using the gamma radiation attenuation. Appl. Radiat. Isot., 2020, 160, 109125.
[http://dx.doi.org/10.1016/j.apradiso.2020.109125] [PMID: 32174468]
[11]
Van den Wyngaert, T.; Elvas, F.; De Schepper, S.; Kennedy, J.A.; Israel, O. SPECT/CT: Standing on the shoulders of giants, it is time to reach for the sky! J. Nucl. Med., 2020, 61(9), 1284-1291.
[http://dx.doi.org/10.2967/jnumed.119.236943] [PMID: 32620702]
[12]
Adrovic, F. Ed.; Gamma Radiation; IntechOpen: Rijeka, Croatia, 2012.
[http://dx.doi.org/10.5772/2054]
[13]
Sharmin, N.; Khan, R.A.; Salmieri, S.; Dussault, D.; Bouchard, J.; Lacroix, M. Modification and characterization of biodegradable methylcellulose films with trimethylolpropane trimethacrylate (TMPTMA) by γ radiation: Effect of nanocrystalline cellulose. J. Agric. Food Chem., 2012, 60(2), 623-629.
[http://dx.doi.org/10.1021/jf203500s] [PMID: 22217269]
[14]
Camacho-Cruz, L.A.; Velazco-Medel, M.A.; Parra-Delgado, H.; Bucio, E. Functionalization of cotton gauzes with poly(N-vinylimidazole) and quaternized poly(N-vinylimidazole) with gamma radiation to produce medical devices with pH-buffering and antimicrobial properties. Cellulose, 2021, 28(5), 3279-3294.
[http://dx.doi.org/10.1007/s10570-021-03725-w]
[15]
Rosado, D.; Meléndez-Ortiz, H.I.; Ortega, A.; Gallardo-Vega, C.; Burillo, G. Modification of poly(tetrafluoroethylene) with polyallylamine by gamma radiation. Radiat. Phys. Chem., 2020, 172, 108766.
[http://dx.doi.org/10.1016/j.radphyschem.2020.108766]
[16]
Jeong, J.O.; Kim, S.; Park, J.; Lee, S.; Park, J.S.; Lim, Y.M.; Lee, J.Y. Biomimetic nonbiofouling polypyrrole electrodes grafted with zwitterionic polymer using gamma rays. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(32), 7225-7232.
[http://dx.doi.org/10.1039/C9TB02087J] [PMID: 32638708]
[17]
Pérez-Calixto, M.; Diaz-Rodriguez, P.; Concheiro, A.; Alvarez-Lorenzo, C.; Burillo, G. Amino-functionalized polymers by gamma radiation and their influence on macrophage polarization. React. Funct. Polym., 2020, 151, 104568.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104568]
[18]
Zhuang, S.; Yin, Y.; Wang, J. Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation. Nucl. Eng. Technol., 2018, 50(1), 211-215.
[http://dx.doi.org/10.1016/j.net.2017.11.007]
[19]
Martínez-Barrera, G.; del Coz-Díaz, J.J.; Martínez-Cruz, E.; Martínez-López, M.; Ribeiro, M.C.S.; Velasco-Santos, C.; Lobland, H.E.H.; Brostow, W. Modified recycled tire fibers by gamma radiation and their use on the improvement of polymer concrete. Constr. Build. Mater., 2019, 204, 327-334.
[http://dx.doi.org/10.1016/j.conbuildmat.2019.01.177]
[20]
Karmaker, N.; Islam, F.; Islam, M.N.; Razzak, M.; Koly, F.A.; Chowdhury, A.M.S.; Khan, R.A. Fabrication and characterization of pva-gelatin-nano crystalline cellulose based biodegradable film: Effect of gamma radiation. J. Res. Updates in Poly. Sci., 2019, 8, 7-14.
[http://dx.doi.org/10.6000/1929-5995.2019.08.02]
[21]
Saad, A.F.; Ibraheim, M.H.; Nwara, A.M.; Kandil, S.A. Modifications in the optical and thermal properties of a CR-39 polymeric detector induced by high doses of γ-radiation. Radiat. Phys. Chem., 2018, 145, 122-129.
[http://dx.doi.org/10.1016/j.radphyschem.2017.10.011]
[22]
EL-Zayat. M.M.; Abdel-Hakim, A.; Mohamed, M.A. Effect of gamma radiation on the physico mechanical properties of recycled HDPE/modified sugarcane bagasse composite. J. Macromol. Sci. Part A Pure Appl. Chem., 2019, 56(2), 127-135.
[http://dx.doi.org/10.1080/10601325.2018.1549949]
[23]
Chen, R.S.; Ab Ghani, M.H.; Ahmad, S.; Tarawneh, M.A.; Gan, S. Tensile, thermal degradation and water diffusion behaviour of gamma-radiation induced recycled polymer blend/rice husk composites: Experimental and statistical analysis. Compos. Sci. Technol., 2021, 207, 108748.
[http://dx.doi.org/10.1016/j.compscitech.2021.108748]
[24]
Getoff, N. Radiation-induced degradation of water pollutants-state of the art. Radiat. Phys. Chem., 1996, 47(4), 581-593.
[http://dx.doi.org/10.1016/0969-806X(95)00059-7]
[25]
Davisson, C.M. Interaction of γ-radiation with matter.In: Alpha-, Beta- and Gamma-Ray Spectroscopy; Siegbahn, K., Ed.; Elsevier, 1968, pp. 37-78.
[http://dx.doi.org/10.1016/B978-0-7204-0083-0.50007-9]
[26]
Morco, R.P. Gamma-Radiolysis Kinetics and Its Role in the Overall Dynamics of Materials Degradation. PhD Thesis, The University of Western Ontario, Ontario, 2020. Available at: https://ir.lib.uwo.ca/etd/ 7248
[http://dx.doi.org/10.3390/polym12122877] [PMID: 33266261]
[27]
Fifield, L.S.; Pharr, M.; Staack, D.; Pillai, S.D.; Nichols, L.; Mccoy, J.; Faucette, T.; Bisel, T.T.; Huang, M.; Hasan, M.K.; Perkins, L. Direct comparison of gamma, electron beam and X-ray irradiation doses on characteristics of low-density polyethylene, polypropylene homopolymer, polyolefin elastomer and chlorobutyl rubber medical device polymers. Radiat. Phys. Chem., 2021, 186, 109505.
[28]
Ashfaq, A.; Clochard, M.C.; Coqueret, X.; Dispenza, C.; Driscoll, M.S. Ulański P.; Al-Sheikhly, M. Polymerization reactions and modifications of polymers by ionizing radiation. Polymers, 2020, 12, 2877.
[29]
Knipp, J.K.; Uhlenbeck, G.E. Emission of gamma radiation during the beta decay of nuclei. Physica, 1936, 3(6), 425-439.
[http://dx.doi.org/10.1016/S0031-8914(36)80008-1]
[30]
Matusiak, M.; Kadlubowski, S.; Rosiak, J.M. Nanogels synthesized by radiation-induced intramolecular crosslinking of water-soluble polymers. Radiat. Phys. Chem., 2020, 169, 108099.
[http://dx.doi.org/10.1016/j.radphyschem.2018.12.019]
[31]
Changotra, R.; Guin, J.P.; Dhir, A.; Varshney, L. Decomposition of antibiotic ornidazole by gamma irradiation in aqueous solution: kinetics and its removal mechanism. Environ. Sci. Pollut. Res. Int., 2018, 25(32), 32591-32602.
[http://dx.doi.org/10.1007/s11356-018-3007-x] [PMID: 30242653]
[32]
Verlicchi, P.; Zambello, E.; Al Aukidy, M. Removal of pharmaceuticals by conventional wastewater treatment plants.In: Comprehensive Analytical Chemistry; Elsevier, 2013, Vol. 62, pp. 231-286.
[33]
Boujelbane, F.; Nasr, K.; Sadaoui, H.; Bui, H.M.; Gantri, F.; Mzoughi, N. Decomposition mechanism of hydroxychloroquine in aqueous solution by gamma irradiation. Chem. Zvesti, 2022, 76(3), 1777-1787.
[http://dx.doi.org/10.1007/s11696-021-01969-1] [PMID: 35106020]
[34]
Chen, D.; Chu, L.; Wang, J.; Yang, Z.; Yang, Q.; Shen, Y. Degradation of antibiotic cephalosporin C in aqueous solution and elimination of antimicrobial activity by gamma irradiation. Chem. Eng. J., 2019, 374, 1102-1108.
[http://dx.doi.org/10.1016/j.cej.2019.06.021]
[35]
Wang, J.; Chu, L. Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: An overview. Radiat. Phys. Chem., 2016, 125, 56-64.
[http://dx.doi.org/10.1016/j.radphyschem.2016.03.012]
[36]
Wang, J.; Zhuan, R.; Chu, L. The occurrence, distribution and degradation of antibiotics by ionizing radiation: An overview. Sci. Total Environ., 2019, 646, 1385-1397.
[http://dx.doi.org/10.1016/j.scitotenv.2018.07.415] [PMID: 30235624]
[37]
Alsager, O.A.; Alnajrani, M.N.; Alhazzaa, O. Decomposition of antibiotics by gamma irradiation: Kinetics, antimicrobial activity, and real application in food matrices. Chem. Eng. J., 2018, 338, 548-556.
[http://dx.doi.org/10.1016/j.cej.2018.01.065]
[38]
Zhuan, R.; Wang, J. Degradation of sulfamethoxazole by ionizing radiation: Kinetics and implications of additives. Sci. Total Environ., 2019, 668, 67-73.
[http://dx.doi.org/10.1016/j.scitotenv.2019.03.027] [PMID: 30852227]
[39]
Chen, X.; Wang, J. Degradation of antibiotic Cephalosporin C in different water matrices by ionizing radiation: Degradation kinetics, pathways, and toxicity. Sci. Total Environ., 2021, 791, 148253.
[http://dx.doi.org/10.1016/j.scitotenv.2021.148253] [PMID: 34118661]
[40]
Gosu, V.; Gurjar, B.R.; Zhang, T.C.; Surampalli, R.Y. Oxidative degradation of quinoline using nanoscale zero-valent iron supported by granular activated carbon. J. Environ. Eng., 2016, 142(1), 04015047.
[http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000981]
[41]
Bandala, E.R.; Kruger, B.R.; Cesarino, I.; Leao, A.L.; Wijesiri, B.; Goonetilleke, A. Impacts of COVID-19 pandemic on the wastewater pathway into surface water: A review. Sci. Total Environ., 2021, 774, 145586.
[http://dx.doi.org/10.1016/j.scitotenv.2021.145586] [PMID: 33607440]
[42]
Zaouak, A.; Chouchane, H.; Jelassi, H. Gamma irradiation-induced degradation and mineralization of methocarbamol in aqueous solution. Environ. Technol., 2022, 1-8.
[http://dx.doi.org/10.1080/09593330.2022.2046646] [PMID: 35200109]
[43]
Zaouak, A.; Chouchane, H.; Jelassi, H. Kinetic and mechanism investigation on the gamma irradiation induced degradation of quizalofop-p-ethyl. Environ. Technol., 2022, 43(26), 4147-4155.
[http://dx.doi.org/10.1080/09593330.2021.1944325] [PMID: 34182888]
[44]
Alnajrani, M.N.; Alsager, O.A. Decomposition of DNA staining agent ethidium bromide by gamma irradiation: Conditions, kinetics, by-products, biological activity, and removal from wastewater. J. Hazard. Mater., 2020, 389, 122142.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122142] [PMID: 32004843]
[45]
Ouchi, R.Y.; Manzato, A.J.; Ceron, C.R.; Bonilla-Rodriguez, G.O. Evaluation of the effects of a single exposure to ethidium bromide in Drosophila melanogaster (Diptera-Drosophilidae). Bull. Environ. Contam. Toxicol., 2007, 78(6), 489-493.
[http://dx.doi.org/10.1007/s00128-007-9208-5] [PMID: 17599228]
[46]
Singer, V.L.; Lawlor, T.E.; Yue, S. Comparison of SYBR® green I nucleic acid gel stain mutagenicity and ethidium bromide mutagenicity in the Salmonella/mammalian microsome reverse mutation assay (Ames test). Mutat. Res. Genet. Toxicol. Environ. Mutagen., 1999, 439(1), 37-47.
[http://dx.doi.org/10.1016/S1383-5718(98)00172-7] [PMID: 10029672]
[47]
Macgregor, J.T.; Johnson, I.J. In vitro metabolic activation of ethidium bromide and other phenanthridinium compounds: Mutagenic activity in Salmonella typhimurium. Mutat. Res., 1977, 48(1), 103-107.
[http://dx.doi.org/10.1016/0027-5107(77)90194-4] [PMID: 319349]
[48]
Lunn, G.; Sansone, E.B. Ethidium bromide: Destruction and decontamination of solutions. Anal. Biochem., 1987, 162(2), 453-458.
[http://dx.doi.org/10.1016/0003-2697(87)90419-2] [PMID: 3605608]
[49]
von Gunten, U.; Oliveras, Y. Advanced oxidation of bromide-containing waters: Bromate formation mechanisms. Environ. Sci. Technol., 1998, 32(1), 63-70.
[http://dx.doi.org/10.1021/es970477j]
[50]
Zhang, C.; Liu, L.; Wang, J.; Rong, F.; Fu, D. Electrochemical degradation of ethidium bromide using boron-doped diamond electrode. Separ. Purif. Tech., 2013, 107, 91-101.
[http://dx.doi.org/10.1016/j.seppur.2013.01.033]
[51]
Moradi, O.; Norouzi, M.; Fakhri, A.; Naddafi, K. Interaction of removal ethidium bromide with carbon nanotube: Equilibrium and isotherm studies. J. Environ. Health Sci. Eng., 2014, 12(1), 17.
[http://dx.doi.org/10.1186/2052-336X-12-17] [PMID: 24401790]
[52]
Kumar, A.; Swarupa, P.; Gandhi, V.P.; Kumari, S. Isolation of ethidium bromide degrading bacteria from Jharkhand. Int. J. Appl. Sci. Biotechnol., 2017, 5(3), 293-301.
[http://dx.doi.org/10.3126/ijasbt.v5i3.18296]
[53]
Han, S.; Yu, H.; Yang, T.; Wang, S.; Wang, X. Magnetic activated-ATP@Fe3O4 nanocomposite as an efficient fenton-like heterogeneous catalyst for degradation of ethidium bromide. Sci. Rep., 2017, 7(1), 6070.
[http://dx.doi.org/10.1038/s41598-017-06398-3] [PMID: 28729718]
[54]
Gray, H.B. Chemical Bonds: An Introduction to Atomic and Molecular Structure; University Science Books: Mill Valley, CA, 1994.
[55]
Chmielewski, A.G. Practical applications of radiation chemistry. Russ. J. Phys. Chem. A. Focus Chem., 2007, 81(9), 1488-1492.
[http://dx.doi.org/10.1134/S0036024407090270]
[56]
Burdett, J.K. Chemical Bonds : A Dialog; John Wiley & Sons, 1997.
[57]
Sanderson, R.T. Chemical Bonds and Bond Energy, 2nd Ed.; Academic Press, 1976.
[58]
Bakke, A.A.; Chen, H.W.; Jolly, W.L. A table of absolute core-electron binding-energies for gaseous atoms and molecules. J. Electron Spectrosc. Relat. Phenom., 1980, 20(3), 333-366.
[http://dx.doi.org/10.1016/0368-2048(80)85030-4]
[59]
Linnett, J.W. Chemical Bonds. In: Science Progress; Sage Publications, Ltd., 1972, 60, pp. 1-23.
[60]
Ulański, P.; Janik, I.; Rosiak, J.M. Radiation formation of polymeric nanogels. Radiat. Phys. Chem., 1998, 52(1-6), 289-294.
[http://dx.doi.org/10.1016/S0969-806X(98)00155-8]
[61]
Boase, N.R.B.; Smith, S.T.; Masters, K.S.; Hosokawa, K.; Crowe, S.B.; Trapp, J.V. Xylenol orange functionalised polymers to overcome diffusion in Fricke gel radiation dosimeters. React. Funct. Polym., 2018, 132, 81-88.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.09.011]
[62]
Bonales, L.J.; Muñoz-Iglesias, V.; Prieto-Ballesteros, O.; Mateo-Martí, E. Preservation of glycine coordination compounds under a gamma radiation dose representative of natural mars radioactivity. Sci. Rep., 2022, 12(1), 13677.
[http://dx.doi.org/10.1038/s41598-022-17802-y] [PMID: 35953504]
[63]
Wu, M.; Zhou, R.; Ma, Z.T.; Bao, B.; Lei, J. Preparation of acrylate IPN copolymer latexes. Radiat. Phys. Chem., 1997, 49(3), 371-375.
[http://dx.doi.org/10.1016/S0969-806X(96)00064-3]
[64]
Reches, Y. Quantification and modeling of the interactions of gamma radiation with concrete from bulk-scale observations. Int. J. Concr. Struct. Mater., 2019, 13(1), 59.
[http://dx.doi.org/10.1186/s40069-019-0370-z]
[65]
Siyam, T.; Ashour, A.H.; Youssef, H.A. Thermal and radiation chemical stabilities of some polymers after Cu(II) build-up. Polym. Int., 1999, 48(9), 799-804.
[http://dx.doi.org/10.1002/(SICI)1097-0126(199909)48:9<799:AID-PI157>3.0.CO;2-J]
[66]
Gamma radiation from cobalt-60 can promote chemical reactions. Synthesis of BHC and oxidation of sulfurous acid proceed well when promoted with gamma rays. Chem. Eng. News, 1953, 31(13), 1310-1312.
[http://dx.doi.org/10.1021/cen-v031n013.p1310]
[67]
Jurkin, T. Gotić, M.; Štefanić, G.; Pucić, I. Gamma-irradiation synthesis of iron oxide nanoparticles in the presence of PEO, PVP or CTAB. Radiat. Phys. Chem., 2016, 124, 75-83.
[http://dx.doi.org/10.1016/j.radphyschem.2015.11.019]
[68]
Ershov, B.G.; Sukhov, N.L. Linear silver clusters in aqueous solution (clusterites): radiation-induced chemical synthesis and properties. Russ. Chem. Bull., 1996, 45(6), 1360-1365.
[http://dx.doi.org/10.1007/BF01434213]
[69]
Razzak, M.T.; Darwis, D. Zainuddin.; Sukirno, Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiat. Phys. Chem., 2001, 62(1), 107-113.
[http://dx.doi.org/10.1016/S0969-806X(01)00427-3]
[70]
Saad, A.F.; Fromm, M.; Ibraheim, M.H.; El-Namrouty, A.A.; Nwara, A.M.; Kandil, S.A.; Dawood, M.S. Loss of chemical bonds induced by high doses of γ-radiation in a PADC polymer film: The influence of dose and dose rate on radiation chemical yields. Radiat. Phys. Chem., 2021, 187, 109579.
[http://dx.doi.org/10.1016/j.radphyschem.2021.109579]
[71]
Janik, I.; Rosiak, J.M. Radiation crosslinking and scission of poly(vinyl methyl ether) in aqueous solution. Radiat. Phys. Chem., 2002, 63(3-6), 529-532.
[http://dx.doi.org/10.1016/S0969-806X(01)00548-5]
[72]
Duflot, A.V.; Kitaeva, N.K.; Duflot, V.R. Radiation-chemical preparation of poly(vinyl alcohol) hydrogels. Radiat. Phys. Chem., 2015, 107, 1-6.
[http://dx.doi.org/10.1016/j.radphyschem.2014.08.002]
[73]
Namazi, H. Polymers in our daily life. Bioimpacts, 2017, 7(2), 73-74.
[http://dx.doi.org/10.15171/bi.2017.09] [PMID: 28752070]
[74]
Gad, S.E. Polymers.In: Encyclopedia of Toxicology; Elsevier, 2014, pp. 1045-1050.
[http://dx.doi.org/10.1016/B978-0-12-386454-3.00912-X]
[75]
Kodama, Y.; Barsbay, M.; Güven, O. Radiation-induced and RAFT-mediated grafting of poly(hydroxyethyl methacrylate) (PHEMA) from cellulose surfaces. Radiat. Phys. Chem., 2014, 94, 98-104.
[http://dx.doi.org/10.1016/j.radphyschem.2013.07.016]
[76]
Omichi, M.; Ueki, Y.; Seko, N.; Maekawa, Y. Development of a simplified radiation-induced emulsion graft polymerization method and its application to the fabrication of a heavy metal adsorbent. Polymers, 2019, 11(8), 1373.
[http://dx.doi.org/10.3390/polym11081373] [PMID: 31434303]
[77]
Naikwadi, A.T.; Sharma, B.K.; Bhatt, K.D.; Mahanwar, P.A. Gamma radiation processed polymeric materials for high performance applications: A review. Front Chem., 2022, 10, 837111.
[http://dx.doi.org/10.3389/fchem.2022.837111] [PMID: 35360545]
[78]
Markovic, V. Radiation chemistry: Little known branch of science. IAEA Bull., 1989, 31, 20-23.
[79]
Singh, A.K.; Adhikari, R.; Susan, M.A.B.H. Editorial: Modification of polymers with gamma radiation for various high-performance applications. Front Chem., 2022, 10, 1042056.
[http://dx.doi.org/10.3389/fchem.2022.1042056] [PMID: 36247671]
[80]
Lee, H.; Cheon, H.; Kang, Y.; Roh, S.; Kim, W. State-of-the-art modification of plastic aggregates using gamma irradiation and its optimization for application to cementitious composites. Appl. Sci., 2021, 11(21), 10340.
[http://dx.doi.org/10.3390/app112110340]
[81]
Manas, D.; Ovsik, M.; Mizera, A.; Manas, M.; Hylova, L.; Bednarik, M.; Stanek, M. The effect of irradiation on mechanical and thermal properties of selected types of polymers. Polymers, 2018, 10, 158.
[82]
Asawachatroj, A.; Banjerdpongchai, D. Analysis of advanced process control technology and economic assessment improvement. Eng. J., 2012, 16(4), 1-4.
[http://dx.doi.org/10.4186/ej.2012.16.4.1]
[83]
Źenkiewicz, M.; Rauchfleisz, M.; Czupryńska, J. Comparison of some oxidation effects in polyethylene film irradiated with electron beam or gamma rays. Radiat. Phys. Chem., 2003, 68(5), 799-809.
[http://dx.doi.org/10.1016/S0969-806X(03)00368-2]
[84]
Albano, C.; Reyes, J.; Ichazo, M.; González, J.; Brito, M.; Moronta, D. Analysis of the mechanical, thermal and morphological behaviour of polypropylene compounds with sisal fibre and wood flour, irradiated with gamma rays. Polym. Degrad. Stabil., 2002, 76(2), 191-203.
[http://dx.doi.org/10.1016/S0141-3910(02)00014-9]
[85]
Saez, V.; Khoury, H.J.; da Silva, M.I.B.; Mansur, C.R.E.; Santos-Oliveira, R. Rheological effect of gamma radiation on gel-like formulation: Appraisal for the construction of radiopharmaceuticals for cutaneous application. Radiat. Phys. Chem., 2018, 145, 19-25.
[http://dx.doi.org/10.1016/j.radphyschem.2017.12.008]
[86]
Freissinet, C.; Millan, M.; Glavin, D.P.; Li, X.; Grubisic, A.; Eigenbrode, J.E.; Stern, J.C.; Dworkin, J.P.; Buch, A.; Szopa, C.; Guzman, M.A.; Carts, M.A.; Getty, S.A.; Brinckerhoff, W.B. Investigating the effects of gamma radiation on selected chemicals for use in biosignature detection instruments on the surface of Jupiter’s moon Europa. Planet. Space Sci., 2019, 175, 1-12.
[http://dx.doi.org/10.1016/j.pss.2019.05.009]
[87]
Yoshii, F.; Zhao, L.; Wach, R.A.; Nagasawa, N.; Mitomo, H.; Kume, T. Hydrogels of polysaccharide derivatives crosslinked with irradiation at paste-like condition. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, 2003, 208, 320-324.
[88]
Oliveira, L.M.; Araujo, P.L.B.; Araujo, E.S. The effect of gamma radiation on mechanical properties of biodegradable polymers poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Mater. Res., 2012, 16(1), 195-203.
[http://dx.doi.org/10.1590/S1516-14392012005000173]
[89]
Oliveira, L.M.; Araújo, E.S.; Guedes, S.M.L. Gamma irradiation effects on poly(hydroxybutyrate). Polym. Degrad. Stabil., 2006, 91(9), 2157-2162.
[http://dx.doi.org/10.1016/j.polymdegradstab.2006.01.008]
[90]
Peller, J.R.; Mezyk, S.P.; Shidler, S.; Castleman, J.; Kaiser, S.; Horne, G.P. The reactivity of polyethylene microplastics in water under low oxygen conditions using radiation chemistry. Water, 2021, 13(21), 3120.
[http://dx.doi.org/10.3390/w13213120]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy