Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Pharmacological Progress of Mitophagy Regulation

Author(s): Sheikh Arslan Sehgal*, Hao Wu, Muhammad Sajid, Summar Sohail, Muhammad Ahsan, Gulnaz Parveen, Mehreen Riaz, Muhammad Saleem Khan, Muhammad Nasir Iqbal and Abbeha Malik

Volume 21, Issue 5, 2023

Published on: 14 March, 2023

Page: [1026 - 1041] Pages: 16

DOI: 10.2174/1570159X21666230314140528

Price: $65

conference banner
Abstract

With the advancement in novel drug discovery, biologically active compounds are considered pharmacological tools to understand complex biological mechanisms and the identification of potent therapeutic agents. Mitochondria boast a central role in different integral biological processes and mitochondrial dysfunction is associated with multiple pathologies. It is, therefore, prudent to target mitochondrial quality control mechanisms by using pharmacological approaches. However, there is a scarcity of biologically active molecules, which can interact with mitochondria directly. Currently, the chemical compounds used to induce mitophagy include oligomycin and antimycin A for impaired respiration and acute dissipation of mitochondrial membrane potential by using CCCP/FCCP, the mitochondrial uncouplers. These chemical probes alter the homeostasis of the mitochondria and limit our understanding of the energy regulatory mechanisms. Efforts are underway to find molecules that can bring about selective removal of defective mitochondria without compromising normal mitochondrial respiration. In this report, we have tried to summarize and status of the recently reported modulators of mitophagy.

Graphical Abstract

[1]
Ding, W.X.; Guo, F.; Ni, H.M.; Bockus, A.; Manley, S.; Stolz, D.B.; Eskelinen, E.L.; Jaeschke, H.; Yin, X.M. Parkin and mitofusins reciprocally regulate mitophagy and mitochondrial spheroid formation. J. Biol. Chem., 2012, 287(50), 42379-42388.
[http://dx.doi.org/10.1074/jbc.M112.413682] [PMID: 23095748]
[2]
Ding, W.X.; Li, M.; Biazik, J.M.; Morgan, D.G.; Guo, F.; Ni, H.M.; Goheen, M.; Eskelinen, E.L.; Yin, X.M. Electron microscopic analysis of a spherical mitochondrial structure. J. Biol. Chem., 2012, 287(50), 42373-42378.
[http://dx.doi.org/10.1074/jbc.M112.413674] [PMID: 23093403]
[3]
Yin, X.M.; Ding, W.X. The reciprocal roles of PARK2 and mitofusins in mitophagy and mitochondrial spheroid formation. Autophagy, 2013, 9(11), 1687-1692.
[http://dx.doi.org/10.4161/auto.24871] [PMID: 24162069]
[4]
van der Bliek, A.M.; Shen, Q.; Kawajiri, S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb. Perspect. Biol., 2013, 5(6), a011072.
[http://dx.doi.org/10.1101/cshperspect.a011072] [PMID: 23732471]
[5]
Twig, G.; Elorza, A.; Molina, A.J.A.; Mohamed, H.; Wikstrom, J.D.; Walzer, G.; Stiles, L.; Haigh, S.E.; Katz, S.; Las, G.; Alroy, J.; Wu, M.; Py, B.F.; Yuan, J.; Deeney, J.T.; Corkey, B.E.; Shirihai, O.S. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J., 2008, 27(2), 433-446.
[http://dx.doi.org/10.1038/sj.emboj.7601963] [PMID: 18200046]
[6]
Ni, H.M.; Williams, J.A.; Ding, W.X. Mitochondrial dynamics and mitochondrial quality control. Redox Biol., 2015, 4, 6-13.
[http://dx.doi.org/10.1016/j.redox.2014.11.006] [PMID: 25479550]
[7]
Karbowski, M.; Youle, R.J. Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr. Opin. Cell Biol., 2011, 23(4), 476-482.
[http://dx.doi.org/10.1016/j.ceb.2011.05.007] [PMID: 21705204]
[8]
Baker, B.M.; Haynes, C.M. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem. Sci., 2011, 36(5), 254-261.
[http://dx.doi.org/10.1016/j.tibs.2011.01.004] [PMID: 21353780]
[9]
Matsushima, Y.; Kaguni, L.S. Matrix proteases in mitochondrial DNA function. Biochim. Biophys. Acta. Gene Regul. Mech., 2012, 1819(9-10), 1080-1087.
[http://dx.doi.org/10.1016/j.bbagrm.2011.11.008] [PMID: 22172992]
[10]
Ding, W.X.; Yin, X.M. Mitophagy: mechanisms, pathophysiological roles, and analysis. bchm, 2012, 393(7), 547-564.
[http://dx.doi.org/10.1515/hsz-2012-0119] [PMID: 22944659]
[11]
Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol., 2011, 12(1), 9-14.
[http://dx.doi.org/10.1038/nrm3028] [PMID: 21179058]
[12]
Lemasters, J.J. Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biol., 2014, 2, 749-754.
[http://dx.doi.org/10.1016/j.redox.2014.06.004] [PMID: 25009776]
[13]
Soubannier, V.; Rippstein, P.; Kaufman, B.A.; Shoubridge, E.A.; McBride, H.M. Reconstitution of mitochondria derived vesicle formation demonstrates selective enrichment of oxidized cargo. PLoS One, 2012, 7(12), e52830.
[http://dx.doi.org/10.1371/journal.pone.0052830] [PMID: 23300790]
[14]
Cheng, Y.; Ren, X.; Hait, W.N.; Yang, J.M. Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol. Rev., 2013, 65(4), 1162-1197.
[http://dx.doi.org/10.1124/pr.112.007120] [PMID: 23943849]
[15]
Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1), 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[16]
Kocak, M.; Ezazi Erdi, S.; Jorba, G.; Maestro, I.; Farrés, J.; Kirkin, V.; Martinez, A.; Pless, O. Targeting autophagy in disease: established and new strategies. Autophagy, 2022, 18(3), 473-495.
[http://dx.doi.org/10.1080/15548627.2021.1936359] [PMID: 34241570]
[17]
Carew, J.S.; Kelly, K.R.; Nawrocki, S.T. Autophagy as a target for cancer therapy: new developments. Cancer Manag. Res., 2012, 4, 357-365.
[PMID: 23091399]
[18]
Byun, S.; Lee, E.; Lee, K.W. Therapeutic implications of autophagy inducers in immunological disorders, infection, and cancer. Int. J. Mol. Sci., 2017, 18(9), 1959.
[http://dx.doi.org/10.3390/ijms18091959] [PMID: 28895911]
[19]
Ishihara, N.; Fujita, Y.; Oka, T.; Mihara, K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J., 2006, 25(13), 2966-2977.
[http://dx.doi.org/10.1038/sj.emboj.7601184] [PMID: 16778770]
[20]
Cipolat, S.; Rudka, T.; Hartmann, D.; Costa, V.; Serneels, L.; Craessaerts, K.; Metzger, K.; Frezza, C.; Annaert, W.; D’Adamio, L.; Derks, C.; Dejaegere, T.; Pellegrini, L.; D’Hooge, R.; Scorrano, L.; De Strooper, B. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell, 2006, 126(1), 163-175.
[http://dx.doi.org/10.1016/j.cell.2006.06.021] [PMID: 16839884]
[21]
Griparic, L.; Kanazawa, T.; van der Bliek, A.M. Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J. Cell Biol., 2007, 178(5), 757-764.
[http://dx.doi.org/10.1083/jcb.200704112] [PMID: 17709430]
[22]
Ehses, S.; Raschke, I.; Mancuso, G.; Bernacchia, A.; Geimer, S.; Tondera, D.; Martinou, J.C.; Westermann, B.; Rugarli, E.I.; Langer, T. Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J. Cell Biol., 2009, 187(7), 1023-1036.
[http://dx.doi.org/10.1083/jcb.200906084] [PMID: 20038678]
[23]
Head, B.; Griparic, L.; Amiri, M.; Gandre-Babbe, S.; van der Bliek, A.M. Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J. Cell Biol., 2009, 187(7), 959-966.
[http://dx.doi.org/10.1083/jcb.200906083] [PMID: 20038677]
[24]
Samant, S.A.; Zhang, H.J.; Hong, Z.; Pillai, V.B.; Sundaresan, N.R.; Wolfgeher, D.; Archer, S.L.; Chan, D.C.; Gupta, M.P. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol. Cell. Biol., 2014, 34(5), 807-819.
[http://dx.doi.org/10.1128/MCB.01483-13] [PMID: 24344202]
[25]
Westermann, B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol., 2010, 11(12), 872-884.
[http://dx.doi.org/10.1038/nrm3013] [PMID: 21102612]
[26]
Gandre-Babbe, S.; van der Bliek, A.M. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell, 2008, 19(6), 2402-2412.
[http://dx.doi.org/10.1091/mbc.e07-12-1287] [PMID: 18353969]
[27]
Otera, H.; Wang, C.; Cleland, M.M.; Setoguchi, K.; Yokota, S.; Youle, R.J.; Mihara, K. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol., 2010, 191(6), 1141-1158.
[http://dx.doi.org/10.1083/jcb.201007152] [PMID: 21149567]
[28]
Palmer, C.S.; Osellame, L.D.; Laine, D.; Koutsopoulos, O.S.; Frazier, A.E.; Ryan, M.T. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep., 2011, 12(6), 565-573.
[http://dx.doi.org/10.1038/embor.2011.54] [PMID: 21508961]
[29]
Losón, O.C.; Song, Z.; Chen, H.; Chan, D.C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell, 2013, 24(5), 659-667.
[http://dx.doi.org/10.1091/mbc.e12-10-0721] [PMID: 23283981]
[30]
Friedman, J.R.; Lackner, L.L.; West, M.; DiBenedetto, J.R.; Nunnari, J.; Voeltz, G.K. ER tubules mark sites of mitochondrial division. Science, 2011, 334(6054), 358-362.
[http://dx.doi.org/10.1126/science.1207385] [PMID: 21885730]
[31]
Zhou, H.; Zhu, P.; Wang, J.; Toan, S.; Ren, J. DNA-PKcs promotes alcohol-related liver disease by activating Drp1-related mitochondrial fission and repressing FUNDC1-required mitophagy. Signal Transduct. Target. Ther., 2019, 4(1), 56.
[http://dx.doi.org/10.1038/s41392-019-0094-1] [PMID: 31839999]
[32]
Anand, R.; Langer, T.; Baker, M.J. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta Mol. Cell Res., 2013, 1833(1), 195-204.
[http://dx.doi.org/10.1016/j.bbamcr.2012.06.025] [PMID: 22749882]
[33]
Baker, M.J.; Tatsuta, T.; Langer, T. Quality control of mitochondrial proteostasis. Cold Spring Harb. Perspect. Biol., 2011, 3(7), a007559.
[http://dx.doi.org/10.1101/cshperspect.a007559] [PMID: 21628427]
[34]
Karbowski, M.; Neutzner, A. Neurodegeneration as a consequence of failed mitochondrial maintenance. Acta Neuropathol., 2012, 123(2), 157-171.
[http://dx.doi.org/10.1007/s00401-011-0921-0] [PMID: 22143516]
[35]
Rugarli, E.I.; Langer, T. Mitochondrial quality control: a matter of life and death for neurons. EMBO J., 2012, 31(6), 1336-1349.
[http://dx.doi.org/10.1038/emboj.2012.38] [PMID: 22354038]
[36]
Taylor, E.B.; Rutter, J. Mitochondrial quality control by the ubiquitin–proteasome system. Biochem. Soc. Trans., 2011, 39(5), 1509-1513.
[http://dx.doi.org/10.1042/BST0391509] [PMID: 21936843]
[37]
Heo, J.M.; Livnat-Levanon, N.; Taylor, E.B.; Jones, K.T.; Dephoure, N.; Ring, J.; Xie, J.; Brodsky, J.L.; Madeo, F.; Gygi, S.P.; Ashrafi, K.; Glickman, M.H.; Rutter, J. A stress-responsive system for mitochondrial protein degradation. Mol. Cell, 2010, 40(3), 465-480.
[http://dx.doi.org/10.1016/j.molcel.2010.10.021] [PMID: 21070972]
[38]
Livnat-Levanon, N.; Glickman, M.H. Ubiquitin-proteasome system and mitochondria - reciprocity. Biochim. Biophys. Acta. Gene Regul. Mech., 2011, 1809(2), 80-87.
[http://dx.doi.org/10.1016/j.bbagrm.2010.07.005] [PMID: 20674813]
[39]
Neupert, W.; Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem., 2007, 76(1), 723-749.
[http://dx.doi.org/10.1146/annurev.biochem.76.052705.163409] [PMID: 17263664]
[40]
Voos, W. Chaperone–protease networks in mitochondrial protein homeostasis. Biochim. Biophys. Acta Mol. Cell Res., 2013, 1833(2), 388-399.
[http://dx.doi.org/10.1016/j.bbamcr.2012.06.005] [PMID: 22705353]
[41]
Fan, A.C.Y.; Bhangoo, M.K.; Young, J.C. Hsp90 functions in the targeting and outer membrane translocation steps of Tom70-mediated mitochondrial import. J. Biol. Chem., 2006, 281(44), 33313-33324.
[http://dx.doi.org/10.1074/jbc.M605250200] [PMID: 16968702]
[42]
Hartl, F.U.; Bracher, A.; Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature, 2011, 475(7356), 324-332.
[http://dx.doi.org/10.1038/nature10317] [PMID: 21776078]
[43]
Young, J.C.; Hoogenraad, N.J.; Hartl, F.U. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell, 2003, 112(1), 41-50.
[http://dx.doi.org/10.1016/S0092-8674(02)01250-3] [PMID: 12526792]
[44]
Bohovych, I.; Chan, S.S.L.; Khalimonchuk, O. Mitochondrial protein quality control: the mechanisms guarding mitochondrial health. Antioxid. Redox Signal., 2015, 22(12), 977-994.
[http://dx.doi.org/10.1089/ars.2014.6199] [PMID: 25546710]
[45]
Bateman, J.M.; Iacovino, M.; Perlman, P.S.; Butow, R.A. Mitochondrial DNA instability mutants of the bifunctional protein Ilv5p have altered organization in mitochondria and are targeted for degradation by Hsp78 and the Pim1p protease. J. Biol. Chem., 2002, 277(49), 47946-47953.
[http://dx.doi.org/10.1074/jbc.M209071200] [PMID: 12381727]
[46]
Bayot, A.; Gareil, M.; Rogowska-Wrzesinska, A.; Roepstorff, P.; Friguet, B.; Bulteau, A.L. Identification of novel oxidized protein substrates and physiological partners of the mitochondrial ATP-dependent Lon-like protease Pim1. J. Biol. Chem., 2010, 285(15), 11445-11457.
[http://dx.doi.org/10.1074/jbc.M109.065425] [PMID: 20150421]
[47]
Bender, T.; Leidhold, C.; Ruppert, T.; Franken, S.; Voos, W. The role of protein quality control in mitochondrial protein homeostasis under oxidative stress. Proteomics, 2010, 10(7), 1426-1443.
[http://dx.doi.org/10.1002/pmic.200800619] [PMID: 20186747]
[48]
Bota, D.A.; Davies, K.J.A. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat. Cell Biol., 2002, 4(9), 674-680.
[http://dx.doi.org/10.1038/ncb836] [PMID: 12198491]
[49]
Kang, S.G.; Dimitrova, M.N.; Ortega, J.; Ginsburg, A.; Maurizi, M.R. Human mitochondrial ClpP is a stable heptamer that assembles into a tetradecamer in the presence of ClpX. J. Biol. Chem., 2005, 280(42), 35424-35432.
[http://dx.doi.org/10.1074/jbc.M507240200] [PMID: 16115876]
[50]
Haynes, C.M.; Yang, Y.; Blais, S.P.; Neubert, T.A.; Ron, D. The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol. Cell, 2010, 37(4), 529-540.
[http://dx.doi.org/10.1016/j.molcel.2010.01.015] [PMID: 20188671]
[51]
Suzuki, C.K.; Suda, K.; Wang, N.; Schatz, G. Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science, 1994, 264(5161), 891-891.
[http://dx.doi.org/10.1126/science.264.5161.891.e] [PMID: 8178144]
[52]
Venkatesh, S.; Lee, J.; Singh, K.; Lee, I.; Suzuki, C.K. Multitasking in the mitochondrion by the ATP-dependent Lon protease. Biochim. Biophys. Acta Mol. Cell Res., 2012, 1823(1), 56-66.
[http://dx.doi.org/10.1016/j.bbamcr.2011.11.003] [PMID: 22119779]
[53]
Arlt, H.; Tauer, R.; Feldmann, H.; Neupert, W.; Langer, T. The YTA10-12 complex, an AAA protease with chaperone-like activity in the inner membrane of mitochondria. Cell, 1996, 85(6), 875-885.
[http://dx.doi.org/10.1016/S0092-8674(00)81271-4] [PMID: 8681382]
[54]
Leonhard, K.; Herrmann, J.M.; Stuart, R.A.; Mannhaupt, G.; Neupert, W.; Langer, T. AAA proteases with catalytic sites on opposite membrane surfaces comprise a proteolytic system for the ATP-dependent degradation of inner membrane proteins in mitochondria. EMBO J., 1996, 15(16), 4218-4229.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00796.x] [PMID: 8861950]
[55]
Weber, E.R.; Hanekamp, T.; Thorsness, P.E. Biochemical and functional analysis of the YME1 gene product, an ATP and zinc-dependent mitochondrial protease from S. cerevisiae. Mol. Biol. Cell, 1996, 7(2), 307-317.
[http://dx.doi.org/10.1091/mbc.7.2.307] [PMID: 8688560]
[56]
Korbel, D.; Wurth, S.; Käser, M.; Langer, T. Membrane protein turnover by the m ‐AAA protease in mitochondria depends on the transmembrane domains of its subunits. EMBO Rep., 2004, 5(7), 698-703.
[http://dx.doi.org/10.1038/sj.embor.7400186] [PMID: 15205678]
[57]
Leonhard, K.; Guiard, B.; Pellecchia, G.; Tzagoloff, A.; Neupert, W.; Langer, T. Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface. Mol. Cell, 2000, 5(4), 629-638.
[http://dx.doi.org/10.1016/S1097-2765(00)80242-7] [PMID: 10882099]
[58]
Augustin, S.; Gerdes, F.; Lee, S.; Tsai, F.T.F.; Langer, T.; Tatsuta, T. An intersubunit signaling network coordinates ATP hydrolysis by m-AAA proteases. Mol. Cell, 2009, 35(5), 574-585.
[http://dx.doi.org/10.1016/j.molcel.2009.07.018] [PMID: 19748354]
[59]
Baker, T.A.; Sauer, R.T. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim. Biophys. Acta Mol. Cell Res., 2012, 1823(1), 15-28.
[http://dx.doi.org/10.1016/j.bbamcr.2011.06.007] [PMID: 21736903]
[60]
Sauer, R.T.; Baker, T.A. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem., 2011, 80(1), 587-612.
[http://dx.doi.org/10.1146/annurev-biochem-060408-172623] [PMID: 21469952]
[61]
Pareek, G. AAA+ proteases: the first line of defense against mitochondrial damage. PeerJ, 2022, 10, e14350.
[http://dx.doi.org/10.7717/peerj.14350] [PMID: 36389399]
[62]
Bragoszewski, P.; Gornicka, A.; Sztolsztener, M.E.; Chacinska, A. The ubiquitin-proteasome system regulates mitochondrial intermembrane space proteins. Mol. Cell. Biol., 2013, 33(11), 2136-2148.
[http://dx.doi.org/10.1128/MCB.01579-12] [PMID: 23508107]
[63]
Xu, S.; Peng, G.; Wang, Y.; Fang, S.; Karbowski, M. The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover. Mol. Biol. Cell, 2011, 22(3), 291-300.
[http://dx.doi.org/10.1091/mbc.e10-09-0748] [PMID: 21118995]
[64]
Brodsky, J.L. Cleaning up: ER-associated degradation to the rescue. Cell, 2012, 151(6), 1163-1167.
[http://dx.doi.org/10.1016/j.cell.2012.11.012] [PMID: 23217703]
[65]
Jarosch, E.; Taxis, C.; Volkwein, C.; Bordallo, J.; Finley, D.; Wolf, D.H.; Sommer, T. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat. Cell Biol., 2002, 4(2), 134-139.
[http://dx.doi.org/10.1038/ncb746] [PMID: 11813000]
[66]
Chan, D.C. Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet., 2012, 46(1), 265-287.
[http://dx.doi.org/10.1146/annurev-genet-110410-132529] [PMID: 22934639]
[67]
Chen, H.; Vermulst, M.; Wang, Y.E.; Chomyn, A.; Prolla, T.A.; McCaffery, J.M.; Chan, D.C. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell, 2010, 141(2), 280-289.
[http://dx.doi.org/10.1016/j.cell.2010.02.026] [PMID: 20403324]
[68]
Friedman, J.R.; Nunnari, J. Mitochondrial form and function. Nature, 2014, 505(7483), 335-343.
[http://dx.doi.org/10.1038/nature12985] [PMID: 24429632]
[69]
Youle, R.J.; van der Bliek, A.M. Mitochondrial fission, fusion, and stress. Science, 2012, 337(6098), 1062-1065.
[http://dx.doi.org/10.1126/science.1219855] [PMID: 22936770]
[70]
Tondera, D.; Grandemange, S.; Jourdain, A.; Karbowski, M.; Mattenberger, Y.; Herzig, S.; Da Cruz, S.; Clerc, P.; Raschke, I.; Merkwirth, C.; Ehses, S.; Krause, F.; Chan, D.C.; Alexander, C.; Bauer, C.; Youle, R.; Langer, T.; Martinou, J.C. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J., 2009, 28(11), 1589-1600.
[http://dx.doi.org/10.1038/emboj.2009.89] [PMID: 19360003]
[71]
Gomes, L.C.; Benedetto, G.D.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol., 2011, 13(5), 589-598.
[http://dx.doi.org/10.1038/ncb2220] [PMID: 21478857]
[72]
Rambold, A.S.; Kostelecky, B.; Elia, N.; Lippincott-Schwartz, J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. USA, 2011, 108(25), 10190-10195.
[http://dx.doi.org/10.1073/pnas.1107402108] [PMID: 21646527]
[73]
Shutt, T.; Geoffrion, M.; Milne, R.; McBride, H.M. The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep., 2012, 13(10), 909-915.
[http://dx.doi.org/10.1038/embor.2012.128] [PMID: 22945481]
[74]
Otera, H.; Ishihara, N.; Mihara, K. New insights into the function and regulation of mitochondrial fission. Biochim. Biophys. Acta Mol. Cell Res., 2013, 1833(5), 1256-1268.
[http://dx.doi.org/10.1016/j.bbamcr.2013.02.002] [PMID: 23434681]
[75]
Escobar-Henriques, M.; Langer, T. Dynamic survey of mitochondria by ubiquitin. EMBO Rep., 2014, 15(3), 231-243.
[http://dx.doi.org/10.1002/embr.201338225] [PMID: 24569520]
[76]
Gegg, M.E.; Cooper, J.M.; Chau, K.Y.; Rojo, M.; Schapira, A.H.V.; Taanman, J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet., 2010, 19(24), 4861-4870.
[http://dx.doi.org/10.1093/hmg/ddq419] [PMID: 20871098]
[77]
Tanaka, A.; Cleland, M.M.; Xu, S.; Narendra, D.P.; Suen, D.F.; Karbowski, M.; Youle, R.J. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol., 2010, 191(7), 1367-1380.
[http://dx.doi.org/10.1083/jcb.201007013] [PMID: 21173115]
[78]
Wang, X.; Winter, D.; Ashrafi, G.; Schlehe, J.; Wong, Y.L.; Selkoe, D.; Rice, S.; Steen, J.; LaVoie, M.J.; Schwarz, T.L. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell, 2011, 147(4), 893-906.
[http://dx.doi.org/10.1016/j.cell.2011.10.018] [PMID: 22078885]
[79]
MacVicar, T. Mitophagy. Essays Biochem., 2013, 55, 93-104.
[http://dx.doi.org/10.1042/bse0550093] [PMID: 24070474]
[80]
Palikaras, K.; Lionaki, E.; Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol., 2018, 20(9), 1013-1022.
[http://dx.doi.org/10.1038/s41556-018-0176-2] [PMID: 30154567]
[81]
Kim, I.; Rodriguez-Enriquez, S.; Lemasters, J.J. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys., 2007, 462(2), 245-253.
[http://dx.doi.org/10.1016/j.abb.2007.03.034] [PMID: 17475204]
[82]
Wang, J.; Zhou, H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia–reperfusion injury. Acta Pharm. Sin. B, 2020, 10(10), 1866-1879.
[http://dx.doi.org/10.1016/j.apsb.2020.03.004] [PMID: 33163341]
[83]
Redmann, M.; Dodson, M.; Boyer-Guittaut, M.; Darley-Usmar, V.; Zhang, J. Mitophagy mechanisms and role in human diseases. Int. J. Biochem. Cell Biol., 2014, 53, 127-133.
[http://dx.doi.org/10.1016/j.biocel.2014.05.010] [PMID: 24842106]
[84]
Khaminets, A.; Behl, C.; Dikic, I. Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends Cell Biol., 2016, 26(1), 6-16.
[http://dx.doi.org/10.1016/j.tcb.2015.08.010] [PMID: 26437584]
[85]
Narendra, D.P.; Jin, S.M.; Tanaka, A.; Suen, D.F.; Gautier, C.A.; Shen, J.; Cookson, M.R.; Youle, R.J. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol., 2010, 8(1), e1000298.
[http://dx.doi.org/10.1371/journal.pbio.1000298] [PMID: 20126261]
[86]
Kazlauskaite, A.; Kondapalli, C.; Gourlay, R.; Campbell, D.G.; Ritorto, M.S.; Hofmann, K.; Alessi, D.R.; Knebel, A.; Trost, M.; Muqit, M.M.K. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J., 2014, 460(1), 127-141.
[http://dx.doi.org/10.1042/BJ20140334] [PMID: 24660806]
[87]
Lazarou, M.; Sliter, D.A.; Kane, L.A.; Sarraf, S.A.; Wang, C.; Burman, J.L.; Sideris, D.P.; Fogel, A.I.; Youle, R.J. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature, 2015, 524(7565), 309-314.
[http://dx.doi.org/10.1038/nature14893] [PMID: 26266977]
[88]
Fu, M.; St-Pierre, P.; Shankar, J.; Wang, P.T.C.; Joshi, B.; Nabi, I.R. Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol. Biol. Cell, 2013, 24(8), 1153-1162.
[http://dx.doi.org/10.1091/mbc.e12-08-0607] [PMID: 23427266]
[89]
Orvedahl, A.; Sumpter, R., Jr; Xiao, G.; Ng, A.; Zou, Z.; Tang, Y.; Narimatsu, M.; Gilpin, C.; Sun, Q.; Roth, M.; Forst, C.V.; Wrana, J.L.; Zhang, Y.E.; Luby-Phelps, K.; Xavier, R.J.; Xie, Y.; Levine, B. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature, 2011, 480(7375), 113-117.
[http://dx.doi.org/10.1038/nature10546] [PMID: 22020285]
[90]
Novak, I.; Kirkin, V.; McEwan, D.G.; Zhang, J.; Wild, P.; Rozenknop, A.; Rogov, V.; Löhr, F.; Popovic, D.; Occhipinti, A.; Reichert, A.S.; Terzic, J.; Dötsch, V.; Ney, P.A.; Dikic, I. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep., 2010, 11(1), 45-51.
[http://dx.doi.org/10.1038/embor.2009.256] [PMID: 20010802]
[91]
Rikka, S.; Quinsay, M.N.; Thomas, R.L.; Kubli, D.A.; Zhang, X.; Murphy, A.N.; Gustafsson, Å.B. Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ., 2011, 18(4), 721-731.
[http://dx.doi.org/10.1038/cdd.2010.146] [PMID: 21278801]
[92]
Liu, L.; Feng, D.; Chen, G.; Chen, M.; Zheng, Q.; Song, P.; Ma, Q.; Zhu, C.; Wang, R.; Qi, W.; Huang, L.; Xue, P.; Li, B.; Wang, X.; Jin, H.; Wang, J.; Yang, F.; Liu, P.; Zhu, Y.; Sui, S.; Chen, Q. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol., 2012, 14(2), 177-185.
[http://dx.doi.org/10.1038/ncb2422] [PMID: 22267086]
[93]
Sandoval, H.; Thiagarajan, P.; Dasgupta, S.K.; Schumacher, A.; Prchal, J.T.; Chen, M.; Wang, J. Essential role for Nix in autophagic maturation of erythroid cells. Nature, 2008, 454(7201), 232-235.
[http://dx.doi.org/10.1038/nature07006] [PMID: 18454133]
[94]
Gao, F.; Chen, D.; Si, J.; Hu, Q.; Qin, Z.; Fang, M.; Wang, G. The mitochondrial protein BNIP3L is the substrate of PARK2 and mediates mitophagy in PINK1/PARK2 pathway. Hum. Mol. Genet., 2015, 24(9), 2528-2538.
[http://dx.doi.org/10.1093/hmg/ddv017] [PMID: 25612572]
[95]
Zhang, H.; Bosch-Marce, M.; Shimoda, L.A.; Tan, Y.S.; Baek, J.H.; Wesley, J.B.; Gonzalez, F.J.; Semenza, G.L. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem., 2008, 283(16), 10892-10903.
[http://dx.doi.org/10.1074/jbc.M800102200] [PMID: 18281291]
[96]
Bellot, G.; Garcia-Medina, R.; Gounon, P.; Chiche, J.; Roux, D.; Pouysségur, J.; Mazure, N.M. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol., 2009, 29(10), 2570-2581.
[http://dx.doi.org/10.1128/MCB.00166-09] [PMID: 19273585]
[97]
Wei, H.; Liu, L.; Chen, Q. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochim. Biophys. Acta Mol. Cell Res., 2015, 1853(10)(10 Pt B), 2784-2790.
[http://dx.doi.org/10.1016/j.bbamcr.2015.03.013] [PMID: 25840011]
[98]
Chen, G.; Han, Z.; Feng, D.; Chen, Y.; Chen, L.; Wu, H.; Huang, L.; Zhou, C.; Cai, X.; Fu, C.; Duan, L.; Wang, X.; Liu, L.; Liu, X.; Shen, Y.; Zhu, Y.; Chen, Q. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell, 2014, 54(3), 362-377.
[http://dx.doi.org/10.1016/j.molcel.2014.02.034] [PMID: 24746696]
[99]
Narendra, D.; Tanaka, A.; Suen, D.F.; Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol., 2008, 183(5), 795-803.
[http://dx.doi.org/10.1083/jcb.200809125] [PMID: 19029340]
[100]
Dagda, R.K.; Zhu, J.; Kulich, S.M.; Chu, C.T. Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress. Autophagy, 2008, 4(6), 770-782.
[http://dx.doi.org/10.4161/auto.6458] [PMID: 18594198]
[101]
Chu, C.T.; Ji, J.; Dagda, R.K.; Jiang, J.F.; Tyurina, Y.Y.; Kapralov, A.A.; Tyurin, V.A.; Yanamala, N.; Shrivastava, I.H.; Mohammadyani, D.; Qiang, Wang K.Z.; Zhu, J.; Klein-Seetharaman, J.; Balasubramanian, K.; Amoscato, A.A.; Borisenko, G.; Huang, Z.; Gusdon, A.M.; Cheikhi, A.; Steer, E.K.; Wang, R.; Baty, C.; Watkins, S.; Bahar, I.; Bayır, H.; Kagan, V.E. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol., 2013, 15(10), 1197-1205.
[http://dx.doi.org/10.1038/ncb2837] [PMID: 24036476]
[102]
Zhu, J.H.; Gusdon, A.M.; Cimen, H.; Van Houten, B.; Koc, E.; Chu, C.T. Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: dual roles for ERK1/2. Cell Death Dis., 2012, 3(5), e312.
[http://dx.doi.org/10.1038/cddis.2012.46] [PMID: 22622131]
[103]
Grenier, K.; McLelland, G.L.; Fon, E.A. Parkin- and PINK1-dependent mitophagy in neurons: will the real pathway please stand up? Front. Neurol., 2013, 4, 100.
[http://dx.doi.org/10.3389/fneur.2013.00100] [PMID: 23882257]
[104]
Ashrafi, G.; Schwarz, T.L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ., 2013, 20(1), 31-42.
[http://dx.doi.org/10.1038/cdd.2012.81] [PMID: 22743996]
[105]
Jangamreddy, J.R.; Ghavami, S.; Grabarek, J.; Kratz, G.; Wiechec, E.; Fredriksson, B.A.; Rao, P.R.K.; Cieślar-Pobuda, A.; Panigrahi, S.; Łos, M.J. Salinomycin induces activation of autophagy, mitophagy and affects mitochondrial polarity: Differences between primary and cancer cells. Biochim. Biophys. Acta Mol. Cell Res., 2013, 1833(9), 2057-2069.
[http://dx.doi.org/10.1016/j.bbamcr.2013.04.011] [PMID: 23639289]
[106]
Shen, Q.; Yamano, K.; Head, B.P.; Kawajiri, S.; Cheung, J.T.M.; Wang, C.; Cho, J.H.; Hattori, N.; Youle, R.J.; van der Bliek, A.M. Mutations in Fis1 disrupt orderly disposal of defective mitochondria. Mol. Biol. Cell, 2014, 25(1), 145-159.
[http://dx.doi.org/10.1091/mbc.e13-09-0525] [PMID: 24196833]
[107]
Kim, E.H.; Choi, K.S. A critical role of superoxide anion in selenite-induced mitophagic cell death. Autophagy, 2008, 4(1), 76-78.
[http://dx.doi.org/10.4161/auto.5119] [PMID: 17952022]
[108]
Kim, E.H.; Sohn, S.; Kwon, H.J.; Kim, S.U.; Kim, M.J.; Lee, S.J.; Choi, K.S. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Cancer Res., 2007, 67(13), 6314-6324.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4217] [PMID: 17616690]
[109]
Liu, Y.; Ji, Y.; Li, X.; Tian, K.; Yf Young, C.; Lou, H.; Yuan, H. Retigeric acid B-induced mitophagy by oxidative stress attenuates cell death against prostate cancer cells in vitro. Acta Pharmacol. Sin., 2013, 34(9), 1183-1191.
[http://dx.doi.org/10.1038/aps.2013.68] [PMID: 23892275]
[110]
Narendra, D.; Kane, L.A.; Hauser, D.N.; Fearnley, I.M.; Youle, R.J. p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy, 2010, 6(8), 1090-1106.
[http://dx.doi.org/10.4161/auto.6.8.13426] [PMID: 20890124]
[111]
Gatliff, J.; East, D.; Crosby, J.; Abeti, R.; Harvey, R.; Craigen, W.; Parker, P.; Campanella, M. TSPO interacts with VDAC1 and triggers a ROS-mediated inhibition of mitochondrial quality control. Autophagy, 2014, 10(12), 2279-2296.
[http://dx.doi.org/10.4161/15548627.2014.991665] [PMID: 25470454]
[112]
Tsiper, M.V.; Sturgis, J.; Avramova, L.V.; Parakh, S.; Fatig, R.; Juan-García, A.; Li, N.; Rajwa, B.; Narayanan, P.; Qualls, C.W., Jr; Robinson, J.P.; Davisson, V.J. Differential mitochondrial toxicity screening and multi-parametric data analysis. PLoS One, 2012, 7(10), e45226.
[http://dx.doi.org/10.1371/journal.pone.0045226] [PMID: 23077490]
[113]
Kenwood, B.M.; Weaver, J.L.; Bajwa, A.; Poon, I.K.; Byrne, F.L.; Murrow, B.A.; Calderone, J.A.; Huang, L.; Divakaruni, A.S.; Tomsig, J.L.; Okabe, K.; Lo, R.H.; Cameron Coleman, G.; Columbus, L.; Yan, Z.; Saucerman, J.J.; Smith, J.S.; Holmes, J.W.; Lynch, K.R.; Ravichandran, K.S.; Uchiyama, S.; Santos, W.L.; Rogers, G.W.; Okusa, M.D.; Bayliss, D.A.; Hoehn, K.L. Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Mol. Metab., 2014, 3(2), 114-123.
[http://dx.doi.org/10.1016/j.molmet.2013.11.005] [PMID: 24634817]
[114]
East, D.A.; Fagiani, F.; Crosby, J.; Georgakopoulos, N.D.; Bertrand, H.; Schaap, M.; Fowkes, A.; Wells, G.; Campanella, M. PMI: a ΔΨm independent pharmacological regulator of mitophagy. Chem. Biol., 2014, 21(11), 1585-1596.
[http://dx.doi.org/10.1016/j.chembiol.2014.09.019] [PMID: 25455860]
[115]
Bertrand, H.C.; Schaap, M.; Baird, L.; Georgakopoulos, N.D.; Fowkes, A.; Thiollier, C.; Kachi, H.; Dinkova-Kostova, A.T.; Wells, G. Design, synthesis, and evaluation of triazole derivatives that induce Nrf2 dependent gene products and inhibit the keap1-Nrf2 protein-protein interaction. J. Med. Chem., 2015, 58(18), 7186-7194.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00602] [PMID: 26348784]
[116]
Jo, C.; Kim, S.; Cho, S.J.; Choi, K.J.; Yun, S.M.; Koh, Y.H.; Johnson, G.V.W.; Park, S.I. Sulforaphane induces autophagy through ERK activation in neuronal cells. FEBS Lett., 2014, 588(17), 3081-3088.
[http://dx.doi.org/10.1016/j.febslet.2014.06.036] [PMID: 24952354]
[117]
Kang, H.T.; Hwang, E.S. Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell, 2009, 8(4), 426-438.
[http://dx.doi.org/10.1111/j.1474-9726.2009.00487.x] [PMID: 19473119]
[118]
Pineda-Ramírez, N.; Alquisiras-Burgos, I.; Ortiz-Plata, A.; Ruiz-Tachiquín, M.E.; Espinoza-Rojo, M.; Aguilera, P. Resveratrol activates neuronal autophagy through AMPK in the ischemic brain. Mol. Neurobiol., 2020, 57(2), 1055-1069.
[http://dx.doi.org/10.1007/s12035-019-01803-6] [PMID: 31667715]
[119]
Porquet, D.; Griñán-Ferré, C.; Ferrer, I.; Camins, A.; Sanfeliu, C.; del Valle, J.; Pallàs, M. Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J. Alzheimers Dis., 2014, 42(4), 1209-1220.
[http://dx.doi.org/10.3233/JAD-140444] [PMID: 25024312]
[120]
Ferretta, A.; Gaballo, A.; Tanzarella, P.; Piccoli, C.; Capitanio, N.; Nico, B.; Annese, T.; Di Paola, M.; Dell’Aquila, C.; De Mari, M.; Ferranini, E.; Bonifati, V.; Pacelli, C.; Cocco, T. Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(7), 902-915.
[http://dx.doi.org/10.1016/j.bbadis.2014.02.010]
[121]
Valenti, D.; de Bari, L.; de Rasmo, D.; Signorile, A.; Henrion-Caude, A.; Contestabile, A.; Vacca, R.A. The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model. Biochim. Biophys. Acta Mol. Basis Dis., 2016, 1862(6), 1093-1104.
[http://dx.doi.org/10.1016/j.bbadis.2016.03.003] [PMID: 26964795]
[122]
Peng, K.; Tao, Y.; Zhang, J.; Wang, J.; Ye, F.; Dan, G.; Zhao, Y.; Cai, Y.; Zhao, J.; Wu, Q. Resveratrol regulates mitochondrial biogenesis and fission/fusion to attenuate rotenone-induced neurotoxicity. Oxid. Med. Cell. Longev., 2016, 6705621, 2016.
[123]
Palomera-Avalos, V.; Griñán-Ferré, C.; Puigoriol-Ilamola, D.; Camins, A.; Sanfeliu, C.; Canudas, A.M.; Pallàs, M. Resveratrol protects SAMP8 brain under metabolic stress: focus on mitochondrial function and Wnt pathway. Mol. Neurobiol., 2017, 54(3), 1661-1676.
[http://dx.doi.org/10.1007/s12035-016-9770-0] [PMID: 26873850]
[124]
Ahsan, A.; Zheng, Y.R.; Wu, X.L.; Tang, W.D.; Liu, M.R.; Ma, S.J.; Jiang, L.; Hu, W.W.; Zhang, X.N.; Chen, Z. Urolithin A‐activated autophagy but not mitophagy protects against ischemic neuronal injury by inhibiting ER stress in vitro and in vivo. CNS Neurosci. Ther., 2019, 25(9), 976-986.
[http://dx.doi.org/10.1111/cns.13136] [PMID: 30972969]
[125]
Eisenberg, T.; Abdellatif, M.; Schroeder, S.; Primessnig, U.; Stekovic, S.; Pendl, T.; Harger, A.; Schipke, J.; Zimmermann, A.; Schmidt, A.; Tong, M.; Ruckenstuhl, C.; Dammbrueck, C.; Gross, A.S.; Herbst, V.; Magnes, C.; Trausinger, G.; Narath, S.; Meinitzer, A.; Hu, Z.; Kirsch, A.; Eller, K.; Carmona-Gutierrez, D.; Büttner, S.; Pietrocola, F.; Knittelfelder, O.; Schrepfer, E.; Rockenfeller, P.; Simonini, C.; Rahn, A.; Horsch, M.; Moreth, K.; Beckers, J.; Fuchs, H.; Gailus-Durner, V.; Neff, F.; Janik, D.; Rathkolb, B.; Rozman, J.; de Angelis, M.H.; Moustafa, T.; Haemmerle, G.; Mayr, M.; Willeit, P.; von Frieling-Salewsky, M.; Pieske, B.; Scorrano, L.; Pieber, T.; Pechlaner, R.; Willeit, J.; Sigrist, S.J.; Linke, W.A.; Mühlfeld, C.; Sadoshima, J.; Dengjel, J.; Kiechl, S.; Kroemer, G.; Sedej, S.; Madeo, F. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med., 2016, 22(12), 1428-1438.
[http://dx.doi.org/10.1038/nm.4222] [PMID: 27841876]
[126]
Eisenberg, T.; Knauer, H.; Schauer, A.; Büttner, S.; Ruckenstuhl, C.; Carmona-Gutierrez, D.; Ring, J.; Schroeder, S.; Magnes, C.; Antonacci, L.; Fussi, H.; Deszcz, L.; Hartl, R.; Schraml, E.; Criollo, A.; Megalou, E.; Weiskopf, D.; Laun, P.; Heeren, G.; Breitenbach, M.; Grubeck-Loebenstein, B.; Herker, E.; Fahrenkrog, B.; Fröhlich, K.U.; Sinner, F.; Tavernarakis, N.; Minois, N.; Kroemer, G.; Madeo, F. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol., 2009, 11(11), 1305-1314.
[http://dx.doi.org/10.1038/ncb1975] [PMID: 19801973]
[127]
Reddy, P.H.; Manczak, M.; Yin, X.; Grady, M.C.; Mitchell, A.; Kandimalla, R.; Kuruva, C.S. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer’s disease. J. Investig. Med., 2016, 64(8), 1220-1234.
[http://dx.doi.org/10.1136/jim-2016-000240] [PMID: 27521081]
[128]
Liu, L.; Zhang, W.; Wang, L.; Li, Y.; Tan, B.; Lu, X.; Deng, Y.; Zhang, Y.; Guo, X.; Mu, J.; Yu, G. Curcumin prevents cerebral ischemia reperfusion injury via increase of mitochondrial biogenesis. Neurochem. Res., 2014, 39(7), 1322-1331.
[http://dx.doi.org/10.1007/s11064-014-1315-1] [PMID: 24777807]
[129]
Ay, M.; Luo, J.; Langley, M.; Jin, H.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A.G. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s Disease. J. Neurochem., 2017, 141(5), 766-782.
[http://dx.doi.org/10.1111/jnc.14033] [PMID: 28376279]
[130]
Liu, P.; Zou, D.; Chen, K.; Zhou, Q.; Gao, Y.; Huang, Y.; Zhu, J.; Zhang, Q.; Mi, M. Dihydromyricetin improves hypobaric hypoxia-induced memory impairment via modulation of SIRT3 signaling. Mol. Neurobiol., 2016, 53(10), 7200-7212.
[http://dx.doi.org/10.1007/s12035-015-9627-y] [PMID: 26687185]
[131]
Valenti, D.; De Rasmo, D.; Signorile, A.; Rossi, L.; de Bari, L.; Scala, I.; Granese, B.; Papa, S.; Vacca, R.A. Epigallocatechin-3-gallate prevents oxidative phosphorylation deficit and promotes mitochondrial biogenesis in human cells from subjects with Down’s syndrome. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(4), 542-552.
[http://dx.doi.org/10.1016/j.bbadis.2012.12.011] [PMID: 23291000]
[132]
Rao, S.P.; Sharma, N.; Kalivendi, S.V. Embelin averts MPTP-induced dysfunction in mitochondrial bioenergetics and biogenesis via activation of SIRT1. Biochim. Biophys. Acta Bioenerg., 2020, 1861(3), 148157.
[http://dx.doi.org/10.1016/j.bbabio.2020.148157] [PMID: 31987812]
[133]
Wang, C.C.; Ho, Y.H.; Hung, C.F.; Kuo, J.R.; Wang, S.J. Xanthohumol, an active constituent from hope, affords protection against kainic acid-induced excitotoxicity in rats. Neurochem. Int., 2020, 133, 104629.
[http://dx.doi.org/10.1016/j.neuint.2019.104629] [PMID: 31816340]
[134]
Anis, E.; Zafeer, M.F.; Firdaus, F.; Islam, S.N.; Anees Khan, A.; Ali, A.; Hossain, M.M. Ferulic acid reinstates mitochondrial dynamics through PGC1α expression modulation in 6‐hydroxydopamine lesioned rats. Phytother. Res., 2020, 34(1), 214-226.
[http://dx.doi.org/10.1002/ptr.6523] [PMID: 31657074]
[135]
Alikatte, K.; Palle, S.; Rajendra Kumar, J.; Pathakala, N. Fisetin improved rotenone-induced behavioral deficits, oxidative changes, and mitochondrial dysfunctions in rat model of Parkinson’s disease. J. Diet. Suppl., 2021, 18(1), 57-71.
[http://dx.doi.org/10.1080/19390211.2019.1710646] [PMID: 31992104]
[136]
Garabadu, D.; Agrawal, N. Naringin exhibits neuroprotection against rotenone-induced neurotoxicity in experimental rodents. Neuromolecular Med., 2020, 22(2), 314-330.
[http://dx.doi.org/10.1007/s12017-019-08590-2] [PMID: 31916219]
[137]
Sun, S.; Hu, F.; Wu, J.; Zhang, S. Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons. Redox Biol., 2017, 11, 577-585.
[http://dx.doi.org/10.1016/j.redox.2016.12.029] [PMID: 28110213]
[138]
Grimm, A.; Schmitt, K.; Lang, U.E.; Mensah-Nyagan, A.G.; Eckert, A. Improvement of neuronal bioenergetics by neurosteroids: Implications for age-related neurodegenerative disorders. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(12), 2427-2438.
[http://dx.doi.org/10.1016/j.bbadis.2014.09.013] [PMID: 25281013]
[139]
Mehrotra, A.; Kanwal, A.; Banerjee, S.K.; Sandhir, R. Mitochondrial modulators in experimental Huntington’s disease: reversal of mitochondrial dysfunctions and cognitive deficits. Neurobiol. Aging, 2015, 36(6), 2186-2200.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.02.004] [PMID: 25976011]
[140]
Kato, Y.; Sakamoto, K. Niclosamide affects intracellular TDP-43 distribution in motor neurons, activates mitophagy, and attenuates morphological changes under stress. J. Biosci. Bioeng., 2021, 132(6), 640-650.
[http://dx.doi.org/10.1016/j.jbiosc.2021.06.015] [PMID: 34429248]
[141]
Barini, E.; Miccoli, A.; Tinarelli, F.; Mulholland, K.; Kadri, H.; Khanim, F.; Stojanovski, L.; Read, K.D.; Burness, K.; Blow, J.J.; Mehellou, Y.; Muqit, M.M.K. The anthelmintic drug niclosamide and its analogues activate the Parkinson’s disease associated protein kinase PINK1. ChemBioChem, 2018, 19(5), 425-429.
[http://dx.doi.org/10.1002/cbic.201700500] [PMID: 29226533]
[142]
Igarashi, R.; Yamashita, S.; Yamashita, T.; Inoue, K.; Fukuda, T.; Fukuchi, T.; Kanki, T. Gemcitabine induces Parkin-independent mitophagy through mitochondrial-resident E3 ligase MUL1-mediated stabilization of PINK1. Sci. Rep., 2020, 10(1), 1465.
[http://dx.doi.org/10.1038/s41598-020-58315-w] [PMID: 32001742]
[143]
Zhou, H.; Li, D.; Zhu, P.; Hu, S.; Hu, N.; Ma, S.; Zhang, Y.; Han, T.; Ren, J.; Cao, F.; Chen, Y. Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARγ/FUNDC1/mitophagy pathways. J. Pineal Res., 2017, 63(4), e12438.
[http://dx.doi.org/10.1111/jpi.12438] [PMID: 28749565]
[144]
Zhou, H.; Wang, S.; Zhu, P.; Hu, S.; Chen, Y.; Ren, J. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol., 2018, 15, 335-346.
[http://dx.doi.org/10.1016/j.redox.2017.12.019] [PMID: 29306791]
[145]
Feng, J.; Wang, X.; Ye, X.; Ares, I.; Lopez-Torres, B.; Martínez, M.; Martínez-Larrañaga, M.R.; Wang, X.; Anadón, A.; Martínez, M.A. Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol. Res., 2022, 177, 106114.
[http://dx.doi.org/10.1016/j.phrs.2022.106114] [PMID: 35124206]
[146]
Jang, S.; Kang, H.T.; Hwang, E.S. Nicotinamide-induced Mitophagy. J. Biol. Chem., 2012, 287(23), 19304-19314.
[http://dx.doi.org/10.1074/jbc.M112.363747] [PMID: 22493485]
[147]
Kume, S.; Uzu, T.; Horiike, K.; Chin-Kanasaki, M.; Isshiki, K.; Araki, S.; Sugimoto, T.; Haneda, M.; Kashiwagi, A.; Koya, D. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest., 2010, 120(4), 1043-1055.
[http://dx.doi.org/10.1172/JCI41376] [PMID: 20335657]
[148]
Fang, E.F.; Scheibye-Knudsen, M.; Brace, L.E.; Kassahun, H.; Sen, G.T.; Nilsen, H.; Mitchell, J.R.; Croteau, D.L.; Bohr, V.A. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/] SIRT1 reduction. Cell, 2014, 157(4), 882-896.
[http://dx.doi.org/10.1016/j.cell.2014.03.026] [PMID: 24813611]
[149]
Arun, B.; Akar, U.; Gutierrez-Barrera, A.M.; Hortobagyi, G.N.; Ozpolat, B. The PARP inhibitor AZD2281 (Olaparib) induces autophagy/mitophagy in BRCA1 and BRCA2 mutant breast cancer cells. Int. J. Oncol., 2015, 47(1), 262-268.
[http://dx.doi.org/10.3892/ijo.2015.3003] [PMID: 25975349]
[150]
Hoshino, A.; Mita, Y.; Okawa, Y.; Ariyoshi, M.; Iwai-Kanai, E.; Ueyama, T.; Ikeda, K.; Ogata, T.; Matoba, S. Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart. Nat. Commun., 2013, 4(1), 2308.
[http://dx.doi.org/10.1038/ncomms3308] [PMID: 23917356]
[151]
Hoshino, A.; Ariyoshi, M.; Okawa, Y.; Kaimoto, S.; Uchihashi, M.; Fukai, K.; Iwai-Kanai, E.; Ikeda, K.; Ueyama, T.; Ogata, T.; Matoba, S. Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic β-cell function in diabetes. Proc. Natl. Acad. Sci. USA, 2014, 111(8), 3116-3121.
[http://dx.doi.org/10.1073/pnas.1318951111] [PMID: 24516131]
[152]
Hasson, S.A.; Fogel, A.I.; Wang, C.X.; MacArthur, R.; Guha, R.; Heman-Ackah, S.; Martin, S.; Youle, R.J.; Inglese, J. Chemogenomic profiling of endogenous PARK2 expression using a genomeedited coincidence reporter. Acs Chemical Biology, 2015, 10(5), 1188-1197.
[http://dx.doi.org/10.1021/cb5010417]
[153]
Gatliff, J.; Campanella, M. TSPO: kaleidoscopic 18-kDa amid biochemical pharmacology, control and targeting of mitochondria. Biochem. J., 2016, 473(2), 107-121.
[http://dx.doi.org/10.1042/BJ20150899] [PMID: 26733718]
[154]
Bingol, B.; Tea, J.S.; Phu, L.; Reichelt, M.; Bakalarski, C.E.; Song, Q.; Foreman, O.; Kirkpatrick, D.S.; Sheng, M. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature, 2014, 510(7505), 370-375.
[http://dx.doi.org/10.1038/nature13418] [PMID: 24896179]
[155]
Cunningham, C.N.; Baughman, J.M.; Phu, L.; Tea, J.S.; Yu, C.; Coons, M.; Kirkpatrick, D.S.; Bingol, B.; Corn, J.E. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol., 2015, 17(2), 160-169.
[http://dx.doi.org/10.1038/ncb3097] [PMID: 25621951]
[156]
Park, S.J.; Shin, J.H.; Kim, E.S.; Jo, Y.K.; Kim, J.H.; Hwang, J.J.; Kim, J.C.; Cho, D.H. Mitochondrial fragmentation caused by phenanthroline promotes mitophagy. FEBS Lett., 2012, 586(24), 4303-4310.
[http://dx.doi.org/10.1016/j.febslet.2012.10.035] [PMID: 23123158]
[157]
Kirienko, N.V.; Ausubel, F.M.; Ruvkun, G. Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA, 2015, 112(6), 1821-1826.
[http://dx.doi.org/10.1073/pnas.1424954112] [PMID: 25624506]
[158]
Yang, Y.; Hu, L.; Zheng, H.; Mao, C.; Hu, W.; Xiong, K.; Wang, F.; Liu, C. Application and interpretation of current autophagy inhibitors and activators. Acta Pharmacol. Sin., 2013, 34(5), 625-635.
[http://dx.doi.org/10.1038/aps.2013.5] [PMID: 23524572]
[159]
Zhou, H.; Zhu, P.; Wang, J.; Zhu, H.; Ren, J.; Chen, Y. Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ., 2018, 25(6), 1080-1093.
[http://dx.doi.org/10.1038/s41418-018-0086-7] [PMID: 29540794]
[160]
Kageyama, Y.; Hoshijima, M.; Seo, K.; Bedja, D.; Sysa-Shah, P.; Andrabi, S.A.; Chen, W.; Höke, A.; Dawson, V.L.; Dawson, T.M.; Gabrielson, K.; Kass, D.A.; Iijima, M.; Sesaki, H. Parkin‐independent mitophagy requires D rp1 and maintains the integrity of mammalian heart and brain. EMBO J., 2014, 33(23), 2798-2813.
[http://dx.doi.org/10.15252/embj.201488658] [PMID: 25349190]
[161]
Smith, G.; Gallo, G. To mdivi-1 or not to mdivi-1: Is that the question? Dev. Neurobiol., 2017, 77(11), 1260-1268.
[http://dx.doi.org/10.1002/dneu.22519] [PMID: 28842943]
[162]
Givvimani, S.; Munjal, C.; Tyagi, N.; Sen, U.; Metreveli, N.; Tyagi, S.C. Mitochondrial division/mitophagy inhibitor (Mdivi) ameliorates pressure overload induced heart failure. PLoS One, 2012, 7(3), e32388.
[http://dx.doi.org/10.1371/journal.pone.0032388] [PMID: 22479323]
[163]
Mann, S.S.; Hammarback, J.A. Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J. Biol. Chem., 1994, 269(15), 11492-11497.
[http://dx.doi.org/10.1016/S0021-9258(19)78150-2] [PMID: 7908909]
[164]
Kabeya, Y.; Mizushima, N.; Ueno, T.; Yamamoto, A.; Kirisako, T.; Noda, T.; Kominami, E.; Ohsumi, Y.; Yoshimori, T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J., 2000, 19(21), 5720-5728.
[http://dx.doi.org/10.1093/emboj/19.21.5720] [PMID: 11060023]
[165]
Tanida, I.; Tanida-Miyake, E.; Komatsu, M.; Ueno, T.; Kominami, E. Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J. Biol. Chem., 2002, 277(16), 13739-13744.
[http://dx.doi.org/10.1074/jbc.M200385200] [PMID: 11825910]
[166]
Tanida, I.; Tanida-Miyake, E.; Ueno, T.; Kominami, E. The human homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J. Biol. Chem., 2001, 276(3), 1701-1706.
[http://dx.doi.org/10.1074/jbc.C000752200] [PMID: 11096062]
[167]
Kabeya, Y.; Mizushima, N.; Yamamoto, A.; Oshitani-Okamoto, S.; Ohsumi, Y.; Yoshimori, T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci., 2004, 117(13), 2805-2812.
[http://dx.doi.org/10.1242/jcs.01131] [PMID: 15169837]
[168]
Kouno, T.; Mizuguchi, M.; Tanida, I.; Ueno, T.; Kanematsu, T.; Mori, Y.; Shinoda, H.; Hirata, M.; Kominami, E.; Kawano, K. Solution structure of microtubule-associated protein light chain 3 and identification of its functional subdomains. J. Biol. Chem., 2005, 280(26), 24610-24617.
[http://dx.doi.org/10.1074/jbc.M413565200] [PMID: 15857831]
[169]
Pankiv, S.; Clausen, T.H.; Lamark, T.; Brech, A.; Bruun, J.A.; Outzen, H.; Øvervatn, A.; Bjørkøy, G.; Johansen, T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem., 2007, 282(33), 24131-24145.
[http://dx.doi.org/10.1074/jbc.M702824200] [PMID: 17580304]
[170]
Paz, Y.; Elazar, Z.; Fass, D. Structure of GATE-16, membrane transport modulator and mammalian ortholog of autophagocytosis factor Aut7p. J. Biol. Chem., 2000, 275(33), 25445-25450.
[http://dx.doi.org/10.1074/jbc.C000307200] [PMID: 10856287]
[171]
Bavro, V.N.; Sola, M.; Bracher, A.; Kneussel, M.; Betz, H.; Weissenhorn, W. Crystal structure of the GABA A ‐receptor‐associated protein, GABARAP. EMBO Rep., 2002, 3(2), 183-189.
[http://dx.doi.org/10.1093/embo-reports/kvf026] [PMID: 11818336]
[172]
Stangler, T.; Mayr, L.M.; Willbold, D. Solution structure of human GABA(A) receptor-associated protein GABARAP: implications for biolgoical funcrion and its regulation. J. Biol. Chem., 2002, 277(16), 13363-13366.
[http://dx.doi.org/10.1074/jbc.C200050200] [PMID: 11875056]
[173]
Sugawara, K.; Suzuki, N.N.; Fujioka, Y.; Mizushima, N.; Ohsumi, Y.; Inagaki, F. The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells, 2004, 9(7), 611-618.
[http://dx.doi.org/10.1111/j.1356-9597.2004.00750.x] [PMID: 15265004]
[174]
Rozenknop, A.; Rogov, V.V.; Rogova, N.Y.; Löhr, F.; Güntert, P.; Dikic, I.; Dötsch, V. Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1. J. Mol. Biol., 2011, 410(3), 477-487.
[http://dx.doi.org/10.1016/j.jmb.2011.05.003] [PMID: 21620860]
[175]
Rogov, V.; Dötsch, V.; Johansen, T.; Kirkin, V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell, 2014, 53(2), 167-178.
[http://dx.doi.org/10.1016/j.molcel.2013.12.014] [PMID: 24462201]
[176]
Suzuki, H.; Tabata, K.; Morita, E.; Kawasaki, M.; Kato, R.; Dobson, R.C.J.; Yoshimori, T.; Wakatsuki, S. Structural basis of the autophagy-related LC3/Atg13 LIR complex: recognition and interaction mechanism. Structure, 2014, 22(1), 47-58.
[http://dx.doi.org/10.1016/j.str.2013.09.023] [PMID: 24290141]
[177]
Novak, I. Mitophagy: a complex mechanism of mitochondrial removal. Antioxid. Redox Signal., 2012, 17(5), 794-802.
[http://dx.doi.org/10.1089/ars.2011.4407] [PMID: 22077334]
[178]
Zhu, Y.; Massen, S.; Terenzio, M.; Lang, V.; Chen-Lindner, S.; Eils, R.; Novak, I.; Dikic, I.; Hamacher-Brady, A.; Brady, N.R. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J. Biol. Chem., 2013, 288(2), 1099-1113.
[http://dx.doi.org/10.1074/jbc.M112.399345] [PMID: 23209295]
[179]
Feng, D.; Liu, L.; Zhu, Y.; Chen, Q. Molecular signaling toward mitophagy and its physiological significance. Exp. Cell Res., 2013, 319(12), 1697-1705.
[http://dx.doi.org/10.1016/j.yexcr.2013.03.034] [PMID: 23603281]
[180]
Schweers, R.L.; Zhang, J.; Randall, M.S.; Loyd, M.R.; Li, W.; Dorsey, F.C.; Kundu, M.; Opferman, J.T.; Cleveland, J.L.; Miller, J.L.; Ney, P.A. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19500-19505.
[http://dx.doi.org/10.1073/pnas.0708818104] [PMID: 18048346]
[181]
Hamacher-Brady, A.; Brady, N.R.; Logue, S.E.; Sayen, M.R.; Jinno, M.; Kirshenbaum, L.A.; Gottlieb, R.A.; Gustafsson, Å.B. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ., 2007, 14(1), 146-157.
[http://dx.doi.org/10.1038/sj.cdd.4401936] [PMID: 16645637]
[182]
Sowter, H.M.; Ratcliffe, P.J.; Watson, P.; Greenberg, A.H.; Harris, A.L. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors. Cancer Res., 2001, 61(18), 6669-6673.
[PMID: 11559532]
[183]
Bursch, W.; Karwan, A.; Mayer, M.; Dornetshuber, J.; Fröhwein, U.; Schulte-Hermann, R.; Fazi, B.; Di Sano, F.; Piredda, L.; Piacentini, M.; Petrovski, G.; Fésüs, L.; Gerner, C. Cell death and autophagy: Cytokines, drugs, and nutritional factors. Toxicology, 2008, 254(3), 147-157.
[http://dx.doi.org/10.1016/j.tox.2008.07.048] [PMID: 18694801]
[184]
Wu, W.; Tian, W.; Hu, Z.; Chen, G.; Huang, L.; Li, W.; Zhang, X.; Xue, P.; Zhou, C.; Liu, L.; Zhu, Y.; Zhang, X.; Li, L.; Zhang, L.; Sui, S.; Zhao, B.; Feng, D. ULK 1 translocates to mitochondria and phosphorylates FUNDC 1 to regulate mitophagy. EMBO Rep., 2014, 15(5), 566-575.
[http://dx.doi.org/10.1002/embr.201438501] [PMID: 24671035]
[185]
Lv, M.; Wang, C.; Li, F.; Peng, J.; Wen, B.; Gong, Q.; Shi, Y.; Tang, Y. Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy. Protein Cell, 2017, 8(1), 25-38.
[http://dx.doi.org/10.1007/s13238-016-0328-8] [PMID: 27757847]
[186]
Kuang, Y.; Ma, K.; Zhou, C.; Ding, P.; Zhu, Y.; Chen, Q.; Xia, B. Structural basis for the phosphorylation of FUNDC1 LIR as a molecular switch of mitophagy. Autophagy, 2016, 12(12), 2363-2373.
[http://dx.doi.org/10.1080/15548627.2016.1238552] [PMID: 27653272]
[187]
Wu, H.; Xue, D.; Chen, G.; Han, Z.; Huang, L.; Zhu, C.; Wang, X.; Jin, H.; Wang, J.; Zhu, Y.; Liu, L.; Chen, Q. The BCL2L1 and PGAM5 axis defines hypoxia-induced receptor-mediated mitophagy. Autophagy, 2014, 10(10), 1712-1725.
[http://dx.doi.org/10.4161/auto.29568] [PMID: 25126723]
[188]
Biel, T.G.; Rao, V.A. Mitochondrial dysfunction activates lysosomal-dependent mitophagy selectively in cancer cells. Oncotarget, 2018, 9(1), 995-1011.
[http://dx.doi.org/10.18632/oncotarget.23171] [PMID: 29416672]
[189]
Rao, V.A.; Klein, S.R.; Bonar, S.J.; Zielonka, J.; Mizuno, N.; Dickey, J.S.; Keller, P.W.; Joseph, J.; Kalyanaraman, B.; Shacter, E. The antioxidant transcription factor Nrf2 negatively regulates autophagy and growth arrest induced by the anticancer redox agent mitoquinone. J. Biol. Chem., 2010, 285(45), 34447-34459.
[http://dx.doi.org/10.1074/jbc.M110.133579] [PMID: 20805228]
[190]
Ryu, D.; Mouchiroud, L.; Andreux, P.A.; Katsyuba, E.; Moullan, N. Nicolet-dit-Félix, A.A.; Williams, E.G.; Jha, P.; Lo Sasso, G.; Huzard, D.; Aebischer, P.; Sandi, C.; Rinsch, C.; Auwerx, J. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med., 2016, 22(8), 879-888.
[http://dx.doi.org/10.1038/nm.4132] [PMID: 27400265]
[191]
Gong, G.; Song, M.; Csordas, G.; Kelly, D.P.; Matkovich, S.J.; Dorn, G.W., II Parkin-mediated mitophagy directs perinatal cardiac metabolic maturation in mice. Science, 2015, 350(6265), aad2459.
[http://dx.doi.org/10.1126/science.aad2459] [PMID: 26785495]
[192]
Kim, M.J.; Bae, S.H.; Ryu, J.C.; Kwon, Y.; Oh, J.H.; Kwon, J.; Moon, J.S.; Kim, K.; Miyawaki, A.; Lee, M.G.; Shin, J.; Kim, Y.S.; Kim, C.H.; Ryter, S.W.; Choi, A.M.K.; Rhee, S.G.; Ryu, J.H.; Yoon, J.H. SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy, 2016, 12(8), 1272-1291.
[http://dx.doi.org/10.1080/15548627.2016.1183081] [PMID: 27337507]
[193]
Xiao, L.; Xu, X.; Zhang, F.; Wang, M.; Xu, Y.; Tang, D.; Wang, J.; Qin, Y.; Liu, Y.; Tang, C.; He, L.; Greka, A.; Zhou, Z.; Liu, F.; Dong, Z.; Sun, L. The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol., 2017, 11, 297-311.
[http://dx.doi.org/10.1016/j.redox.2016.12.022] [PMID: 28033563]
[194]
Hatch, A.L.; Gurel, P.S.; Higgs, H.N. Novel roles for actin in mitochondrial fission. J. Cell Sci., 2014, 127(Pt 21), jcs.153791.
[http://dx.doi.org/10.1242/jcs.153791] [PMID: 25217628]
[195]
Flippo, K.H.; Strack, S. Mitochondrial dynamics in neuronal injury, development and plasticity. J. Cell Sci., 2017, 130(4), cs.171017.
[http://dx.doi.org/10.1242/jcs.171017] [PMID: 28154157]
[196]
Cassidy-Stone, A.; Chipuk, J.E.; Ingerman, E.; Song, C.; Yoo, C.; Kuwana, T.; Kurth, M.J.; Shaw, J.T.; Hinshaw, J.E.; Green, D.R.; Nunnari, J. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell, 2008, 14(2), 193-204.
[http://dx.doi.org/10.1016/j.devcel.2007.11.019] [PMID: 18267088]
[197]
Bordt, E.A.; Clerc, P.; Roelofs, B.A.; Saladino, A.J.; Tretter, L.; Adam-Vizi, V.; Cherok, E.; Khalil, A.; Yadava, N.; Ge, S.X.; Francis, T.C.; Kennedy, N.W.; Picton, L.K.; Kumar, T.; Uppuluri, S.; Miller, A.M.; Itoh, K.; Karbowski, M.; Sesaki, H.; Hill, R.B.; Polster, B.M. The Putative Drp1 Inhibitor mdivi-1 Is a Reversible Mitochondrial Complex I Inhibitor that Modulates Reactive Oxygen Species. Dev. Cell, 2017, 40(6), 583-594.e6.
[http://dx.doi.org/10.1016/j.devcel.2017.02.020] [PMID: 28350990]
[198]
Bido, S.; Soria, F.N.; Fan, R.Z.; Bezard, E.; Tieu, K. Mitochondrial division inhibitor-1 is neuroprotective in the A53T-α-synuclein rat model of Parkinson’s disease. Sci. Rep., 2017, 7(1), 7495.
[http://dx.doi.org/10.1038/s41598-017-07181-0] [PMID: 28790323]
[199]
Yue, W.; Chen, Z.; Liu, H.; Yan, C.; Chen, M.; Feng, D.; Yan, C.; Wu, H.; Du, L.; Wang, Y.; Liu, J.; Huang, X.; Xia, L.; Liu, L.; Wang, X.; Jin, H.; Wang, J.; Song, Z.; Hao, X.; Chen, Q. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Cell Res., 2014, 24(4), 482-496.
[http://dx.doi.org/10.1038/cr.2014.20] [PMID: 24513856]
[200]
Zhao, L.; He, F.; Liu, H.; Zhu, Y.; Tian, W.; Gao, P.; He, H.; Yue, W.; Lei, X.; Ni, B.; Wang, X.; Jin, H.; Hao, X.; Lin, J.; Chen, Q. Natural diterpenoid compound elevates expression of Bim protein, which interacts with antiapoptotic protein Bcl-2, converting it to proapoptotic Bax-like molecule. J. Biol. Chem., 2012, 287(2), 1054-1065.
[http://dx.doi.org/10.1074/jbc.M111.264481] [PMID: 22065578]
[201]
Wang, W.; Liu, H.; Wang, S.; Hao, X.; Li, L. A diterpenoid derivative 15-oxospiramilactone inhibits Wnt/β-catenin signaling and colon cancer cell tumorigenesis. Cell Res., 2011, 21(5), 730-740.
[http://dx.doi.org/10.1038/cr.2011.30] [PMID: 21321609]
[202]
Mishra, N.; Kar, R.; Singha, P.K.; Venkatachalam, M.A.; McEwen, D.G.; Saikumar, P. Inhibition of mitochondrial division through covalent modification of Drp1 protein by 15 deoxy-Δ12,14-prostaglandin J2. Biochem. Biophys. Res. Commun., 2010, 395(1), 17-24.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.093] [PMID: 20307494]
[203]
Kar, R.; Mishra, N.; Singha, P.K.; Venkatachalam, M.A.; Saikumar, P. Mitochondrial remodeling following fission inhibition by 15d-PGJ2 involves molecular changes in mitochondrial fusion protein OPA1. Biochem. Biophys. Res. Commun., 2010, 399(4), 548-554.
[http://dx.doi.org/10.1016/j.bbrc.2010.07.108] [PMID: 20678484]
[204]
Bowes, T.; Gupta, R.S. Novel mitochondrial extensions provide evidence for a link between microtubule-directed movement and mitochondrial fission. Biochem. Biophys. Res. Commun., 2008, 376(1), 40-45.
[http://dx.doi.org/10.1016/j.bbrc.2008.08.120] [PMID: 18765225]
[205]
Soltys, B.J.; Gupta, R.S. Changes in mitochondrial shape and distribution induced by ethacrynic acid and the transient formation of a mitochondrial reticulum. J. Cell. Physiol., 1994, 159(2), 281-294.
[http://dx.doi.org/10.1002/jcp.1041590212] [PMID: 8163568]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy