Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Melatonin as a Harmonizing Factor of Circadian Rhythms, Neuronal Cell Cycle and Neurogenesis: Additional Arguments for Its Therapeutic Use in Alzheimer’s Disease

Author(s): Mayuri Shukla and Bruno Vincent*

Volume 21, Issue 5, 2023

Published on: 14 March, 2023

Page: [1273 - 1298] Pages: 26

DOI: 10.2174/1570159X21666230314142505

Price: $65

conference banner
Abstract

The synthesis and release of melatonin in the brain harmonize various physiological functions. The apparent decline in melatonin levels with advanced aging is an aperture to the neurodegenerative processes. It has been indicated that down regulation of melatonin leads to alterations of circadian rhythm components, which further causes a desynchronization of several genes and results in an increased susceptibility to develop neurodegenerative diseases. Additionally, as circadian rhythms and memory are intertwined, such rhythmic disturbances influence memory formation and recall. Besides, cell cycle events exhibit a remarkable oscillatory system, which is downstream of the circadian phenomena. The linkage between the molecular machinery of the cell cycle and complex fundamental regulatory proteins emphasizes the conjectural regulatory role of cell cycle components in neurodegenerative disorders such as Alzheimer’s disease. Among the mechanisms intervening long before the signs of the disease appear, the disturbances of the circadian cycle, as well as the alteration of the machinery of the cell cycle and impaired neurogenesis, must hold our interest. Therefore, in the present review, we propose to discuss the underlying mechanisms of action of melatonin in regulating the circadian rhythm, cell cycle components and adult neurogenesis in the context of AD pathogenesis with the view that it might further assist to identify new therapeutic targets.

« Previous
Graphical Abstract

[1]
Duffy, J.F.; Zitting, K.M.; Chinoy, E.D. Aging and circadian rhythms. Sleep Med. Clin., 2015, 10(4), 423-434.
[http://dx.doi.org/10.1016/j.jsmc.2015.08.002] [PMID: 26568120]
[2]
Hood, S.; Amir, S. Neurodegeneration and the circadian clock. Front. Aging Neurosci., 2017, 9, 170.
[http://dx.doi.org/10.3389/fnagi.2017.00170] [PMID: 28611660]
[3]
Nassan, M.; Videnovic, A. Circadian rhythms in neurodegenerative disorders. Nat. Rev. Neurol., 2022, 18(1), 7-24.
[http://dx.doi.org/10.1038/s41582-021-00577-7] [PMID: 34759373]
[4]
Peng, X.; Fan, R.; Xie, L.; Shi, X.; Dong, K.; Zhang, S.; Tao, J.; Xu, W.; Ma, D.; Chen, J.; Yang, Y. A growing link between circadian rhythms, type 2 diabetes mellitus and Alzheimer’s disease. Int. J. Mol. Sci., 2022, 23(1), 504.
[http://dx.doi.org/10.3390/ijms23010504] [PMID: 35008933]
[5]
Thome, J.; Coogan, A.N.; Woods, A.G.; Darie, C.C.; Häßler, F. CLOCK genes and circadian rhythmicity in Alzheimer disease. J. Aging Res., 2011, 2011, 1-4.
[http://dx.doi.org/10.4061/2011/383091] [PMID: 22028968]
[6]
Griffin, P.; Dimitry, J.M.; Sheehan, P.W.; Lananna, B.V.; Guo, C.; Robinette, M.L.; Hayes, M.E.; Cedeño, M.R.; Nadarajah, C.J.; Ezerskiy, L.A.; Colonna, M.; Zhang, J.; Bauer, A.Q.; Burris, T.P.; Musiek, E.S. Circadian clock protein Rev-erbα regulates neuroinflammation. Proc. Natl. Acad. Sci. USA, 2019, 116(11), 5102-5107.
[http://dx.doi.org/10.1073/pnas.1812405116] [PMID: 30792350]
[7]
Bering, T.; Carstensen, M.B.; Wörtwein, G.; Weikop, P.; Rath, M.F. The circadian oscillator of the cerebral cortex: Molecular, biochemical and behavioural effects of deleting the Arntl clock gene in cortical neurons. Cereb. Cortex, 2017, 28(2), 644-657.
[http://dx.doi.org/10.1093/cercor/bhw406] [PMID: 28052921]
[8]
Gallego, M.; Virshup, D.M. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol., 2007, 8(2), 139-148.
[http://dx.doi.org/10.1038/nrm2106] [PMID: 17245414]
[9]
Lee, C.; Etchegaray, J.P.; Cagampang, F.R.A.; Loudon, A.S.I.; Reppert, S.M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell, 2001, 107(7), 855-867.
[http://dx.doi.org/10.1016/S0092-8674(01)00610-9] [PMID: 11779462]
[10]
Videnovic, A.; Lazar, A.S.; Barker, R.A.; Overeem, S. ‘The clocks that time us’—circadian rhythms in neurodegenerative disorders. Nat. Rev. Neurol., 2014, 10(12), 683-693.
[http://dx.doi.org/10.1038/nrneurol.2014.206] [PMID: 25385339]
[11]
Hunt, J.; Coulson, E.J.; Rajnarayanan, R.; Oster, H.; Videnovic, A.; Rawashdeh, O. Sleep and circadian rhythms in Parkinson’s disease and preclinical models. Mol. Neurodegener., 2022, 17(1), 2.
[http://dx.doi.org/10.1186/s13024-021-00504-w] [PMID: 35000606]
[12]
Hastings, M.H.; Goedert, M. Circadian clocks and neurodegenerative diseases: time to aggregate? Curr. Opin. Neurobiol., 2013, 23(5), 880-887.
[http://dx.doi.org/10.1016/j.conb.2013.05.004] [PMID: 23797088]
[13]
Verma, A.K.; Singh, S.; Rizvi, S.I. Aging, circadian disruption and neurodegeneration: Interesting interplay. Exp. Gerontol., 2022, 172, 112076.
[http://dx.doi.org/10.1016/j.exger.2022.112076]
[14]
Colwell, C.S. Defining circadian disruption in neurodegenerative disorders. J. Clin. Invest., 2021, 131(19), e148288.
[http://dx.doi.org/10.1172/JCI148288] [PMID: 34596047]
[15]
Leng, Y.; Musiek, E.S.; Hu, K.; Cappuccio, F.P.; Yaffe, K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol., 2019, 18(3), 307-318.
[http://dx.doi.org/10.1016/S1474-4422(18)30461-7] [PMID: 30784558]
[16]
Wang, X.L.; Li, L. Circadian clock regulates inflammation and the development of neurodegeneration. Front. Cell. Infect. Microbiol., 2021, 11, 696554.
[http://dx.doi.org/10.3389/fcimb.2021.696554] [PMID: 34595127]
[17]
Moreno-Jiménez, E.P.; Flor-García, M.; Terreros-Roncal, J.; Rábano, A.; Cafini, F.; Pallas-Bazarra, N.; Ávila, J.; Llorens-Martín, M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat. Med., 2019, 25(4), 554-560.
[http://dx.doi.org/10.1038/s41591-019-0375-9] [PMID: 30911133]
[18]
Ali, A.A.H.; von Gall, C. Adult neurogenesis under control of the circadian system. Cells, 2022, 11(5), 764.
[http://dx.doi.org/10.3390/cells11050764] [PMID: 35269386]
[19]
Graña, X.; Reddy, E.P. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene, 1995, 11(2), 211-219.
[PMID: 7624138]
[20]
Hoozemans, J.J.M.; Brückner, M.K.; Rozemuller, A.J.M.; Veerhuis, R.; Eikelenboom, P.; Arendt, T. Cyclin D1 and cyclin E are co-localized with cyclo-oxygenase 2 (COX-2) in pyramidal neurons in Alzheimer disease temporal cortex. J. Neuropathol. Exp. Neurol., 2002, 61(8), 678-688.
[http://dx.doi.org/10.1093/jnen/61.8.678] [PMID: 12152783]
[21]
Yang, Y.; Mufson, E.J.; Herrup, K. Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. J. Neurosci., 2003, 23(7), 2557-2563.
[http://dx.doi.org/10.1523/JNEUROSCI.23-07-02557.2003] [PMID: 12684440]
[22]
Bonda, D.J.; Lee, H.; Kudo, W.; Zhu, X.; Smith, M.A.; Lee, H. Pathological implications of cell cycle re-entry in Alzheimer disease. Expert Rev. Mol. Med., 2010, 12, e19.
[http://dx.doi.org/10.1017/S146239941000150X] [PMID: 20584423]
[23]
Barrett, T.; Stangis, K.A.; Saito, T.; Saido, T.; Park, K.H.J. Neuronal cell cycle re-entry enhances neuropathological features in AppNLF knock-in mice. J. Alzheimers Dis., 2021, 82(4), 1683-1702.
[http://dx.doi.org/10.3233/JAD-210091] [PMID: 34219712]
[24]
Wang, W.; Bu, B.; Xie, M.; Zhang, M.; Yu, Z.; Tao, D. Neural cell cycle dysregulation and central nervous system diseases. Prog. Neurobiol., 2009, 89(1), 1-17.
[http://dx.doi.org/10.1016/j.pneurobio.2009.01.007] [PMID: 19619927]
[25]
Di Giovanni, S.; Movsesyan, V.; Ahmed, F.; Cernak, I.; Schinelli, S.; Stoica, B.; Faden, A.I. Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc. Natl. Acad. Sci. USA, 2005, 102(23), 8333-8338.
[http://dx.doi.org/10.1073/pnas.0500989102] [PMID: 15923260]
[26]
Byrnes, K.R.; Faden, A.I. Role of cell cycle proteins in CNS injury. Neurochem. Res., 2007, 32(10), 1799-1807.
[http://dx.doi.org/10.1007/s11064-007-9312-2] [PMID: 17404835]
[27]
Dehay, C.; Kennedy, H. Cell-cycle control and cortical development. Nat. Rev. Neurosci., 2007, 8(6), 438-450.
[http://dx.doi.org/10.1038/nrn2097] [PMID: 17514197]
[28]
Frade, J.M.; Ovejero-Benito, M.C. Neuronal cell cycle: the neuron itself and its circumstances. Cell Cycle, 2015, 14(5), 712-720.
[http://dx.doi.org/10.1080/15384101.2015.1004937] [PMID: 25590687]
[29]
Arendt, T.; Brückner, M.K.; Mosch, B.; Lösche, A. Selective cell death of hyperploid neurons in Alzheimer’s disease. Am. J. Pathol., 2010, 177(1), 15-20.
[http://dx.doi.org/10.2353/ajpath.2010.090955] [PMID: 20472889]
[30]
Frade, J.M.; López-Sánchez, N. A novel hypothesis for Alzheimer disease based on neuronal tetraploidy induced by p75 NTR. Cell Cycle, 2010, 9(10), 1934-1941.
[http://dx.doi.org/10.4161/cc.9.10.11582] [PMID: 20436277]
[31]
McShea, A.; Lee, H.; Petersen, R.B.; Casadesus, G.; Vincent, I.; Linford, N.J.; Funk, J.O.; Shapiro, R.A.; Smith, M.A. Neuronal cell cycle re-entry mediates Alzheimer disease-type changes. Biochim. Biophys. Acta Mol. Basis Dis., 2007, 1772(4), 467-472.
[http://dx.doi.org/10.1016/j.bbadis.2006.09.010] [PMID: 17095196]
[32]
Moh, C.; Kubiak, J.Z.; Bajic, V.P.; Zhu, X.; Smith, M.A.; Lee, H. Cell cycle deregulation in the neurons of Alzheimer’s disease. Results Probl. Cell Differ., 2011, 53, 565-576.
[http://dx.doi.org/10.1007/978-3-642-19065-0_23] [PMID: 21630160]
[33]
Currais, A.; Hortobágyi, T.; Soriano, S. The neuronal cell cycle as a mechanism of pathogenesis in Alzheimer’s disease. Aging (Albany NY), 2009, 1(4), 363-371.
[http://dx.doi.org/10.18632/aging.100045] [PMID: 20157524]
[34]
Reiter, R.J. The melatonin rhythm: both a clock and a calendar. Experientia, 1993, 49(8), 654-664.
[http://dx.doi.org/10.1007/BF01923947] [PMID: 8395408]
[35]
Hiragaki, S.; Baba, K.; Coulson, E.; Kunst, S.; Spessert, R.; Tosini, G. Melatonin signaling modulates clock genes expression in the mouse retina. PLoS One, 2014, 9(9), e106819.
[http://dx.doi.org/10.1371/journal.pone.0106819] [PMID: 25203735]
[36]
Vriend, J.; Reiter, R.J. Melatonin feedback on clock genes: a theory involving the proteasome. J. Pineal Res., 2015, 58(1), 1-11.
[http://dx.doi.org/10.1111/jpi.12189] [PMID: 25369242]
[37]
Oishi, A.; Gbahou, F.; Jockers, R. Melatonin receptors, brain functions, and therapies. Handb. Clin. Neurol., 2021, 179, 345-356.
[http://dx.doi.org/10.1016/B978-0-12-819975-6.00022-4] [PMID: 34225974]
[38]
Hossain, M.F.; Wang, N.; Chen, R.; Li, S.; Roy, J.; Uddin, M.G.; Li, Z.; Lim, L.W.; Song, Y.Q. Exploring the multifunctional role of melatonin in regulating autophagy and sleep to mitigate Alzheimer’s disease neuropathology. Ageing Res. Rev., 2021, 67, 101304.
[http://dx.doi.org/10.1016/j.arr.2021.101304] [PMID: 33610813]
[39]
Vecchierini, M.F.; Kilic-Huck, U.; Quera-Salva, M.A. Melatonin (MEL) and its use in neurological diseases and insomnia: Recommendations of the French Medical and Research Sleep Society (SFRMS). Rev. Neurol. (Paris), 2021, 177(3), 245-259.
[http://dx.doi.org/10.1016/j.neurol.2020.06.009] [PMID: 32921425]
[40]
Shukla, M.; Govitrapong, P.; Boontem, P.; Reiter, R.J.; Satayavivad, J. Mechanisms of melatonin in alleviating Alzheimer’s disease. Curr. Neuropharmacol., 2017, 15(7), 1010-1031.
[http://dx.doi.org/10.2174/1570159X15666170313123454] [PMID: 28294066]
[41]
Shukla, M.; Chinchalongporn, V.; Govitrapong, P.; Reiter, R.J. The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann. N. Y. Acad. Sci., 2019, 1443(1), 75-96.
[http://dx.doi.org/10.1111/nyas.14005] [PMID: 30756405]
[42]
Shukla, M.; Sotthibundhu, A.; Govitrapong, P. Role of melatonin in regulating neurogenesis: Implications for the neurodegenerative pathology and analogous therapeutics for Alzheimer’s disease. Melatonin Res., 2020, 3(2), 216-242.
[http://dx.doi.org/10.32794/mr11250059]
[43]
Uddin, M.S.; Sumsuzzman, D.M.; Jeandet, P.; Behl, T.; Rauf, A.; Amran, M.S.; Ashraf, G.M. Deciphering the interacting mechanisms of circadian disruption and Alzheimer’s disease. Neurochem. Res., 2021, 46(7), 1603-1617.
[http://dx.doi.org/10.1007/s11064-021-03325-x] [PMID: 33871799]
[44]
Karasek, M. Melatonin, human aging, and age-related diseases. Exp. Gerontol., 2004, 39(11-12), 1723-1729.
[http://dx.doi.org/10.1016/j.exger.2004.04.012] [PMID: 15582288]
[45]
Ramos, E.; Romero, A.; Morales-García, J.Á. Melatonin: a multitasking indoleamine to modulate hippocampal neurogenesis. Neural Regen. Res., 2023, 18(3), 503-505.
[http://dx.doi.org/10.4103/1673-5374.350189] [PMID: 36018154]
[46]
Zawilska, J.B.; Skene, D.J.; Arendt, J. Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol. Rep., 2009, 61(3), 383-410.
[http://dx.doi.org/10.1016/S1734-1140(09)70081-7] [PMID: 19605939]
[47]
Hardeland, R. Melatonin and the theories of aging: a critical appraisal of melatonin’s role in antiaging mechanisms. J. Pineal Res., 2013, 55(4), 325-356.
[http://dx.doi.org/10.1111/jpi.12090] [PMID: 24112071]
[48]
Biggio, G.; Biggio, F.; Talani, G.; Mostallino, M.C.; Aguglia, A.; Aguglia, E.; Palagini, L. Melatonin: From neurobiology to treatment. Brain Sci., 2021, 11(9), 1121.
[http://dx.doi.org/10.3390/brainsci11091121] [PMID: 34573143]
[49]
Bubenik, G.A.; Konturek, S.J. Melatonin and aging: prospects for human treatment. J. Physiol. Pharmacol., 2011, 62(1), 13-19.
[PMID: 21451205]
[50]
Martín Giménez, V.M.; de las Heras, N.; Lahera, V.; Tresguerres, J.A.F.; Reiter, R.J.; Manucha, W. Melatonin as an anti-aging therapy for age-related cardiovascular and neurodegenerative diseases. Front. Aging Neurosci., 2022, 14, 888292.
[http://dx.doi.org/10.3389/fnagi.2022.888292] [PMID: 35721030]
[51]
Tordjman, S.; Chokron, S.; Delorme, R.; Charrier, A.; Bellissant, E.; Jaafari, N.; Fougerou, C. Melatonin: Pharmacology, functions and therapeutic benefits. Curr. Neuropharmacol., 2017, 15(3), 434-443.
[http://dx.doi.org/10.2174/1570159X14666161228122115] [PMID: 28503116]
[52]
Wurtman, R.J. Age-related decreases in melatonin secretion-clinical consequences. J. Clin. Endocrinol. Metab., 2000, 85(6), 2135-2136.
[http://dx.doi.org/10.1210/jcem.85.6.6660] [PMID: 10852441]
[53]
Onaolapo, O.J.; Onaolapo, A.Y. Melatonin, adolescence, and the brain: An insight into the period-specific influences of a multifunctional signaling molecule. Birth Defects Res., 2017, 109(20), 1659-1671.
[http://dx.doi.org/10.1002/bdr2.1171] [PMID: 29251845]
[54]
Cruz-Sanabria, F.; Carmassi, C.; Bruno, S.; Bazzani, A.; Carli, M.; Scarselli, M.; Faraguna, U. Melatonin as a chronobiotic with sleep-promoting properties. Curr. Neuropharmacol., 2022, 20. Online ahead of print
[http://dx.doi.org/10.2174/1570159X20666220217152617] [PMID: 35176989]
[55]
Anghel, L.; Baroiu, L.; Popazu, C.; Pătraș, D.; Fotea, S.; Nechifor, A.; Ciubara, A.; Nechita, L.; Mușat, C.; Stefanopol, I.; Tatu, A.; Ciubara, A. Benefits and adverse events of melatonin use in the elderly (Review). Exp. Ther. Med., 2022, 23(3), 219.
[http://dx.doi.org/10.3892/etm.2022.11142] [PMID: 35126722]
[56]
Nous, A.; Engelborghs, S.; Smolders, I. Melatonin levels in the Alzheimer’s disease continuum: a systematic review. Alzheimers Res. Ther., 2021, 13(1), 52.
[http://dx.doi.org/10.1186/s13195-021-00788-6] [PMID: 33622399]
[57]
Cardinali, D.P. Melatonin: Clinical perspectives in neurodegeneration. Front. Endocrinol. (Lausanne), 2019, 10, 480.
[http://dx.doi.org/10.3389/fendo.2019.00480] [PMID: 31379746]
[58]
Cardinali, D.; Vigo, D.; Olivar, N.; Vidal, M.; Brusco, L. Melatonin therapy in patients with Alzheimer’s disease. Antioxidants, 2014, 3(2), 245-277.
[http://dx.doi.org/10.3390/antiox3020245] [PMID: 26784870]
[59]
Wang, Y.Y.; Zheng, W.; Ng, C.H.; Ungvari, G.S.; Wei, W.; Xiang, Y.T. Meta-analysis of randomized, double-blind, placebo-controlled trials of melatonin in Alzheimer’s disease. Int. J. Geriatr. Psychiatry, 2017, 32(1), 50-57.
[http://dx.doi.org/10.1002/gps.4571] [PMID: 27645169]
[60]
Chen, D.; Zhang, T.; Lee, T.H. Cellular mechanisms of melatonin: Insight from neurodegenerative diseases. Biomolecules, 2020, 10(8), 1158.
[http://dx.doi.org/10.3390/biom10081158] [PMID: 32784556]
[61]
Vaccaro, A.; Kaplan Dor, Y.; Nambara, K.; Pollina, E.A.; Lin, C.; Greenberg, M.E.; Rogulja, D. Sleep loss can cause death through accumulation of reactive oxygen species in the gut. Cell, 2020, 181(6), 1307-1328.e15.
[http://dx.doi.org/10.1016/j.cell.2020.04.049] [PMID: 32502393]
[62]
Ramírez-Rodríguez, G.; Klempin, F.; Babu, H.; Benítez-King, G.; Kempermann, G. Melatonin modulates cell survival of new neurons in the hippocampus of adult mice. Neuropsychopharmacology, 2009, 34(9), 2180-2191.
[http://dx.doi.org/10.1038/npp.2009.46] [PMID: 19421166]
[63]
Leung, J.W.H.; Cheung, K.K.; Ngai, S.P.C.; Tsang, H.W.H.; Lau, B.W.M. Protective effects of melatonin on neurogenesis impairment in neurological disorders and its relevant molecular mechanisms. Int. J. Mol. Sci., 2020, 21(16), 5645.
[http://dx.doi.org/10.3390/ijms21165645] [PMID: 32781737]
[64]
Sumsuzzman, D.M.; Choi, J.; Jin, Y.; Hong, Y. Neurocognitive effects of melatonin treatment in healthy adults and individuals with Alzheimer’s disease and insomnia: A systematic review and meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev., 2021, 127, 459-473.
[http://dx.doi.org/10.1016/j.neubiorev.2021.04.034] [PMID: 33957167]
[65]
Roy, J.; Wong, K.Y.; Aquili, L.; Uddin, M.S.; Heng, B.C.; Tipoe, G.L.; Wong, K.H.; Fung, M.L.; Lim, L.W. Role of melatonin in Alzheimer’s disease: From preclinical studies to novel melatonin-based therapies. Front. Neuroendocrinol., 2022, 65, 100986.
[http://dx.doi.org/10.1016/j.yfrne.2022.100986] [PMID: 35167824]
[66]
Mendoza, J.; Challet, E. Brain clocks: from the suprachiasmatic nuclei to a cerebral network. Neuroscientist, 2009, 15(5), 477-488.
[http://dx.doi.org/10.1177/1073858408327808] [PMID: 19224887]
[67]
Homolak, J.; Mudrovčić, M.; Vukić, B.; Toljan, K. Circadian rhythm and Alzheimer’s disease. Med. Sci. (Basel), 2018, 6(3), 52.
[http://dx.doi.org/10.3390/medsci6030052] [PMID: 29933646]
[68]
Halberg, F.; Zander, H.A.; Houglum, M.W.; Mühlemann, H.R. Daily variations in tissue mitoses, blood eosinophils and rectal temperatures of rats. Am. J. Physiol., 1954, 177(3), 361-366.
[http://dx.doi.org/10.1152/ajplegacy.1954.177.3.361] [PMID: 13158575]
[69]
Dekens, M.P.S.; Santoriello, C.; Vallone, D.; Grassi, G.; Whitmore, D.; Foulkes, N.S. Light regulates the cell cycle in zebrafish. Curr. Biol., 2003, 13(23), 2051-2057.
[http://dx.doi.org/10.1016/j.cub.2003.10.022] [PMID: 14653994]
[70]
Masri, S.; Cervantes, M.; Sassone-Corsi, P. The circadian clock and cell cycle: interconnected biological circuits. Curr. Opin. Cell Biol., 2013, 25(6), 730-734.
[http://dx.doi.org/10.1016/j.ceb.2013.07.013] [PMID: 23969329]
[71]
Ye, R.; Selby, C.P.; Chiou, Y.Y.; Ozkan-Dagliyan, I.; Gaddameedhi, S.; Sancar, A. Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and Period proteins in the mammalian circadian clock. Genes Dev., 2014, 28(18), 1989-1998.
[http://dx.doi.org/10.1101/gad.249417.114] [PMID: 25228643]
[72]
Rakshit, K.; Krishnan, N.; Guzik, E.M.; Pyza, E.; Giebultowicz, J.M. Effects of aging on the molecular circadian oscillations in Drosophila. Chronobiol. Int., 2012, 29(1), 5-14.
[http://dx.doi.org/10.3109/07420528.2011.635237] [PMID: 22217096]
[73]
Blacher, E.; Tsai, C.; Litichevskiy, L.; Shipony, Z.; Iweka, C.A.; Schneider, K.M.; Chuluun, B.; Heller, H.C.; Menon, V.; Thaiss, C.A.; Andreasson, K.I. Aging disrupts circadian gene regulation and function in macrophages. Nat. Immunol., 2022, 23(2), 229-236.
[http://dx.doi.org/10.1038/s41590-021-01083-0] [PMID: 34949832]
[74]
Yang, L.; Liu, X.; Song, L.; Su, G.; Di, A.; Bai, C.; Wei, Z.; Li, G. Melatonin restores the pluripotency of long-term-cultured embryonic stem cells through melatonin receptor-dependent m6A RNA regulation. J. Pineal Res., 2020, 69(2), e12669.
[http://dx.doi.org/10.1111/jpi.12669] [PMID: 32415999]
[75]
Torres-Farfan, C.; Rocco, V.; Monsó, C.; Valenzuela, F.J.; Campino, C.; Germain, A.; Torrealba, F.; Valenzuela, G.J.; Seron-Ferre, M. Maternal melatonin effects on clock gene expression in a nonhuman primate fetus. Endocrinology, 2006, 147(10), 4618-4626.
[http://dx.doi.org/10.1210/en.2006-0628] [PMID: 16840546]
[76]
Li, X.; Guan, J.; Sun, T.; Yang, J.; Yu, H.; Yao, J.; Wang, Z. Circadian learning and memory changes in Aβ1–42 induced Alzheimer’s mice. Metab. Brain Dis., 2020, 35(3), 463-471.
[http://dx.doi.org/10.1007/s11011-019-00509-x] [PMID: 31728887]
[77]
Lee, J.; Kim, D.E.; Griffin, P.; Sheehan, P.W.; Kim, D.H.; Musiek, E.S.; Yoon, S.Y. Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer’s disease. Aging Cell, 2020, 19(2), e13078.
[http://dx.doi.org/10.1111/acel.13078] [PMID: 31800167]
[78]
González-Fernández, B.; Sánchez, D.I.; Crespo, I.; San-Miguel, B.; de Urbina, J.O.; González-Gallego, J.; Tuñón, M.J. Melatonin attenuates dysregulation of the circadian clock pathway in mice with CCl4-induced fibrosis and human hepatic stellate cells. Front. Pharmacol., 2018, 9, 556.
[http://dx.doi.org/10.3389/fphar.2018.00556] [PMID: 29892224]
[79]
Duncan, M.J. Interacting influences of aging and Alzheimer’s disease on circadian rhythms. Eur. J. Neurosci., 2020, 51(1), 310-325.
[http://dx.doi.org/10.1111/ejn.14358] [PMID: 30689226]
[80]
He, Y.; Li, Y.; Zhou, F.; Qi, J.; Wu, M. Decreased circadian fluctuation in cognitive behaviors and synaptic plasticity in APP/PS1 transgenic mice. Metab. Brain Dis., 2020, 35(2), 343-352.
[http://dx.doi.org/10.1007/s11011-019-00531-z] [PMID: 31879834]
[81]
Bellanti, F.; Iannelli, G.; Blonda, M.; Tamborra, R.; Villani, R.; Romano, A.; Calcagnini, S.; Mazzoccoli, G.; Vinciguerra, M.; Gaetani, S.; Giudetti, A.M.; Vendemiale, G.; Cassano, T.; Serviddio, G. Alterations of clock gene RNA expression in brain regions of a triple transgenic model of Alzheimer’s disease. J. Alzheimers Dis., 2017, 59(2), 615-631.
[http://dx.doi.org/10.3233/JAD-160942] [PMID: 28671110]
[82]
Naseri Kouzehgarani, G.; Bothwell, M.Y.; Gillette, M.U. Circadian rhythm of redox state regulates membrane excitability in hippocampal CA1 neurons. Eur. J. Neurosci., 2020, 51(1), 34-46.
[http://dx.doi.org/10.1111/ejn.14334] [PMID: 30614107]
[83]
Deibel, S.H.; Zelinski, E.L.; Keeley, R.J.; Kovalchuk, O.; McDonald, R.J. Epigenetic alterations in the suprachiasmatic nucleus and hippocampus contribute to age-related cognitive decline. Oncotarget, 2015, 6(27), 23181-23203.
[http://dx.doi.org/10.18632/oncotarget.4036] [PMID: 26252151]
[84]
Cermakian, N.; Waddington Lamont, E.; Boudreau, P.; Boivin, D.B. Circadian clock gene expression in brain regions of Alzheimer’s disease patients and control subjects. J. Biol. Rhythms, 2011, 26(2), 160-170.
[http://dx.doi.org/10.1177/0748730410395732] [PMID: 21454296]
[85]
Weissová, K.; Bartoš, A.; Sládek, M.; Nováková, M.; Sumová, A. Moderate changes in the circadian system of Alzheimer’s disease patients detected in their home environment. PLoS One, 2016, 11(1), e0146200.
[http://dx.doi.org/10.1371/journal.pone.0146200] [PMID: 26727258]
[86]
Kang, J.; Choi, H.J.; Isaacs, G.D.; Sung, W.; Kim, H.J. Amyloid burden in Alzheimer’s disease patients is associated with alterations in circadian rhythm. Dement. Neurocognitive Disord., 2021, 20(4), 99-107.
[http://dx.doi.org/10.12779/dnd.2021.20.4.99] [PMID: 34795773]
[87]
Fusilier, A.R.; Davis, J.A.; Paul, J.R.; Yates, S.D.; McMeekin, L.J.; Goode, L.K.; Mokashi, M.V.; Remiszewski, N.; van Groen, T.; Cowell, R.M.; McMahon, L.L.; Roberson, E.D.; Gamble, K.L. Dysregulated clock gene expression and abnormal diurnal regulation of hippocampal inhibitory transmission and spatial memory in amyloid precursor protein transgenic mice. Neurobiol. Dis., 2021, 158, 105454.
[http://dx.doi.org/10.1016/j.nbd.2021.105454] [PMID: 34333153]
[88]
Vincent, B. Protective roles of melatonin against the amyloid-dependent development of Alzheimer’s disease: A critical review. Pharmacol. Res., 2018, 134, 223-237.
[http://dx.doi.org/10.1016/j.phrs.2018.06.011] [PMID: 29981776]
[89]
Verma, A.K.; Singh, S.; Garg, G.; Rizvi, S.I. Melatonin exerts neuroprotection in a chronodisrupted rat model through reduction in oxidative stress and modulation of autophagy. Chronobiol. Int., 2022, 39(1), 45-56.
[http://dx.doi.org/10.1080/07420528.2021.1966025] [PMID: 34384302]
[90]
Arnes, M.; Alaniz, M.E.; Karam, C.S.; Cho, J.D.; Lopez, G.; Javitch, J.A.; Santa-Maria, I. Role of tau protein in remodeling of circadian neuronal circuits and sleep. Front. Aging Neurosci., 2019, 11, 320.
[http://dx.doi.org/10.3389/fnagi.2019.00320] [PMID: 31824299]
[91]
Luengo, E.; Buendia, I.; Fernández-Mendívil, C.; Trigo-Alonso, P.; Negredo, P.; Michalska, P.; Hernández-García, B.; Sánchez-Ramos, C.; Bernal, J.A.; Ikezu, T.; León, R.; López, M.G. Pharmacological doses of melatonin impede cognitive decline in tau-related Alzheimer models, once tauopathy is initiated, by restoring the autophagic flux. J. Pineal Res., 2019, 67(1), e12578.
[http://dx.doi.org/10.1111/jpi.12578] [PMID: 30943316]
[92]
Balmik, A.A.; Chinnathambi, S. Multi-faceted role of melatonin in neuroprotection and amelioration of Tau aggregates in Alzheimer’s disease. J. Alzheimers Dis., 2018, 62(4), 1481-1493.
[http://dx.doi.org/10.3233/JAD-170900] [PMID: 29562506]
[93]
Balmik, A.A.; Das, R.; Dangi, A.; Gorantla, N.V.; Marelli, U.K.; Chinnathambi, S. Melatonin interacts with repeat domain of Tau to mediate disaggregation of paired helical filaments. Biochim. Biophys. Acta, Gen. Subj., 2020, 1864(3), 129467.
[http://dx.doi.org/10.1016/j.bbagen.2019.129467] [PMID: 31715192]
[94]
Chang, Y.C.; Kim, J.Y. Therapeutic implications of circadian clocks in neurodegenerative diseases. J. Neurosci. Res., 2020, 98(6), 1095-1113.
[http://dx.doi.org/10.1002/jnr.24572] [PMID: 31833091]
[95]
Figueiro, M.G.; Plitnick, B.; Roohan, C.; Sahin, L.; Kalsher, M.; Rea, M.S. Effects of a tailored lighting intervention on sleep quality, rest-activity, mood, and behavior in older adults with Alzheimer disease and related dementias: A randomized clinical trial. J. Clin. Sleep Med., 2019, 15(12), 1757-1767.
[http://dx.doi.org/10.5664/jcsm.8078] [PMID: 31855161]
[96]
Musiek, E.S. Circadian clock disruption in neurodegenerative diseases: cause and effect? Front. Pharmacol., 2015, 6, 29.
[http://dx.doi.org/10.3389/fphar.2015.00029] [PMID: 25774133]
[97]
Wang, M.; Yu, H.; Li, S.; Xiang, Y.; Le, W. Altered biological rhythm and alzheimer’s disease: A bidirectional relationship. Curr. Alzheimer Res., 2021, 18(9), 667-675.
[http://dx.doi.org/10.2174/1567205018666211124104710] [PMID: 34819005]
[98]
Jenwitheesuk, A.; Nopparat, C.; Mukda, S.; Wongchitrat, P.; Govitrapong, P. Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int. J. Mol. Sci., 2014, 15(9), 16848-16884.
[http://dx.doi.org/10.3390/ijms150916848] [PMID: 25247581]
[99]
Hunt, T.; Sassone-Corsi, P. Riding tandem: circadian clocks and the cell cycle. Cell, 2007, 129(3), 461-464.
[http://dx.doi.org/10.1016/j.cell.2007.04.015] [PMID: 17482541]
[100]
Kondratov, R.V.; Antoch, M.P. The clock proteins, aging, and tumorigenesis. Cold Spring Harb. Symp. Quant. Biol., 2007, 72(1), 477-482.
[http://dx.doi.org/10.1101/sqb.2007.72.050] [PMID: 18419307]
[101]
Tomashevski, A.; Husseman, J.; Jin, L.W.; Nochlin, D.; Vincent, I. Constitutive Wee1 activity in adult brain neurons with M phase-type alterations in Alzheimer neurodegeneration. J. Alzheimers Dis., 2001, 3(2), 195-207.
[http://dx.doi.org/10.3233/JAD-2001-3205] [PMID: 12214061]
[102]
de Borsetti, N.H.; Dean, B.J.; Bain, E.J.; Clanton, J.A.; Taylor, R.W.; Gamse, J.T. Light and melatonin schedule neuronal differentiation in the habenular nuclei. Dev. Biol., 2011, 358(1), 251-261.
[http://dx.doi.org/10.1016/j.ydbio.2011.07.038] [PMID: 21840306]
[103]
Fredrich, M.; Hampel, M.; Seidel, K.; Christ, E.; Korf, H.W. Impact of melatonin receptor-signaling on Zeitgeber time-dependent changes in cell proliferation and apoptosis in the adult murine hippocampus. Hippocampus, 2017, 27(5), 495-506.
[http://dx.doi.org/10.1002/hipo.22706] [PMID: 28100031]
[104]
Tamai, S.; Sanada, K.; Fukada, Y. Time-of-day-dependent enhancement of adult neurogenesis in the hippocampus. PLoS One, 2008, 3(12), e3835.
[http://dx.doi.org/10.1371/journal.pone.0003835] [PMID: 19048107]
[105]
Goergen, E.M.; Bagay, L.A.; Rehm, K.; Benton, J.L.; Beltz, B.S. Circadian control of neurogenesis. J. Neurobiol., 2002, 53(1), 90-95.
[http://dx.doi.org/10.1002/neu.10095] [PMID: 12360586]
[106]
Akle, V.; Stankiewicz, A.J.; Kharchenko, V.; Yu, L.; Kharchenko, P.V.; Zhdanova, I.V. Circadian kinetics of cell cycle progression in adult neurogenic niches of a diurnal vertebrate. J. Neurosci., 2017, 37(7), 1900-1909.
[http://dx.doi.org/10.1523/JNEUROSCI.3222-16.2017] [PMID: 28087763]
[107]
Malik, A.; Kondratov, R.V.; Jamasbi, R.J.; Geusz, M.E. Circadian clock genes are essential for normal adult neurogenesis, differentiation, and fate determination. PLoS One, 2015, 10(10), e0139655.
[http://dx.doi.org/10.1371/journal.pone.0139655] [PMID: 26439128]
[108]
Bouchard-Cannon, P.; Mendoza-Viveros, L.; Yuen, A.; Kærn, M.; Cheng, H.Y.M. The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit. Cell Rep., 2013, 5(4), 961-973.
[http://dx.doi.org/10.1016/j.celrep.2013.10.037] [PMID: 24268780]
[109]
Lin, A.W.; Barradas, M.; Stone, J.C.; van Aelst, L.; Serrano, M.; Lowe, S.W. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev., 1998, 12(19), 3008-3019.
[http://dx.doi.org/10.1101/gad.12.19.3008] [PMID: 9765203]
[110]
Ben-Moshe Livne, Z.; Alon, S.; Vallone, D.; Bayleyen, Y.; Tovin, A.; Shainer, I.; Nisembaum, L.G.; Aviram, I.; Smadja-Storz, S.; Fuentes, M.; Falcón, J.; Eisenberg, E.; Klein, D.C.; Burgess, H.A.; Foulkes, N.S.; Gothilf, Y. Genetically blocking the zebrafish pineal clock affects circadian behavior. PLoS Genet., 2016, 12(11), e1006445.
[http://dx.doi.org/10.1371/journal.pgen.1006445] [PMID: 27870848]
[111]
Saeed, Y.; Abbott, S.M. Circadian disruption associated with Alzheimer’s disease. Curr. Neurol. Neurosci. Rep., 2017, 17(4), 29.
[http://dx.doi.org/10.1007/s11910-017-0745-y] [PMID: 28324298]
[112]
Ohnuma, S.; Harris, W.A. Neurogenesis and the cell cycle. Neuron, 2003, 40(2), 199-208.
[http://dx.doi.org/10.1016/S0896-6273(03)00632-9] [PMID: 14556704]
[113]
Cremisi, F.; Philpott, A.; Ohnuma, S. Cell cycle and cell fate interactions in neural development. Curr. Opin. Neurobiol., 2003, 13(1), 26-33.
[http://dx.doi.org/10.1016/S0959-4388(03)00005-9] [PMID: 12593979]
[114]
Edlund, T.; Jessell, T.M. Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell, 1999, 96(2), 211-224.
[http://dx.doi.org/10.1016/S0092-8674(00)80561-9] [PMID: 9988216]
[115]
Ohnuma, S.; Philpott, A.; Harris, W.A. Cell cycle and cell fate in the nervous system. Curr. Opin. Neurobiol., 2001, 11(1), 66-73.
[http://dx.doi.org/10.1016/S0959-4388(00)00175-6] [PMID: 11179874]
[116]
Herrup, K.; Yang, Y. Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat. Rev. Neurosci., 2007, 8(5), 368-378.
[http://dx.doi.org/10.1038/nrn2124] [PMID: 17453017]
[117]
Frank, C.L.; Tsai, L.H. Alternative functions of core cell cycle regulators in neuronal migration, neuronal maturation, and synaptic plasticity. Neuron, 2009, 62(3), 312-326.
[http://dx.doi.org/10.1016/j.neuron.2009.03.029] [PMID: 19447088]
[118]
Lim, S.; Kaldis, P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development, 2013, 140(15), 3079-3093.
[http://dx.doi.org/10.1242/dev.091744] [PMID: 23861057]
[119]
Klein, J.A.; Ackerman, S.L. Oxidative stress, cell cycle, and neurodegeneration. J. Clin. Invest., 2003, 111(6), 785-793.
[http://dx.doi.org/10.1172/JCI200318182] [PMID: 12639981]
[120]
Becker, E.B.E.; Bonni, A. Cell cycle regulation of neuronal apoptosis in development and disease. Prog. Neurobiol., 2004, 72(1), 1-25.
[http://dx.doi.org/10.1016/j.pneurobio.2003.12.005] [PMID: 15019174]
[121]
McShea, A.; Harris, P.L.; Webster, K.R.; Wahl, A.F.; Smith, M.A. Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. Am. J. Pathol., 1997, 150(6), 1933-1939.
[PMID: 9176387]
[122]
Vincent, I.; Pae, C.I.; Hallows, J.L. The cell cycle and human neurodegenerative disease. Prog. Cell Cycle Res., 2003, 5, 31-41.
[PMID: 14593698]
[123]
Ueberham, U.; Hessel, A.; Arendt, T. Cyclin C expression is involved in the pathogenesis of Alzheimer’s disease. Neurobiol. Aging, 2003, 24(3), 427-435.
[http://dx.doi.org/10.1016/S0197-4580(02)00132-X] [PMID: 12600719]
[124]
Herrup, K. The involvement of cell cycle events in the pathogenesis of Alzheimer’s disease. Alzheimers Res. Ther., 2010, 2(3), 13.
[http://dx.doi.org/10.1186/alzrt37] [PMID: 20497605]
[125]
Webber, K.M.; Raina, A.K.; Marlatt, M.W.; Zhu, X.; Prat, M.I.; Morelli, L.; Casadesus, G.; Perry, G.; Smith, M.A. The cell cycle in Alzheimer disease: A unique target for neuropharmacology. Mech. Ageing Dev., 2005, 126(10), 1019-1025.
[http://dx.doi.org/10.1016/j.mad.2005.03.024] [PMID: 15936057]
[126]
Shen, Y.; He, P.; Zhong, Z.; McAllister, C.; Lindholm, K. Distinct destructive signal pathways of neuronal death in Alzheimer’s disease. Trends Mol. Med., 2006, 12(12), 574-579.
[http://dx.doi.org/10.1016/j.molmed.2006.10.002] [PMID: 17055782]
[127]
Zhou, Z.; Bai, J.; Zhong, S.; Zhang, R.; Kang, K.; Zhang, X.; Xu, Y.; Zhao, C.; Zhao, M. Integrative functional genomic analysis of molecular signatures and mechanistic pathways in the cell cycle underlying Alzheimer’s disease. Oxid. Med. Cell. Longev., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/5552623] [PMID: 34336099]
[128]
Yuen, S.C.; Lee, S.M.Y.; Leung, S. Putative factors interfering cell cycle re-entry in Alzheimer’s disease: An omics study with differential expression meta-analytics and co-expression profiling. J. Alzheimers Dis., 2022, 85(3), 1373-1398.
[http://dx.doi.org/10.3233/JAD-215349] [PMID: 34924393]
[129]
Lars, R.T.A.; Gärtner, U.; Holzer, M.; Holzer, M. Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimerʼs disease. Neuroreport, 1996, 7(18), 3047-3050.
[http://dx.doi.org/10.1097/00001756-199611250-00050] [PMID: 9116237]
[130]
Arendt, T.; Holzer, M.; Gärtner, U. Neuronal expression of cycline dependent kinase inhibitors of the INK4 family in Alzheimer’s disease. J. Neural Transm. (Vienna), 1998, 105(8-9), 949-960.
[http://dx.doi.org/10.1007/s007020050104] [PMID: 9869328]
[131]
García-Osta, A.; Dong, J.; Moreno-Aliaga, M.J.; Ramirez, M.J. p27, the cell cycle and Alzheimer’s disease. Int. J. Mol. Sci., 2022, 23(3), 1211.
[http://dx.doi.org/10.3390/ijms23031211] [PMID: 35163135]
[132]
Shiu, S.Y.W.; Leung, W.Y.; Tam, C.W.; Liu, V.W.S.; Yao, K.M. Melatonin MT1 receptor-induced transcriptional up-regulation of p27Kip1 in prostate cancer antiproliferation is mediated via inhibition of constitutively active nuclear factor kappa B (NF-κB): potential implications on prostate cancer chemoprevention and. J. Pineal Res., 2013, 54(1), 69-79.
[http://dx.doi.org/10.1111/j.1600-079X.2012.01026.x] [PMID: 22856547]
[133]
Giovanni, A.; Wirtz-Brugger, F.; Keramaris, E.; Slack, R.; Park, D.S. Involvement of cell cycle elements, cyclin-dependent kinases, pRb, and E2F x DP, in B-amyloid-induced neuronal death. J. Biol. Chem., 1999, 274(27), 19011-19016.
[http://dx.doi.org/10.1074/jbc.274.27.19011] [PMID: 10383401]
[134]
Modi, P.K.; Komaravelli, N.; Singh, N.; Sharma, P. Interplay between MEK-ERK signaling, cyclin D1, and cyclin-dependent kinase 5 regulates cell cycle reentry and apoptosis of neurons. Mol. Biol. Cell, 2012, 23(18), 3722-3730.
[http://dx.doi.org/10.1091/mbc.e12-02-0125] [PMID: 22833568]
[135]
Sanphui, P.; Pramanik, S.K.; Chatterjee, N.; Moorthi, P.; Banerji, B.; Biswas, S.C. Efficacy of cyclin dependent kinase 4 inhibitors as potent neuroprotective agents against insults relevant to Alzheimer’s disease. PLoS One, 2013, 8(11), e78842.
[http://dx.doi.org/10.1371/journal.pone.0078842] [PMID: 24244372]
[136]
Tajes, O.M.; Pelegrí, G.C.; Vilaplana, H.J.; Pallàs, L.M.; Camins, E.A. An evaluation of the neuroprotective effects of melatonin in an in vitro experimental model of age-induced neuronal apoptosis. J. Pineal Res., 2009, 46(3), 262-267.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00656.x] [PMID: 19196437]
[137]
Absalon, S.; Kochanek, D.M.; Raghavan, V.; Krichevsky, A.M. MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J. Neurosci., 2013, 33(37), 14645-14659.
[http://dx.doi.org/10.1523/JNEUROSCI.1327-13.2013] [PMID: 24027266]
[138]
Meeker, R.; Williams, K. The p75 neurotrophin receptor: at the crossroad of neural repair and death. Neural Regen. Res., 2015, 10(5), 721-725.
[http://dx.doi.org/10.4103/1673-5374.156967] [PMID: 26109945]
[139]
Zeng, F.; Lu, J.J.; Zhou, X.F.; Wang, Y.J. Roles of p75NTR in the pathogenesis of Alzheimer’s disease: A novel therapeutic target. Biochem. Pharmacol., 2011, 82(10), 1500-1509.
[http://dx.doi.org/10.1016/j.bcp.2011.06.040] [PMID: 21762680]
[140]
Yao, X-Q.; Jiao, S-S.; Saadipour, K.; Zeng, F.; Wang, Q-H.; Zhu, C.; Shen, L-L.; Zeng, G-H.; Liang, C-R.; Wang, J.; Liu, Y-H.; Hou, H-Y.; Xu, X.; Su, Y-P.; Fan, X-T.; Xiao, H-L.; Lue, L-F.; Zeng, Y-Q.; Giunta, B.; Zhong, J-H.; Walker, D.G.; Zhou, H-D.; Tan, J.; Zhou, X-F.; Wang, Y-J. p75NTR ectodomain is a physiological neuroprotective molecule against amyloid-beta toxicity in the brain of Alzheimer’s disease. Mol. Psychiatry, 2015, 20(11), 1301-1310.
[http://dx.doi.org/10.1038/mp.2015.49] [PMID: 25917367]
[141]
Simmons, D.A.; Knowles, J.K.; Belichenko, N.P.; Banerjee, G.; Finkle, C.; Massa, S.M.; Longo, F.M. A small molecule p75NTR ligand, LM11A-31, reverses cholinergic neurite dystrophy in Alzheimer’s disease mouse models with mid- to late-stage disease progression. PLoS One, 2014, 9(8), e102136.
[http://dx.doi.org/10.1371/journal.pone.0102136] [PMID: 25153701]
[142]
Olivieri, G.; Otten, U.; Meier, F.; Baysang, G.; Dimitriades-Schmutz, B.; Müller-Spahn, F.; Savaskan, E. Oxidative stress modulates tyrosine kinase receptor A and p75 receptor (low-affinity nerve growth factor receptor) expression in SHSY5Y neuroblastoma cells. Neurol. Clin. Neurophysiol., 2002, 2002(2), 2-10.
[http://dx.doi.org/10.1162/153840902753658329] [PMID: 12028822]
[143]
Olivieri, G.; Otten, U.; Meier, F.; Baysang, G.; Dimitriades-Schmutz, B.; Müller-Spahn, F.; Savaskan, E. β-amyloid modulates tyrosine kinase B receptor expression in SHSY5Y neuroblastoma cells: influence of the antioxidant melatonin. Neuroscience, 2003, 120(3), 659-665.
[http://dx.doi.org/10.1016/S0306-4522(03)00342-7] [PMID: 12895507]
[144]
Zhang, J.; Cicero, S.A.; Wang, L.; Romito-DiGiacomo, R.R.; Yang, Y.; Herrup, K. Nuclear localization of Cdk5 is a key determinant in the postmitotic state of neurons. Proc. Natl. Acad. Sci. USA, 2008, 105(25), 8772-8777.
[http://dx.doi.org/10.1073/pnas.0711355105] [PMID: 18550843]
[145]
Majd, S.; Zarifkar, A.; Rastegar, K.; Takhshid, M.A. Different fibrillar Aβ1-42 concentrations induce adult hippocampal neurons to reenter various phases of the cell cycle. Brain Res., 2008, 1218, 224-229.
[http://dx.doi.org/10.1016/j.brainres.2008.04.050] [PMID: 18533137]
[146]
Su, L.Y.; Li, H.; Lv, L.; Feng, Y.M.; Li, G.D.; Luo, R.; Zhou, H.J.; Lei, X.G.; Ma, L.; Li, J.L.; Xu, L.; Hu, X.T.; Yao, Y.G. Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation. Autophagy, 2015, 11(10), 1745-1759.
[http://dx.doi.org/10.1080/15548627.2015.1082020] [PMID: 26292069]
[147]
Patrick, G.N.; Zukerberg, L.; Nikolic, M.; de la Monte, S.; Dikkes, P.; Tsai, L.H. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 1999, 402(6762), 615-622.
[http://dx.doi.org/10.1038/45159] [PMID: 10604467]
[148]
Song, W.J.; Son, M.Y.; Lee, H.W.; Seo, H.; Kim, J.H.; Chung, S.H. Enhancement of BACE1 activity by p25/Cdk5-mediated phosphorylation in Alzheimer’s disease. PLoS One, 2015, 10(8), e0136950.
[http://dx.doi.org/10.1371/journal.pone.0136950] [PMID: 26317805]
[149]
Zheng, Y.L.; Kesavapany, S.; Gravell, M.; Hamilton, R.S.; Schubert, M.; Amin, N.; Albers, W.; Grant, P.; Pant, H.C.A. Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. EMBO J., 2005, 24(1), 209-220.
[http://dx.doi.org/10.1038/sj.emboj.7600441] [PMID: 15592431]
[150]
Maitra, S.; Vincent, B. Cdk5-p25 as a key element linking amyloid and tau pathologies in Alzheimer’s disease: Mechanisms and possible therapeutic interventions. Life Sci., 2022, 308, 120986.
[http://dx.doi.org/10.1016/j.lfs.2022.120986] [PMID: 36152679]
[151]
Zhang, J.; Li, H.; Yabut, O.; Fitzpatrick, H.; D’Arcangelo, G.; Herrup, K. Cdk5 suppresses the neuronal cell cycle by disrupting the E2F1-DP1 complex. J. Neurosci., 2010, 30(15), 5219-5228.
[http://dx.doi.org/10.1523/JNEUROSCI.5628-09.2010] [PMID: 20392944]
[152]
Zhang, J.; Herrup, K. Nucleocytoplasmic Cdk5 is involved in neuronal cell cycle and death in post-mitotic neurons. Cell Cycle, 2011, 10(8), 1208-1214.
[http://dx.doi.org/10.4161/cc.10.8.15328] [PMID: 21415596]
[153]
Mushtaq, G.; Greig, N.H.; Anwar, F.; Al-Abbasi, F.A.; Zamzami, M.A.; Al-Talhi, H.A.; Kamal, M.A. Neuroprotective mechanisms mediated by CDK5 inhibition. Curr. Pharm. Des., 2016, 22(5), 527-534.
[http://dx.doi.org/10.2174/1381612822666151124235028] [PMID: 26601962]
[154]
Alvira, D.; Tajes, M.; Verdaguer, E.; Acuña-Castroviejo, D.; Folch, J.; Camins, A.; Pallas, M. Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson’s disease. J. Pineal Res., 2006, 40(3), 251-258.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00308.x] [PMID: 16499562]
[155]
Wang, S.; Zhu, L.; Shi, H.; Zheng, H.; Tian, Q.; Wang, Q.; Liu, R.; Wang, J.Z. Inhibition of melatonin biosynthesis induces neurofilament hyperphosphorylation with activation of cyclin-dependent kinase 5. Neurochem. Res., 2007, 32(8), 1329-1335.
[http://dx.doi.org/10.1007/s11064-007-9308-y] [PMID: 17401652]
[156]
Gutierrez-Cuesta, J.; Sureda, F.X.; Romeu, M.; Canudas, A.M.; Caballero, B.; Coto-Montes, A.; Camins, A.; Pallàs, M. Chronic administration of melatonin reduces cerebral injury biomarkers in SAMP8. J. Pineal Res., 2007, 42(4), 394-402.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00433.x] [PMID: 17439556]
[157]
Cini, G.; Neri, B.; Pacini, A.; Cesati, V.; Sassoli, C.; Quattrone, S.; D’Apolito, M.; Fazio, A.; Scapagnini, G.; Provenzani, A.; Quattrone, A. Antiproliferative activity of melatonin by transcriptional inhibition of cyclin D1 expression: a molecular basis for melatonin-induced oncostatic effects. J. Pineal Res., 2005, 39(1), 12-20.
[http://dx.doi.org/10.1111/j.1600-079X.2004.00206.x] [PMID: 15978052]
[158]
Liu, L.; Xu, Y.; Reiter, R.J. Melatonin inhibits the proliferation of human osteosarcoma cell line MG-63. Bone, 2013, 55(2), 432-438.
[http://dx.doi.org/10.1016/j.bone.2013.02.021] [PMID: 23470834]
[159]
Lee, M.; Kwon, Y.T.; Li, M.; Peng, J.; Friedlander, R.M.; Tsai, L.H. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature, 2000, 405(6784), 360-364.
[http://dx.doi.org/10.1038/35012636] [PMID: 10830966]
[160]
Suwanjang, W.; Abramov, A.Y.; Govitrapong, P.; Chetsawang, B. Melatonin attenuates dexamethasone toxicity-induced oxidative stress, calpain and caspase activation in human neuroblastoma SH-SY5Y cells. J. Steroid Biochem. Mol. Biol., 2013, 138, 116-122.
[http://dx.doi.org/10.1016/j.jsbmb.2013.04.008] [PMID: 23688838]
[161]
Liu, L.; Zhu, Y.; Xu, Y.; Reiter, R.J. Melatonin delays cell proliferation by inducing G1 and G2/M phase arrest in a human osteoblastic cell line hFOB 1.19. J. Pineal Res., 2011, 50(2), 222-231.
[http://dx.doi.org/10.1111/jpi.12023] [PMID: 21108658]
[162]
Quiros, I.; Mayo, J.C.; Garcia-Suarez, O.; Hevia, D.; Martin, V.; Rodríguez, C.; Sainz, R.M. Melatonin prevents glucocorticoid inhibition of cell proliferation and toxicity in hippocampal cells by reducing glucocorticoid receptor nuclear translocation. J. Steroid Biochem. Mol. Biol., 2008, 110(1-2), 116-124.
[http://dx.doi.org/10.1016/j.jsbmb.2008.02.009] [PMID: 18395440]
[163]
Janel, N.; Sarazin, M.; Corlier, F.; Corne, H.; de Souza, L.C.; Hamelin, L.; Aka, A.; Lagarde, J.; Blehaut, H.; Hindié, V.; Rain, J-C.; Arbones, M.L.; Dubois, B.; Potier, M.C.; Bottlaender, M.; Delabar, J.M. Plasma DYRK1A as a novel risk factor for Alzheimer’s disease. Transl. Psychiatry, 2014, 4(8), e425.
[http://dx.doi.org/10.1038/tp.2014.61] [PMID: 25116835]
[164]
Coutadeur, S.; Benyamine, H.; Delalonde, L.; de Oliveira, C.; Leblond, B.; Foucourt, A.; Besson, T.; Casagrande, A.S.; Taverne, T.; Girard, A.; Pando, M.P.; Désiré, L. A novel DYRK1A (Dual specificity tyrosine phosphorylation-regulated kinase 1A) inhibitor for the treatment of Alzheimer’s disease: effect on Tau and amyloid pathologies in vitro. J. Neurochem., 2015, 133(3), 440-451.
[http://dx.doi.org/10.1111/jnc.13018] [PMID: 25556849]
[165]
Stotani, S.; Giordanetto, F.; Medda, F. DYRK1A inhibition as potential treatment for Alzheimer’s disease. Future Med. Chem., 2016, 8(6), 681-696.
[http://dx.doi.org/10.4155/fmc-2016-0013] [PMID: 27073990]
[166]
Chen, J.Y.; Lin, J.R.; Tsai, F.C.; Meyer, T. Dosage of Dyrk1a shifts cells within a p21-cyclin D1 signaling map to control the decision to enter the cell cycle. Mol. Cell, 2013, 52(1), 87-100.
[http://dx.doi.org/10.1016/j.molcel.2013.09.009] [PMID: 24119401]
[167]
Kimura, R.; Kamino, K.; Yamamoto, M.; Nuripa, A.; Kida, T.; Kazui, H.; Hashimoto, R.; Tanaka, T.; Kudo, T.; Yamagata, H.; Tabara, Y.; Miki, T.; Akatsu, H.; Kosaka, K.; Funakoshi, E.; Nishitomi, K.; Sakaguchi, G.; Kato, A.; Hattori, H.; Uema, T.; Takeda, M. The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between β-amyloid production and tau phosphorylation in Alzheimer disease. Hum. Mol. Genet., 2007, 16(1), 15-23.
[http://dx.doi.org/10.1093/hmg/ddl437] [PMID: 17135279]
[168]
Maenz, B.; Hekerman, P.; Vela, E.M.; Galceran, J.; Becker, W. Characterization of the human DYRK1A promoter and its regulation by the transcription factor E2F1. BMC Mol. Biol., 2008, 9(1), 30.
[http://dx.doi.org/10.1186/1471-2199-9-30] [PMID: 18366763]
[169]
Jordan-Sciutto, K.L.; Malaiyandi, L.M.; Bowser, R. Altered distribution of cell cycle transcriptional regulators during Alzheimer disease. J. Neuropathol. Exp. Neurol., 2002, 61(4), 358-367.
[http://dx.doi.org/10.1093/jnen/61.4.358] [PMID: 11939591]
[170]
Sharma, S.; Sarkar, J.; Haldar, C.; Sinha, S. Melatonin reverses Fas, E2F-1 and endoplasmic reticulum stress mediated apoptosis and dysregulation of autophagy induced by the herbicide atrazine in murine splenocytes. PLoS One, 2014, 9(9), e108602.
[http://dx.doi.org/10.1371/journal.pone.0108602] [PMID: 25259610]
[171]
Arron, J.R.; Winslow, M.M.; Polleri, A.; Chang, C.P.; Wu, H.; Gao, X.; Neilson, J.R.; Chen, L.; Heit, J.J.; Kim, S.K.; Yamasaki, N.; Miyakawa, T.; Francke, U.; Graef, I.A.; Crabtree, G.R. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature, 2006, 441(7093), 595-600.
[http://dx.doi.org/10.1038/nature04678] [PMID: 16554754]
[172]
Lee, Y.; Ha, J.; Kim, H.J.; Kim, Y.S.; Chang, E.J.; Song, W.J.; Kim, H.H. Negative feedback Inhibition of NFATc1 by DYRK1A regulates bone homeostasis. J. Biol. Chem., 2009, 284(48), 33343-33351.
[http://dx.doi.org/10.1074/jbc.M109.042234] [PMID: 19801542]
[173]
Pedrosa, A.M.C.; Weinlich, R.; Mognol, G.P.; Robbs, B.K.; Viola, J.P.B.; Campa, A.; Amarante-Mendes, G.P. Melatonin protects CD4+ T cells from activation-induced cell death by blocking NFAT-mediated CD95 ligand upregulation. J. Immunol., 2010, 184(7), 3487-3494.
[http://dx.doi.org/10.4049/jimmunol.0902961] [PMID: 20181888]
[174]
Wang, J.; Ma, S.F.; Yun, Q.; Liu, W.J.; Zhai, H.R.; Shi, H.Z.; Xie, L.G.; Qian, J.J.; Zhao, C.J.; Zhang, W.N. FOXG1 as a potential therapeutic target for Alzheimer’s disease with a particular focus on cell cycle regulation. J. Alzheimers Dis., 2022, 86(3), 1255-1273.
[http://dx.doi.org/10.3233/JAD-215144] [PMID: 35180113]
[175]
Liu, B.; Zhou, K.; Wu, X.; Zhao, C. Foxg1 deletion impairs the development of the epithalamus. Mol. Brain, 2018, 11(1), 5.
[http://dx.doi.org/10.1186/s13041-018-0350-2] [PMID: 29394901]
[176]
Bailis, J.M.; Forsburg, S.L. MCM proteins: DNA damage, mutagenesis and repair. Curr. Opin. Genet. Dev., 2004, 14(1), 17-21.
[http://dx.doi.org/10.1016/j.gde.2003.11.002] [PMID: 15108800]
[177]
Wharton, S.B.; Williams, G.H.; Stoeber, K.; Gelsthorpe, C.H.; Baxter, L.; Johnson, A.L.; Ince, P.G. Expression of Ki67, PCNA and the chromosome replication licensing protein Mcm2 in glial cells of the ageing human hippocampus increases with the burden of Alzheimer-type pathology. Neurosci. Lett., 2005, 383(1-2), 33-38.
[http://dx.doi.org/10.1016/j.neulet.2005.04.019] [PMID: 15936508]
[178]
Bonda, D.J.; Evans, T.A.; Santocanale, C.; Llosá, J.C.; Viňa, J.; Bajic, V.P.; Castellani, R.J.; Siedlak, S.L.; Perry, G.; Smith, M.A.; Lee, H. Evidence for the progression through S-phase in the ectopic cell cycle re-entry of neurons in Alzheimer disease. Aging (Albany NY), 2009, 1(4), 382-388.
[http://dx.doi.org/10.18632/aging.100044] [PMID: 19946466]
[179]
Busser, J.; Geldmacher, D.S.; Herrup, K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain. J. Neurosci., 1998, 18(8), 2801-2807.
[http://dx.doi.org/10.1523/JNEUROSCI.18-08-02801.1998] [PMID: 9525997]
[180]
Zhong, Z.M.; Li, T.; Xu, Z.X.; Meng, T.T.; Zeng, J.H.; Zheng, S.; Ye, W.B.; Wu, Q.; Chen, J.T. Effect of melatonin on the proliferation and differentiation of chondrocytes from rat vertebral body growth plate in vitro. Int. J. Med. Sci., 2013, 10(10), 1392-1398.
[http://dx.doi.org/10.7150/ijms.5645] [PMID: 23983601]
[181]
Katsel, P.; Tan, W.; Fam, P.; Purohit, D.P.; Haroutunian, V. Cell cycle checkpoint abnormalities during dementia: A plausible association with the loss of protection against oxidative stress in Alzheimer’s disease. PLoS One, 2013, 8(7), e68361.
[http://dx.doi.org/10.1371/journal.pone.0068361] [PMID: 23861893]
[182]
Leem, J.; Bai, G.Y.; Kim, J.S.; Oh, J.S. Melatonin protects mouse oocytes from DNA damage by enhancing nonhomologous end‐joining repair. J. Pineal Res., 2019, 67(4), e12603.
[http://dx.doi.org/10.1111/jpi.12603] [PMID: 31370106]
[183]
Majidinia, M.; Sadeghpour, A.; Mehrzadi, S.; Reiter, R.J.; Khatami, N.; Yousefi, B. Melatonin: A pleiotropic molecule that modulates DNA damage response and repair pathways. J. Pineal Res., 2017, 63(1), e12416.
[http://dx.doi.org/10.1111/jpi.12416] [PMID: 28439991]
[184]
Kitamura, Y.; Shimohama, S.; Kamoshima, W.; Matsuoka, Y.; Nomura, Y.; Taniguchi, T. Changes of p53 in the brains of patients with Alzheimer’s disease. Biochem. Biophys. Res. Commun., 1997, 232(2), 418-421.
[http://dx.doi.org/10.1006/bbrc.1997.6301] [PMID: 9125193]
[185]
Hooper, C.; Meimaridou, E.; Tavassoli, M.; Melino, G.; Lovestone, S.; Killick, R. p53 is upregulated in Alzheimer’s disease and induces tau phosphorylation in HEK293a cells. Neurosci. Lett., 2007, 418(1), 34-37.
[http://dx.doi.org/10.1016/j.neulet.2007.03.026] [PMID: 17399897]
[186]
Schindowski, K.; Belarbi, K.; Bretteville, A.; Ando, K.; Buee, L. Neurogenesis and cell cycle-reactivated neuronal death during pathogenic tau aggregation. Genes Brain Behav., 2008, S1, 92-100.
[http://dx.doi.org/10.1111/j.1601-183X.2007.00377.x]
[187]
El-Missiry, M.A.; Othman, A.I.; Al-Abdan, M.A.; El-Sayed, A.A. Melatonin ameliorates oxidative stress, modulates death receptor pathway proteins, and protects the rat cerebrum against bisphenol-A-induced apoptosis. J. Neurol. Sci., 2014, 347(1-2), 251-256.
[http://dx.doi.org/10.1016/j.jns.2014.10.009] [PMID: 25454643]
[188]
Omata, Y.; Lim, Y.M.; Akao, Y.; Tsuda, L. Age-induced reduction of autophagy-related gene expression is associated with onset of Alzheimer’s disease. Am. J. Neurodegener. Dis., 2014, 3(3), 134-142.http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4299720/
[PMID: 25628964]
[189]
Qin, W.; Zhao, W.; Ho, L.; Wang, J.; Walsh, K.; Gandy, S.; Pasinetti, G.M. Regulation of forkhead transcription factor FoxO3a contributes to calorie restriction-induced prevention of Alzheimer’s disease-type amyloid neuropathology and spatial memory deterioration. Ann. N. Y. Acad. Sci., 2008, 1147(1), 335-347.
[http://dx.doi.org/10.1196/annals.1427.024] [PMID: 19076455]
[190]
Cuesta, S.; Kireev, R.; García, C.; Rancan, L.; Vara, E.; Tresguerres, J.A.F. Melatonin can improve insulin resistance and aging-induced pancreas alterations in senescence-accelerated prone male mice (SAMP8). Age (Omaha), 2013, 35(3), 659-671.
[http://dx.doi.org/10.1007/s11357-012-9397-7] [PMID: 22411259]
[191]
Jenwitheesuk, A.; Boontem, P.; Wongchitrat, P.; Tocharus, J.; Mukda, S.; Govitrapong, P. Melatonin regulates the aging mouse hippocampal homeostasis via the sirtuin1-FOXO1 pathway. EXCLI J., 2017, 16, 340-353.
[http://dx.doi.org/10.17179/excli2016-852] [PMID: 28507478]
[192]
Yuan, Z.; Becker, E.B.E.; Merlo, P.; Yamada, T.; DiBacco, S.; Konishi, Y.; Schaefer, E.M.; Bonni, A. Activation of FOXO1 by Cdk1 in cycling cells and postmitotic neurons. Science, 2008, 319(5870), 1665-1668.
[http://dx.doi.org/10.1126/science.1152337] [PMID: 18356527]
[193]
Majdzadeh, N.; Wang, L.; Morrison, B.E.; Bassel-Duby, R.; Olson, E.N.; D’Mello, S.R. HDAC4 inhibits cell-cycle progression and protects neurons from cell death. Dev. Neurobiol., 2008, 68(8), 1076-1092.
[http://dx.doi.org/10.1002/dneu.20637] [PMID: 18498087]
[194]
Harris, P.; Zhu, X.; Pamies, C.; Rottkamp, C.A.; Ghanbari, H.A.; McShea, A.; Feng, Y.; Ferris, D.K.; Smith, M.A. Neuronal polo-like kinase in Alzheimer disease indicates cell cycle changes. Neurobiol. Aging, 2000, 21(6), 837-841.
[http://dx.doi.org/10.1016/S0197-4580(00)00218-9] [PMID: 11124427]
[195]
Song, B.; Davis, K.; Liu, X.S.; Lee, H.; Smith, M.; Liu, X. Inhibition of Polo-like kinase 1 reduces beta-amyloid-induced neuronal cell death in Alzheimer’s disease. Aging (Albany NY), 2011, 3(9), 846-851.
[http://dx.doi.org/10.18632/aging.100382] [PMID: 21931181]
[196]
Liu, L.; Xu, Y.; Reiter, R.J.; Pan, Y.; Chen, D.; Liu, Y.; Pu, X.; Jiang, L.; Li, Z. Inhibition of ERK1/2 signaling pathway is involved in melatonin’s antiproliferative effect on human MG-63 osteosarcoma cells. Cell. Physiol. Biochem., 2016, 39(6), 2297-2307.
[http://dx.doi.org/10.1159/000447922] [PMID: 27832629]
[197]
Villanueva, J.; Yung, Y.; Walker, J.L.; Assoian, R.K. ERK activity and G1 phase progression: identifying dispensable versus essential activities and primary versus secondary targets. Mol. Biol. Cell, 2007, 18(4), 1457-1463.
[http://dx.doi.org/10.1091/mbc.e06-10-0908] [PMID: 17314399]
[198]
Cieślik, M.; Czapski, G.A.; Strosznajder, J.B. The molecular mechanism of amyloid b42 peptide toxicity: the role of sphingosine kinase-1 and mitochondrial sirtuins. PLoS One, 2015, 10(9), e0137193.
[http://dx.doi.org/10.1371/journal.pone.0137193] [PMID: 26334640]
[199]
Delobel, P.; Lavenir, I.; Ghetti, B.; Holzer, M.; Goedert, M. Cell-cycle markers in a transgenic mouse model of human tauopathy: increased levels of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1. Am. J. Pathol., 2006, 168(3), 878-887.
[http://dx.doi.org/10.2353/ajpath.2006.050540] [PMID: 16507903]
[200]
Khurana, V.; Lu, Y.; Steinhilb, M.L.; Oldham, S.; Shulman, J.M.; Feany, M.B. TOR-mediated cell-cycle activation causes neurodegeneration in a Drosophila tauopathy model. Curr. Biol., 2006, 16(3), 230-241.
[http://dx.doi.org/10.1016/j.cub.2005.12.042] [PMID: 16461276]
[201]
Khurana, V.; Feany, M.B. Connecting cell-cycle activation to neurodegeneration in Drosophila. Biochim. Biophys. Acta Mol. Basis Dis., 2007, 1772(4), 446-456.
[http://dx.doi.org/10.1016/j.bbadis.2006.10.007] [PMID: 17141486]
[202]
Zhu, L.Q.; Wang, S.H.; Ling, Z.Q.; Wang, D.L.; Wang, J.Z. Effect of inhibiting melatonin biosynthesis on spatial memory retention and tau phosphorylation in rat. J. Pineal Res., 2004, 37(2), 71-77.
[http://dx.doi.org/10.1111/j.1600-079X.2004.00136.x] [PMID: 15298664]
[203]
Lin, L.; Huang, Q.X.; Yang, S.S.; Chu, J.; Wang, J.Z.; Tian, Q. Melatonin in Alzheimer’s disease. Int. J. Mol. Sci., 2013, 14(7), 14575-14593.
[http://dx.doi.org/10.3390/ijms140714575] [PMID: 23857055]
[204]
Bhaskar, K.; Miller, M.; Chludzinski, A.; Herrup, K.; Zagorski, M.; Lamb, B.T. The PI3K-Akt-mTOR pathway regulates Aβ oligomer induced neuronal cell cycle events. Mol. Neurodegener., 2009, 4(1), 14.
[http://dx.doi.org/10.1186/1750-1326-4-14] [PMID: 19291319]
[205]
Shukla, M.; Htoo, H.H.; Wintachai, P.; Hernandez, J.F.; Dubois, C.; Postina, R.; Xu, H.; Checler, F.; Smith, D.R.; Govitrapong, P.; Vincent, B. Melatonin stimulates the nonamyloidogenic processing of β APP through the positive transcriptional regulation of ADAM10 and ADAM17. J. Pineal Res., 2015, 58(2), 151-165.
[http://dx.doi.org/10.1111/jpi.12200] [PMID: 25491598]
[206]
Panmanee, J.; Nopparat, C.; Chavanich, N.; Shukla, M.; Mukda, S.; Song, W.; Vincent, B.; Govitrapong, P. Melatonin regulates the transcription of βAPP-cleaving secretases mediated through melatonin receptors in human neuroblastoma SH-SY5Y cells. J. Pineal Res., 2015, 59(3), 308-320.
[http://dx.doi.org/10.1111/jpi.12260] [PMID: 26123100]
[207]
Chinchalongporn, V.; Shukla, M.; Govitrapong, P. Melatonin ameliorates Aβ 42 -induced alteration of βAPP-processing secretases via the melatonin receptor through the Pin1/GSK3β/NF-κB pathway in SH-SY5Y cells. J. Pineal Res., 2018, 64(4), e12470.
[http://dx.doi.org/10.1111/jpi.12470] [PMID: 29352484]
[208]
Bialopiotrowicz, E.; Szybinska, A.; Kuzniewska, B.; Buizza, L.; Uberti, D.; Kuznicki, J.; Wojda, U. Highly pathogenic Alzheimer’s disease presenilin 1 P117R mutation causes a specific increase in p53 and p21 protein levels and cell cycle dysregulation in human lymphocytes. J. Alzheimers Dis., 2012, 32(2), 397-415.
[http://dx.doi.org/10.3233/JAD-2012-121129] [PMID: 22810102]
[209]
Yates, S.C.; Zafar, A.; Rabai, E.M.; Foxall, J.B.; Nagy, S.; Morrison, K.E.; Clarke, C.; Esiri, M.M.; Christie, S.; Smith, A.D.; Nagy, Z. The effects of two polymorphisms on p21cip1 function and their association with Alzheimer’s disease in a population of European descent. PLoS One, 2015, 10(1), e0114050.
[http://dx.doi.org/10.1371/journal.pone.0114050] [PMID: 25625488]
[210]
Ma, L.; Liu, Q.; Tian, M.; Tian, X.; Gao, L. Mechanisms of melatonin in anti-aging and its regulation effects in radiation-induced premature senescence. Radiation Med. Protect., 2021, 2(1), 33-37.
[http://dx.doi.org/10.1016/j.radmp.2021.01.003]
[211]
Suwannakot, K.; Sritawan, N.; Prajit, R.; Aranarochana, A.; Sirichoat, A.; Pannangrong, W.; Wigmore, P.; Welbat, J.U. Melatonin protects against the side-effects of 5-fluorouracil on hippocampal neurogenesis and ameliorates antioxidant activity in an adult rat hippocampus and prefrontal cortex. Antioxidants, 2021, 10(4), 615.
[http://dx.doi.org/10.3390/antiox10040615] [PMID: 33923672]
[212]
Tan, Y.Z.; Xu, X.Y.; Dai, J.M.; Yin, Y.; He, X.T.; Zhang, Y.L.; Zhu, T.X.; An, Y.; Tian, B.M.; Chen, F.M. Melatonin induces the rejuvenation of long-term ex vivo expanded periodontal ligament stem cells by modulating the autophagic process. Stem Cell Res. Ther., 2021, 12(1), 254.
[http://dx.doi.org/10.1186/s13287-021-02322-9] [PMID: 33926537]
[213]
Gustaw-Rothenberg, K.; Lerner, A.; Bonda, D.J.; Lee, H.; Zhu, X.; Perry, G.; Smith, M.A. Biomarkers in Alzheimer’s disease: past, present and future. Biomarkers Med., 2010, 4(1), 15-26.
[http://dx.doi.org/10.2217/bmm.09.86] [PMID: 20387301]
[214]
Kimball, S.R.; Abbas, A.; Jefferson, L.S. Melatonin represses oxidative stress-induced activation of the MAP kinase and mTOR signaling pathways in H4IIE hepatoma cells through inhibition of Ras. J. Pineal Res., 2008, 44(4), 379-386.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00539.x] [PMID: 18410586]
[215]
Koc, S.; Cayli, S.; Aksakal, C.; Ocakli, S.; Soyalic, H.; Somuk, B.T.; Yüce, S. Protective effects of melatonin and selenium against apoptosis of olfactory sensory neurons: A rat model study. Am. J. Rhinol. Allergy, 2016, 30(3), e62-e66.
[http://dx.doi.org/10.2500/ajra.2016.30.4313] [PMID: 27216337]
[216]
Dong, Y.; Fan, C.; Hu, W.; Jiang, S.; Ma, Z.; Yan, X.; Deng, C.; Di, S.; Xin, Z.; Wu, G.; Yang, Y.; Reiter, R.J.; Liang, G. Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling. J. Pineal Res., 2016, 60(3), 253-262.
[http://dx.doi.org/10.1111/jpi.12300] [PMID: 26639408]
[217]
Kwon, K.J.; Kim, J.N.; Kim, M.K.; Lee, J.; Ignarro, L.J.; Kim, H.J.; Shin, C.Y.; Han, S.H. Melatonin synergistically increases resveratrol-induced heme oxygenase-1 expression through the inhibition of ubiquitin-dependent proteasome pathway: a possible role in neuroprotection. J. Pineal Res., 2010, 50(2)
[http://dx.doi.org/10.1111/j.1600-079X.2010.00820.x] [PMID: 21073519]
[218]
Zheng, Q.; Huang, T.; Zhang, L.; Zhou, Y.; Luo, H.; Xu, H.; Wang, X. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front. Aging Neurosci., 2016, 8, 303.
[http://dx.doi.org/10.3389/fnagi.2016.00303] [PMID: 28018215]
[219]
Chen, Y.; Liu, W.; McPhie, D.L.; Hassinger, L.; Neve, R.L. APP-BP1 mediates APP-induced apoptosis and DNA synthesis and is increased in Alzheimer’s disease brain. J. Cell Biol., 2003, 163(1), 27-33.
[http://dx.doi.org/10.1083/jcb.200304003] [PMID: 14557245]
[220]
Chen, Y.; McPhie, D.L.; Hirschberg, J.; Neve, R.L. The amyloid precursor protein-binding protein APP-BP1 drives the cell cycle through the S-M checkpoint and causes apoptosis in neurons. J. Biol. Chem., 2000, 275(12), 8929-8935.
[http://dx.doi.org/10.1074/jbc.275.12.8929] [PMID: 10722740]
[221]
Tateishi, K.; Omata, M.; Tanaka, K.; Chiba, T. The NEDD8 system is essential for cell cycle progression and morphogenetic pathway in mice. J. Cell Biol., 2001, 155(4), 571-580.
[http://dx.doi.org/10.1083/jcb.200104035] [PMID: 11696557]
[222]
Chen, Y.; Neve, R.L.; Liu, H. Neddylation dysfunction in Alzheimer’s disease. J. Cell. Mol. Med., 2012, 16(11), 2583-2591.
[http://dx.doi.org/10.1111/j.1582-4934.2012.01604.x] [PMID: 22805479]
[223]
Shukla, M.; Chinchalongporn, V.; Govitrapong, P. Melatonin prevents neddylation dysfunction in Aβ42-exposed SH-SY5Y neuroblastoma cells by regulating the amyloid precursor protein-binding protein 1 pathway. Curr. Alzheimer Res., 2020, 17(5), 446-459.
[http://dx.doi.org/10.2174/1567205017666200624201356] [PMID: 32579500]
[224]
Kruman, I.I. Why do neurons enter the cell cycle? Cell Cycle, 2004, 3(6), 767-771.
[http://dx.doi.org/10.4161/cc.3.6.901] [PMID: 15136759]
[225]
Franco, S.; Blasco, M.A.; Siedlak, S.L.; Harris, P.L.R.; Moreira, P.I.; Perry, G.; Smith, M.A. Telomeres and telomerase in Alzheimer’s disease: Epiphenomena or a new focus for therapeutic strategy? Alzheimers Dement., 2006, 2(3), 164-168.
[http://dx.doi.org/10.1016/j.jalz.2006.03.001] [PMID: 19595878]
[226]
Zhu, X.; Lee, H.; Casadesus, G.; Avila, J.; Drew, K.; Perry, G.; Smith, M.A. Oxidative imbalance in Alzheimer’s disease. Mol. Neurobiol., 2005, 31(1-3), 205-218.
[http://dx.doi.org/10.1385/MN:31:1-3:205] [PMID: 15953822]
[227]
Tan, J.L.; Li, Q.X.; Ciccotosto, G.D.; Crouch, P.J.; Culvenor, J.G.; White, A.R.; Evin, G. Mild oxidative stress induces redistribution of BACE1 in non-apoptotic conditions and promotes the amyloidogenic processing of Alzheimer’s disease amyloid precursor protein. PLoS One, 2013, 8(4), e61246.
[http://dx.doi.org/10.1371/journal.pone.0061246] [PMID: 23613819]
[228]
Mouton-Liger, F.; Paquet, C.; Dumurgier, J.; Bouras, C.; Pradier, L.; Gray, F.; Hugon, J. Oxidative stress increases BACE1 protein levels through activation of the PKR-eIF2α pathway. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(6), 885-896.
[http://dx.doi.org/10.1016/j.bbadis.2012.01.009] [PMID: 22306812]
[229]
Dunckley, T.; Beach, T.G.; Ramsey, K.E.; Grover, A.; Mastroeni, D.; Walker, D.G.; LaFleur, B.J.; Coon, K.D.; Brown, K.M.; Caselli, R.; Kukull, W.; Higdon, R.; McKeel, D.; Morris, J.C.; Hulette, C.; Schmechel, D.; Reiman, E.M.; Rogers, J.; Stephan, D.A. Gene expression correlates of neurofibrillary tangles in Alzheimer’s disease. Neurobiol. Aging, 2006, 27(10), 1359-1371.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.08.013] [PMID: 16242812]
[230]
Zhou, J.N.; Liu, R.Y.; Kamphorst, W.; Hofman, M.A.; Swaab, D.F. Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J. Pineal Res., 2003, 35(2), 125-130.
[http://dx.doi.org/10.1034/j.1600-079X.2003.00065.x] [PMID: 12887656]
[231]
Sunday, O.; Temitope, O.T.; Adekunle, M.F.; Elizabeth, O.O.; Olufunminyi, A.J.; Richard, A.A.; Samuel, A.A. Alteration in antioxidants level and lipid peroxidation of patients with neurodegenerative diseases Alzheimer′s disease and Parkinson disease. Int. J. Nutr. Pharmacol. Neurol. Dis., 2014, 4(3), 146-152. https://www.ijnpnd.com/text.asp?2014/4/3/146/132671
[http://dx.doi.org/10.4103/2231-0738.132671]
[232]
Goc, Z.; Szaroma, W.; Kapusta, E.; Dziubek, K. Protective effects of melatonin on the activity of SOD, CAT, GSH-Px and GSH content in organs of mice after administration of SNP. Chin. J. Physiol., 2017, 60(1), 1-10.
[http://dx.doi.org/10.4077/CJP.2017.BAF435] [PMID: 28052641]
[233]
Migliore, L.; Coppedè, F. Genetic and environmental factors in cancer and neurodegenerative diseases. Mutat. Res. Rev. Mutat. Res., 2002, 512(2-3), 135-153.
[http://dx.doi.org/10.1016/S1383-5742(02)00046-7] [PMID: 12464348]
[234]
Erenberk, U.; Dundaroz, R.; Gok, O.; Uysal, O.; Agus, S.; Yuksel, A.; Yilmaz, B.; Kilic, U. Melatonin attenuates phenytoin sodium-induced DNA damage. Drug Chem. Toxicol., 2014, 37(2), 233-239.
[http://dx.doi.org/10.3109/01480545.2013.838777] [PMID: 24171672]
[235]
Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev., 2000, 14(9), 1021-1026.
[http://dx.doi.org/10.1101/gad.14.9.1021] [PMID: 10809662]
[236]
Gong, B.; Pan, Y.; Vempati, P.; Zhao, W.; Knable, L.; Ho, L.; Wang, J.; Sastre, M.; Ono, K.; Sauve, A.A.; Pasinetti, G.M. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol. Aging, 2013, 34(6), 1581-1588.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.12.005] [PMID: 23312803]
[237]
Manchester, L.C.; Coto-Montes, A.; Boga, J.A.; Andersen, L.P.H.; Zhou, Z.; Galano, A.; Vriend, J.; Tan, D.X.; Reiter, R.J. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res., 2015, 59(4), 403-419.
[http://dx.doi.org/10.1111/jpi.12267] [PMID: 26272235]
[238]
Reiter, R.J.; Mayo, J.C.; Tan, D.X.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an antioxidant: under promises but over delivers. J. Pineal Res., 2016, 61(3), 253-278.
[http://dx.doi.org/10.1111/jpi.12360] [PMID: 27500468]
[239]
Tan, D.X.; Manchester, L.C.; Sainz, R.M.; Mayo, J.C.; Leon, J.; Hardeland, R.; Poeggeler, B.; Reiter, R.J. Interactions between melatonin and nicotinamide nucleotide: NADH preservation in cells and in cell-free systems by melatonin. J. Pineal Res., 2005, 39(2), 185-194.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00234.x] [PMID: 16098097]
[240]
Ding, K.; Wang, H.; Xu, J.; Li, T.; Zhang, L.; Ding, Y.; Zhu, L.; He, J.; Zhou, M. Melatonin stimulates antioxidant enzymes and reduces oxidative stress in experimental traumatic brain injury: the Nrf2–ARE signaling pathway as a potential mechanism. Free Radic. Biol. Med., 2014, 73, 1-11.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.04.031] [PMID: 24810171]
[241]
Farioli-Vecchioli, S.; Tirone, F. Control of the cell cycle in adult neurogenesis and its relation with physical exercise. Brain Plast., 2015, 1(1), 41-54.
[http://dx.doi.org/10.3233/BPL-150013] [PMID: 29765834]
[242]
Beukelaers, P.; Vandenbosch, R.; Caron, N.; Nguyen, L.; Moonen, G.; Malgrange, B. Cycling or not cycling: cell cycle regulatory molecules and adult neurogenesis. Cell. Mol. Life Sci., 2012, 69(9), 1493-1503.
[http://dx.doi.org/10.1007/s00018-011-0880-6] [PMID: 22068613]
[243]
Patrício, P.; Mateus-Pinheiro, A.; Sousa, N.; Pinto, L. Re-cycling paradigms: cell cycle regulation in adult hippocampal neurogenesis and implications for depression. Mol. Neurobiol., 2013, 48(1), 84-96.
[http://dx.doi.org/10.1007/s12035-013-8422-x] [PMID: 23471746]
[244]
Cheffer, A.; Tárnok, A.; Ulrich, H. Cell cycle regulation during neurogenesis in the embryonic and adult brain. Stem Cell Rev., 2013, 9(6), 794-805.
[http://dx.doi.org/10.1007/s12015-013-9460-5] [PMID: 23900682]
[245]
Hindley, C.; Philpott, A. Co-ordination of cell cycle and differentiation in the developing nervous system. Biochem. J., 2012, 444(3), 375-382.
[http://dx.doi.org/10.1042/BJ20112040] [PMID: 22642576]
[246]
Obernier, K.; Tong, C.K.; Alvarez-Buylla, A. Restricted nature of adult neural stem cells: re-evaluation of their potential for brain repair. Front. Neurosci., 2014, 8, 162.
[http://dx.doi.org/10.3389/fnins.2014.00162] [PMID: 24987325]
[247]
Giachino, C.; Taylor, V. Notching up neural stem cell homogeneity in homeostasis and disease. Front. Neurosci., 2014, 8, 32.
[http://dx.doi.org/10.3389/fnins.2014.00032] [PMID: 24611040]
[248]
Bragado Alonso, S.; Schulze-Steikow, M.; Calegari, F. Cell cycle activity of neural precursors in the diseased mammalian brain. Front. Neurosci., 2014, 8, 39.
[http://dx.doi.org/10.3389/fnins.2014.00039] [PMID: 24578681]
[249]
Demir, O.; Singh, S.; Klimaschewski, L.; Aksan Kurnaz, I. From birth till death: neurogenesis, cell cycle, and neurodegeneration. Anat. Rec. (Hoboken), 2009, 292(12), 1953-1961.
[http://dx.doi.org/10.1002/ar.20980] [PMID: 19943348]
[250]
Qu, J.; Rizak, J.D.; Li, X.; Li, J.; Ma, Y. Melatonin treatment increases the transcription of cell proliferation-related genes prior to inducing cell death in C6 glioma cells in vitro. Oncol. Lett., 2013, 6(2), 347-352.
[http://dx.doi.org/10.3892/ol.2013.1413] [PMID: 24137328]
[251]
Song, J.; Kang, S.M.; Lee, K.M.; Lee, J.E. The protective effect of melatonin on neural stem cell against LPS-induced inflammation. BioMed Res. Int., 2015, 2015, 1-13.
[http://dx.doi.org/10.1155/2015/854359] [PMID: 25705693]
[252]
Estivill-Torrús, G.; Vitalis, T.; Fernández-Llebrez, P.; Price, D.J. The transcription factor Pax6 is required for development of the diencephalic dorsal midline secretory radial glia that form the subcommissural organ. Mech. Dev., 2001, 109(2), 215-224.
[http://dx.doi.org/10.1016/S0925-4773(01)00527-5] [PMID: 11731235]
[253]
Rath, M.F.; Bailey, M.J.; Kim, J.S.; Ho, A.K.; Gaildrat, P.; Coon, S.L.; Møller, M.; Klein, D.C.; Coon, S.L.; Møller, M.; Klein, D.C. Developmental and diurnal dynamics of Pax4 expression in the mammalian pineal gland: nocturnal down-regulation is mediated by adrenergic-cyclic adenosine 3′,5′-monophosphate signaling. Endocrinology, 2009, 150(2), 803-811.
[http://dx.doi.org/10.1210/en.2008-0882] [PMID: 18818287]
[254]
Olmeda, D.; Castel, S.; Vilaró, S.; Cano, A. Beta-catenin regulation during the cell cycle: implications in G2/M and apoptosis. Mol. Biol. Cell, 2003, 14(7), 2844-2860.
[http://dx.doi.org/10.1091/mbc.e03-01-0865] [PMID: 12857869]
[255]
He, P.; Shen, Y. Interruption of β-catenin signaling reduces neurogenesis in Alzheimer’s disease. J. Neurosci., 2009, 29(20), 6545-6557.
[http://dx.doi.org/10.1523/JNEUROSCI.0421-09.2009] [PMID: 19458225]
[256]
Jeong, J.K.; Lee, J.H.; Moon, J.H.; Lee, Y.J.; Park, S.Y. Melatonin-mediated β -catenin activation protects neuron cells against prion protein-induced neurotoxicity. J. Pineal Res., 2014, 57(4), 427-434.
[http://dx.doi.org/10.1111/jpi.12182] [PMID: 25251028]
[257]
Medrano, S.; Burns-Cusato, M.; Atienza, M.B.; Rahimi, D.; Scrable, H. Regenerative capacity of neural precursors in the adult mammalian brain is under the control of p53. Neurobiol. Aging, 2009, 30(3), 483-497.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.07.016] [PMID: 17850928]
[258]
Singhakumar, R.; Boontem, P.; Ekthuwapranee, K.; Sotthibundhu, A.; Mukda, S.; Chetsawang, B.; Govitrapong, P. Melatonin attenuates methamphetamine-induced inhibition of neurogenesis in the adult mouse hippocampus: An in vivo study. Neurosci. Lett., 2015, 606, 209-214.
[http://dx.doi.org/10.1016/j.neulet.2015.09.011] [PMID: 26366944]
[259]
Stoll, E.A.; Habibi, B.A.; Mikheev, A.M.; Lasiene, J.; Massey, S.C.; Swanson, K.R.; Rostomily, R.C.; Horner, P.J. Increased re-entry into cell cycle mitigates age-related neurogenic decline in the murine subventricular zone. Stem Cells, 2011, 29(12), 2005-2017.
[http://dx.doi.org/10.1002/stem.747] [PMID: 21948688]
[260]
Vasanthan, J.; Gurusamy, N.; Rajasingh, S.; Sigamani, V.; Kirankumar, S.; Thomas, E.L.; Rajasingh, J. Role of human mesenchymal stem cells in regenerative therapy. Cells, 2020, 10(1), 54.
[http://dx.doi.org/10.3390/cells10010054] [PMID: 33396426]
[261]
Zhou, L.; Chen, X.; Liu, T.; Gong, Y.; Chen, S.; Pan, G.; Cui, W.; Luo, Z.P.; Pei, M.; Yang, H.; He, F. Melatonin reverses H 2 O 2 -induced premature senescence in mesenchymal stem cells via the SIRT1-dependent pathway. J. Pineal Res., 2015, 59(2), 190-205.
[http://dx.doi.org/10.1111/jpi.12250] [PMID: 25975679]
[262]
New, D.C.; Wong, Y.H. Molecular mechanisms mediating the G protein-coupled receptor regulation of cell cycle progression. J. Mol. Signal., 2007, 2, 2.
[http://dx.doi.org/10.1186/1750-2187-2-2] [PMID: 17319972]
[263]
Dubocovich, M.L.; Markowska, M. Functional MT1 and MT2 melatonin receptors in mammals. Endocr. J., 2005, 27(2), 101-110.
[http://dx.doi.org/10.1385/ENDO:27:2:101] [PMID: 16217123]
[264]
Lee, H.P.; Kudo, W.; Zhu, X.; Smith, M.A.; Lee, H. Early induction of c-Myc is associated with neuronal cell death. Neurosci. Lett., 2011, 505(2), 124-127.
[http://dx.doi.org/10.1016/j.neulet.2011.10.004] [PMID: 22005580]
[265]
Wei, R.; Zhao, X.; Hao, H.; Du, W.; Zhu, H. Embryonic stem-like cells from rabbit blastocysts cultured with melatonin could differentiate into three germ layers in vitro and in vivo. Mol. Reprod. Dev., 2016, 83(11), 1003-1014.
[http://dx.doi.org/10.1002/mrd.22739] [PMID: 27649385]
[266]
Liu, Z.; Gan, L.; Luo, D.; Sun, C. Melatonin promotes circadian rhythm-induced proliferation through Clock/histone deacetylase 3/c-Myc interaction in mouse adipose tissue. J. Pineal Res., 2017, 62(4), e12383.
[http://dx.doi.org/10.1111/jpi.12383] [PMID: 27987529]
[267]
Lee, H.; Lee, H.J.; Jung, J.H.; Shin, E.A.; Kim, S.H. Melatonin disturbs SUMOylation-mediated crosstalk between c-Myc and nestin via MT1 activation and promotes the sensitivity of paclitaxel in brain cancer stem cells. J. Pineal Res., 2018, 65(2), e12496.
[http://dx.doi.org/10.1111/jpi.12496] [PMID: 29654697]
[268]
Sears, R.; Nuckolls, F.; Haura, E.; Taya, Y.; Tamai, K.; Nevins, J.R. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev., 2000, 14(19), 2501-2514.
[http://dx.doi.org/10.1101/gad.836800] [PMID: 11018017]
[269]
Gerdes, J.; Lemke, H.; Baisch, H.; Wacker, H.H.; Schwab, U.; Stein, H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol., 1984, 133(4), 1710-1715.
[http://dx.doi.org/10.4049/jimmunol.133.4.1710] [PMID: 6206131]
[270]
Nagy, Z.; Esiri, M.M.; Smith, A.D. Expression of cell division markers in the hippocampus in Alzheimer’s disease and other neurodegenerative conditions. Acta Neuropathol., 1997, 93(3), 294-300.
[http://dx.doi.org/10.1007/s004010050617] [PMID: 9083562]
[271]
Yoo, D.Y.; Kim, W.; Lee, C.H.; Shin, B.N.; Nam, S.M.; Choi, J.H.; Won, M.H.; Yoon, Y.S.; Hwang, I.K. Melatonin improves d-galactose-induced aging effects on behavior, neurogenesis, and lipid peroxidation in the mouse dentate gyrus via increasing pCREB expression. J. Pineal Res., 2012, 52(1), 21-28.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00912.x] [PMID: 21718363]
[272]
Sotthibundhu, A.; Ekthuwapranee, K.; Govitrapong, P. Comparison of melatonin with growth factors in promoting precursor cells proliferation in adult mouse subventricular zone. EXCLI J., 2016, 15, 829-841.
[http://dx.doi.org/10.17179/excli2016-606] [PMID: 28275319]
[273]
Xia, D.; Li, W.; Zhang, L.; Qian, H.; Yao, S.; Qi, X. RNA interference-mediated knockdown of brain-derived neurotrophic factor (BDNF) promotes cell cycle arrest and apoptosis in B-cell lymphoma cells. Neoplasma, 2014, 62(5), 523-532.
[http://dx.doi.org/10.4149/neo_2014_064] [PMID: 25030435]
[274]
Yoon, G.; Lim, Y.H.; Jo, D.; Ryu, J.; Song, J.; Kim, Y.K. Obesity-linked circular RNA circTshz2-2 regulates the neuronal cell cycle and spatial memory in the brain. Mol. Psychiatry, 2021, 26(11), 6350-6364.
[http://dx.doi.org/10.1038/s41380-021-01303-x] [PMID: 34561612]
[275]
Permpoonputtana, K.; Tangweerasing, P.; Mukda, S.; Boontem, P.; Nopparat, C.; Govitrapong, P. Long-term administration of melatonin attenuates neuroinflammation in the aged mouse brain. EXCLI J., 2018, 17, 634-646.
[http://dx.doi.org/10.17179/excli2017-654] [PMID: 30108467]
[276]
Mansouri, S.; Salari, A.A.; Abedi, A.; Mohammadi, P.; Amani, M. Melatonin treatment improves cognitive deficits by altering inflammatory and neurotrophic factors in the hippocampus of obese mice. Physiol. Behav., 2022, 254, 113919.
[http://dx.doi.org/10.1016/j.physbeh.2022.113919] [PMID: 35858673]
[277]
Sugiyama, A.; Kato, H.; Takakura, H.; Osawa, S.; Maeda, Y.; Izawa, T. Effects of physical activity and melatonin on brain‐derived neurotrophic factor and cytokine expression in the cerebellum of high‐fat diet‐fed rats. Neuropsychopharmacol. Rep., 2020, 40(3), 291-296.
[http://dx.doi.org/10.1002/npr2.12125] [PMID: 32681810]
[278]
Shokri-Mashhadi, N.; Darand, M.; Rouhani, M.H.; Yahay, M.; Feltham, B.A.; Saraf-Bank, S. Effects of melatonin supplementation on BDNF concentrations and depression: A systematic review and meta-analysis of randomized controlled trials. Behav. Brain Res., 2023, 436, 114083.
[http://dx.doi.org/10.1016/j.bbr.2022.114083] [PMID: 36049659]
[279]
Guzman-Marin, R.; Suntsova, N.; Bashir, T.; Nienhuis, R.; Szymusiak, R.; McGinty, D. Rapid eye movement sleep deprivation contributes to reduction of neurogenesis in the hippocampal dentate gyrus of the adult rat. Sleep, 2008, 31(2), 167-175.
[http://dx.doi.org/10.1093/sleep/31.2.167] [PMID: 18274263]
[280]
Tripathi, S.; Jha, S.K. REM sleep deprivation alters learning-induced cell proliferation and generation of newborn young neurons in the dentate gyrus of the dorsal hippocampus. ACS Chem. Neurosci., 2022, 13(2), 194-206.
[http://dx.doi.org/10.1021/acschemneuro.1c00465] [PMID: 34990120]
[281]
Gobbi, G.; Comai, S. Differential function of melatonin MT1 and MT2 receptors in REM and NREM sleep. Front. Endocrinol. (Lausanne), 2019, 10, 87.
[http://dx.doi.org/10.3389/fendo.2019.00087] [PMID: 30881340]
[282]
López-Armas, G.; Flores-Soto, M.E.; Chaparro-Huerta, V.; Jave-Suarez, L.F.; Soto-Rodríguez, S.; Rusanova, I.; Acuña-Castroviejo, D.; González-Perez, O.; González-Castañeda, R.E. Prophylactic role of oral melatonin administration on neurogenesis in adult Balb/C mice during REM sleep deprivation. Oxid. Med. Cell. Longev., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/2136902] [PMID: 27579149]
[283]
Kunz, D.; Stotz, S.; Bes, F. Treatment of isolated REM sleep behavior disorder using melatonin as a chronobiotic. J. Pineal Res., 2021, 71(2), e12759.
[http://dx.doi.org/10.1111/jpi.12759] [PMID: 34309908]
[284]
Gilat, M.; Marshall, N.S.; Testelmans, D.; Buyse, B.; Lewis, S.J.G. A critical review of the pharmacological treatment of REM sleep behavior disorder in adults: time for more and larger randomized placebo-controlled trials. J. Neurol., 2022, 269(1), 125-148.
[http://dx.doi.org/10.1007/s00415-020-10353-0] [PMID: 33410930]
[285]
Pérez-Lloret, S.; Cardinali, D.P. Melatonin as a chronobiotic and cytoprotective agent in Parkinson’s disease. Front. Pharmacol., 2021, 12, 650597.
[http://dx.doi.org/10.3389/fphar.2021.650597] [PMID: 33935759]
[286]
Galbiati, A.; Carli, G.; Hensley, M.; Ferini-Strambi, L. REM sleep behaviour disorder and Alzheimer’s disease: Definitely no relationship? J. Alzheimers Dis., 2018, 63(1), 1-11.
[http://dx.doi.org/10.3233/JAD-171164] [PMID: 29578489]
[287]
Mueller, A.D.; Meerlo, P.; McGinty, D.; Mistlberger, R.E. Sleep and adult neurogenesis: implications for cognition and mood. Curr. Top. Behav. Neurosci., 2013, 25, 151-181.
[http://dx.doi.org/10.1007/7854_2013_251] [PMID: 24218292]
[288]
Meerlo, P.; Mistlberger, R.E.; Jacobs, B.L.; Craig Heller, H.; McGinty, D. New neurons in the adult brain: The role of sleep and consequences of sleep loss. Sleep Med. Rev., 2009, 13(3), 187-194.
[http://dx.doi.org/10.1016/j.smrv.2008.07.004] [PMID: 18848476]
[289]
Guzman-Marin, R.; Suntsova, N.; Methippara, M.; Greiffenstein, R.; Szymusiak, R.; McGinty, D. Sleep deprivation suppresses neurogenesis in the adult hippocampus of rats. Eur. J. Neurosci., 2005, 22(8), 2111-2116.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04376.x] [PMID: 16262649]
[290]
Kreutzmann, J.C.; Havekes, R.; Abel, T.; Meerlo, P. Sleep deprivation and hippocampal vulnerability: changes in neuronal plasticity, neurogenesis and cognitive function. Neuroscience, 2015, 309, 173-190.
[http://dx.doi.org/10.1016/j.neuroscience.2015.04.053] [PMID: 25937398]
[291]
Zada, D.; Bronshtein, I.; Lerer-Goldshtein, T.; Garini, Y.; Appelbaum, L. Sleep increases chromosome dynamics to enable reduction of accumulating DNA damage in single neurons. Nat. Commun., 2019, 10(1), 895.
[http://dx.doi.org/10.1038/s41467-019-08806-w] [PMID: 30837464]
[292]
Konopka, A.; Atkin, J.D. The role of DNA damage in neural plasticity in physiology and neurodegeneration. Front. Cell. Neurosci., 2022, 16, 836885.
[http://dx.doi.org/10.3389/fncel.2022.836885] [PMID: 35813507]
[293]
Galano, A.; Tan, D.X.; Reiter, R. Melatonin: A versatile protector against oxidative DNA damage. Molecules, 2018, 23(3), 530.
[http://dx.doi.org/10.3390/molecules23030530] [PMID: 29495460]
[294]
Liu, R.; Fu, A.; Hoffman, A.E.; Zheng, T.; Zhu, Y. Melatonin enhances DNA repair capacity possibly by affecting genes involved in DNA damage responsive pathways. BMC Cell Biol., 2013, 14(1), 1.
[http://dx.doi.org/10.1186/1471-2121-14-1] [PMID: 23294620]
[295]
Brzecka, A.; Leszek, J.; Ashraf, G.M.; Ejma, M.; Ávila-Rodriguez, M.F.; Yarla, N.S.; Tarasov, V.V.; Chubarev, V.N.; Samsonova, A.N.; Barreto, G.E.; Aliev, G. Sleep disorders associated with Alzheimer’s disease: A perspective. Front. Neurosci., 2018, 12, 330.
[http://dx.doi.org/10.3389/fnins.2018.00330] [PMID: 29904334]
[296]
Reiter, R.J.; Sharma, R.; Rosales-Corral, S.; de Mange, J.; Phillips, W.T.; Tan, D.X.; Bitar, R.D. Melatonin in ventricular and subarachnoid cerebrospinal fluid: Its function in the neural glymphatic network and biological significance for neurocognitive health. Biochem. Biophys. Res. Commun., 2022, 605, 70-81.
[http://dx.doi.org/10.1016/j.bbrc.2022.03.025] [PMID: 35316766]
[297]
Matsuoka, T.; Imai, A.; Fujimoto, H.; Kato, Y.; Shibata, K.; Nakamura, K.; Yokota, H.; Yamada, K.; Narumoto, J. Neural correlates of sleep disturbance in Alzheimer’s disease: Role of the precuneus in sleep disturbance. J. Alzheimers Dis., 2018, 63(3), 957-964.
[http://dx.doi.org/10.3233/JAD-171169] [PMID: 29710710]
[298]
Zisapel, N. New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. Br. J. Pharmacol., 2018, 175(16), 3190-3199.
[http://dx.doi.org/10.1111/bph.14116] [PMID: 29318587]
[299]
Insel, P.S.; Mohlenhoff, B.S.; Neylan, T.C.; Krystal, A.D.; Mackin, R.S. Association of sleep and β-amyloid pathology among older cognitively unimpaired adults. JAMA Netw. Open, 2021, 4(7), e2117573.
[http://dx.doi.org/10.1001/jamanetworkopen.2021.17573] [PMID: 34297074]
[300]
Winer, J.R.; Mander, B.A.; Kumar, S.; Reed, M.; Baker, S.L.; Jagust, W.J.; Walker, M.P. Sleep disturbance forecasts β-amyloid accumulation across subsequent years. Curr. Biol., 2020, 30(21), 4291-4298.e3.
[http://dx.doi.org/10.1016/j.cub.2020.08.017] [PMID: 32888482]
[301]
Sadeghmousavi, S.; Eskian, M.; Rahmani, F.; Rezaei, N. The effect of insomnia on development of Alzheimer’s disease. J. Neuroinflammation, 2020, 17(1), 289.
[http://dx.doi.org/10.1186/s12974-020-01960-9] [PMID: 33023629]
[302]
Ferracioli-Oda, E.; Qawasmi, A.; Bloch, M.H. Meta-analysis: melatonin for the treatment of primary sleep disorders. PLoS One, 2013, 8(5), e63773.
[http://dx.doi.org/10.1371/journal.pone.0063773] [PMID: 23691095]
[303]
Espinar, A.; García-Oliva, A.; Isorna, E.M.; Quesada, A.; Prada, F.A.; Guerrero, J.M. Neuroprotection by melatonin from glutamate-induced excitotoxicity during development of the cerebellum in the chick embryo. J. Pineal Res., 2000, 28(2), 81-88.
[http://dx.doi.org/10.1034/j.1600-079X.2001.280203.x] [PMID: 10709969]
[304]
Wongchitrat, P.; Lansubsakul, N.; Kamsrijai, U.; Sae-Ung, K.; Mukda, S.; Govitrapong, P. Melatonin attenuates the high-fat diet and streptozotocin-induced reduction in rat hippocampal neurogenesis. Neurochem. Int., 2016, 100, 97-109.
[http://dx.doi.org/10.1016/j.neuint.2016.09.006] [PMID: 27620814]
[305]
Baka, M.; Uyanikgil, Y.; Ateş, U.; Kültürsay, N. Investigation of maternal melatonin effect on the hippocampal formation of newborn rat model of intrauterine cortical dysplasia. Childs Nerv. Syst., 2010, 26(11), 1575-1581.
[http://dx.doi.org/10.1007/s00381-010-1147-5] [PMID: 20461523]
[306]
Borre, Y.E.; Panagaki, T.; Koelink, P.J.; Morgan, M.E.; Hendriksen, H.; Garssen, J.; Kraneveld, A.D.; Olivier, B.; Oosting, R.S. Neuroprotective and cognitive enhancing effects of a multi-targeted food intervention in an animal model of neurodegeneration and depression. Neuropharmacology, 2014, 79, 738-749.
[http://dx.doi.org/10.1016/j.neuropharm.2013.11.009] [PMID: 24286859]
[307]
Sampaio, L.F.S. Melatonin inhibitory effect on cAMP accumulation in the chick retina development. Int. J. Dev. Neurosci., 2008, 26(3-4), 277-282.
[http://dx.doi.org/10.1016/j.ijdevneu.2008.02.001] [PMID: 18343081]
[308]
Miranda-Riestra, A.; Estrada-Reyes, R.; Torres-Sanchez, E.D.; Carreño-García, S.; Ortiz, G.G.; Benítez-King, G. Melatonin: A neurotrophic factor? Molecules, 2022, 27(22), 7742.
[http://dx.doi.org/10.3390/molecules27227742] [PMID: 36431847]
[309]
Boldrini, M.; Butt, T.H.; Santiago, A.N.; Tamir, H.; Dwork, A.J.; Rosoklija, G.B.; Arango, V.; Hen, R.; Mann, J.J. Benzodiazepines and the potential trophic effect of antidepressants on dentate gyrus cells in mood disorders. Int. J. Neuropsychopharmacol., 2014, 17(12), 1923-1933.
[http://dx.doi.org/10.1017/S1461145714000844] [PMID: 24969726]
[310]
Penninkilampi, R.; Eslick, G.D. A systematic review and meta-analysis of the risk of dementia associated with benzodiazepine use, after controlling for protopathic bias. CNS Drugs, 2018, 32(6), 485-497.
[http://dx.doi.org/10.1007/s40263-018-0535-3] [PMID: 29926372]
[311]
Chen, J.; Cai, F.; Cao, J.; Zhang, X.; Li, S. Long-term antiepileptic drug administration during early life inhibits hippocampal neurogenesis in the developing brain. J. Neurosci. Res., 2009, 87(13), 2898-2907.
[http://dx.doi.org/10.1002/jnr.22125] [PMID: 19437554]
[312]
Zhao, Y.; Wang, Z.; Dai, J.; Chen, L.; Huang, Y.; Zhan, Z. Beneficial effects of benzodiazepine diazepam on chronic stress-induced impairment of hippocampal structural plasticity and depression-like behavior in mice. Behav. Brain Res., 2012, 228(2), 339-350.
[http://dx.doi.org/10.1016/j.bbr.2011.12.013] [PMID: 22198054]
[313]
Ikezaki, K.; Black, K.L. Stimulation of cell growth and DNA synthesis by peripheral benzodiazepine. Cancer Lett., 1990, 49(2), 115-120.
[http://dx.doi.org/10.1016/0304-3835(90)90146-O] [PMID: 2155058]
[314]
Cos, S.; Fernández, F.; Sánchez-Barceló, E.J. Melatonin inhibits dna synthesis in mcf-7 human breast cancer cells in vitro. Life Sci., 1996, 58(26), 2447-2453.
[http://dx.doi.org/10.1016/0024-3205(96)00249-4] [PMID: 8691990]
[315]
Griffin, C.E., III; Kaye, A.M.; Bueno, F.R.; Kaye, A.D. Benzodiazepine pharmacology and central nervous system-mediated effects. Ochsner J., 2013, 13(2), 214-223.
[PMID: 23789008]
[316]
Rogers, N.L.; Kennaway, D.J.; Dawson, D. Neurobehavioural performance effects of daytime melatonin and temazepam administration. J. Sleep Res., 2003, 12(3), 207-212.
[http://dx.doi.org/10.1046/j.1365-2869.2003.00360.x] [PMID: 12941059]
[317]
Clay, E.; Falissard, B.; Moore, N.; Toumi, M. Contribution of prolonged-release melatonin and anti-benzodiazepine campaigns to the reduction of benzodiazepine and z-drugs consumption in nine European countries. Eur. J. Clin. Pharmacol., 2013, 69(4), 1-10.
[http://dx.doi.org/10.1007/s00228-012-1424-1] [PMID: 23114457]
[318]
Ghaeli, P.; Solduzian, M.; Vejdani, S.; Talasaz, A.H. Comparison of the effects of melatonin and oxazepam on anxiety levels and sleep quality in patients with ST-Segment-Elevation myocardial infarction following primary percutaneous coronary intervention: a randomized clinical trial. Ann. Pharmacother., 2018, 52(10), 949-955.
[http://dx.doi.org/10.1177/1060028018776608] [PMID: 29749262]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy