Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Levothyroxine and Non-alcoholic Fatty Liver Disease: A Mini Review

Author(s): Partha Sarathi Singha, Suvendu Ghosh and Debosree Ghosh*

Volume 24, Issue 2, 2024

Published on: 04 April, 2023

Page: [128 - 138] Pages: 11

DOI: 10.2174/1389557523666230314113543

Price: $65

conference banner
Abstract

Levothyroxine or l-thyroxine is artificially manufactured thyroxine, which is used as a drug to treat underactive thyroid conditions in humans. The drug, levothyroxine, is consumed daily in a prescribed dose to replace the missing thyroid hormone thyroxine in an individual with an underactive thyroid, and it helps to maintain normal physiological conditions. Though it is a life-maintaining drug, it replaces the missing thyroid hormone and performs the necessary daily metabolic functions in our body. Like all other allopathic drugs, it comes with certain side effects, which include joint pain, cramps in muscle, weight gain/loss, hair loss, etc. The thyroid hormone, thyroxine, is known to mobilize fat in our body, including the ones from the hepatic system. An underactive thyroid may cause an accumulation of fat in the liver, leading to a fatty liver, which is clinically termed Non-Alcoholic Fatty Liver Disease (NAFLD). The correlation between hypothyroidism and NAFLD is now well-studied and recognized. As levothyroxine performs the functions of the missing thyroxine, it is anticipated, based on certain preliminary studies, that the drug helps to mobilize hepatic fat and thus may have a crucial role in mitigating the condition of NAFDL.

Graphical Abstract

[1]
Lonardo, A.; Nascimbeni, F.; Targher, G.; Bernardi, M.; Bonino, F.; Bugianesi, E.; Casini, A.; Gastaldelli, A.; Marchesini, G.; Marra, F.; Miele, L.; Morisco, F.; Petta, S.; Piscaglia, F.; Svegliati-Baroni, G.; Valenti, L.; Bellentani, S. AISF position paper on nonalcoholic fatty liver disease (NAFLD): Updates and future directions. Dig. Liver Dis., 2017, 49(5), 471-483.
[http://dx.doi.org/10.1016/j.dld.2017.01.147]
[2]
Diehl, A.M. Fatty liver, hypertension, and the metabolic syndrome. Gut, 2004, 53(7), 923-924.
[http://dx.doi.org/10.1136/gut.2003.037309] [PMID: 15194635]
[3]
Sung, K.C.; Kim, S.H. Interrelationship between fatty liver and insulin resistance in the development of type 2 diabetes. J. Clin. Endocrinol. Metab., 2011, 96(4), 1093-1097.
[http://dx.doi.org/10.1210/jc.2010-2190] [PMID: 21252243]
[4]
Liu, H.; Lu, H.Y. Nonalcoholic fatty liver disease and cardiovascular disease. World J. Gastroenterol., 2014, 20(26), 8407-8415.
[http://dx.doi.org/10.3748/wjg.v20.i26.8407] [PMID: 25024598]
[5]
Xu, L.; Ma, H.; Miao, M.; Li, Y. Impact of subclinical hypothyroidism on the development of nonalcoholic fatty liver disease: A prospective case-control study. J. Hepatol., 2012, 57(5), 1153-1154.
[http://dx.doi.org/10.1016/j.jhep.2012.05.025] [PMID: 22940010]
[6]
Ding, W.J.; Wang, M.M.; Wang, G.S.; Shen, F.; Qin, J.J.; Fan, J.G. Thyroid function is associated with non-alcoholic fatty liver disease in chronic hepatitis B-infected subjects. J. Gastroenterol. Hepatol., 2015, 30(12), 1753-1758.
[http://dx.doi.org/10.1111/jgh.12998] [PMID: 25974331]
[7]
Mullur, R.; Liu, Y.Y.; Brent, G.A. Thyroid hormone regulation of metabolism. Physiol. Rev., 2014, 94(2), 355-382.
[http://dx.doi.org/10.1152/physrev.00030.2013] [PMID: 24692351]
[8]
Fernando, D.H.; Forbes, J.M.; Angus, P.W.; Herath, C.B. Development and progression of non-alcoholic fatty liver disease: The role of advanced glycation end products. Int. J. Mol. Sci., 2019, 20(20), 5037.
[http://dx.doi.org/10.3390/ijms20205037] [PMID: 31614491]
[9]
Sinha, R.A.; Singh, B.K.; Yen, P.M. Direct effects of thyroid hormones on hepatic lipid metabolism. Nat. Rev. Endocrinol., 2018, 14(5), 259-269.
[http://dx.doi.org/10.1038/nrendo.2018.10] [PMID: 29472712]
[10]
Treating Hypothyroidism. Available from: https://www.webmd.com/women/guide/low-thyroid-treatment [Accessed on 21.07.2022]
[11]
Liu, L.; Yu, Y.; Zhao, M.; Zheng, D.; Zhang, X.; Guan, Q.; Xu, C.; Gao, L.; Zhao, J.; Zhang, H. Benefits of levothyroxine replacement therapy on nonalcoholic fatty liver disease in subclinical hypothyroidism patients. Int. J. Endocrinol., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/5753039] [PMID: 28473851]
[12]
Wu, B.; Xie, C. Liver injury induced by levothyroxine tablets in a patient with hypothyroidism. Chin. Med. J., 2019, 132(16), 2015-2016.
[http://dx.doi.org/10.1097/CM9.0000000000000340] [PMID: 31335470]
[13]
Arrese, M. Burning hepatic fat: Therapeutic potential for liver-specific thyromimetics in the treatment of nonalcoholic fatty liver disease. Hepatol, 2009, 49, 348-351.
[http://dx.doi.org/10.1002/hep.22783]
[14]
Zhao, M.; Liu, L.; Wang, F.; Yuan, Z.; Zhang, X.; Xu, C.; Song, Y.; Guan, Q.; Gao, L.; Shan, Z.; Zhang, H.; Zhao, J. A worthy finding: Decrease in total cholesterol and low-density lipoprotein cholesterol in treated mild subclinical hypothyroidism. Thyroid, 2016, 26(8), 1019-1029.
[http://dx.doi.org/10.1089/thy.2016.0010] [PMID: 27270263]
[15]
Caron, P.; Grunenwald, S.; Persani, L.; Borson-Chazot, F.; Leroy, R.; Duntas, L. Factors influencing the levothyroxine dose in the hormone replacement therapy of primary hypothyroidism in adults. Rev. Endocr. Metab. Disord., 2022, 23(3), 463-483.
[http://dx.doi.org/10.1007/s11154-021-09691-9] [PMID: 34671932]
[17]
Kim, M.I. Hypothyroidism in older adults. In: Endotext; Feingold, KR; Anawalt, B.; Boyce, A., Eds.; South Dartmouth (MA): MDText.com, Inc. 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279005
[19]
Standford Children. Org. Available from: https://www.stanfordchildrens.org/en/topic/default?id=hypothyroidism-in-children-90-P01963 [Accessed on 23.07.2022].
[20]
University of Rochester Medical Center. Health Encyclopedia., Available from: https://www.urmc.rochester.edu/encyclopedia/content.aspx?cont enttypeid=160&contentid=4 [Accessed on 23.07.2022].
[21]
Cleveland Clinic. Thyroid Hormony, Available from: https://my.clevelandclinic.org/health/articles/22391-thyroid-hormone [Accessed on 23.07.2022].
[22]
Ritter, M.J.; Amano, I.; Hollenberg, A.N. Thyroid hormone signaling and the liver. Hepatology, 2020, 72(2), 742-752.
[http://dx.doi.org/10.1002/hep.31296] [PMID: 32343421]
[24]
Paschos, P.; Paletas, K. Non alcoholic fatty liver disease and metabolic syndrome. Hippokratia, 2009, 13(1), 9-19.
[PMID: 19240815]
[25]
Asrih, M.; Jornayvaz, F.R. Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link? Mol. Cell. Endocrinol., 2015, 418(Pt 1), 55-65.
[http://dx.doi.org/10.1016/j.mce.2015.02.018] [PMID: 25724480]
[26]
Janovsky, C.C.P.S.; Cesena, F.H.; Valente, V.A.T.; Conceição, R.D.O.; Santos, R.D.; Bittencourt, M.S. Association between thyroid-stimulating hormone levels and non-alcoholic fatty liver disease is not independent from metabolic syndrome criteria. Eur. Thyroid J., 2018, 7(6), 302-307.
[http://dx.doi.org/10.1159/000492324] [PMID: 30574460]
[27]
Wen, G.; Eder, K.; Ringseis, R. Sterol regulatory element-binding proteins are transcriptional regulators of the thyroglobulin gene in thyroid cells. Biochim. Biophys. Acta. Gene Regul. Mech., 2016, 1859(8), 994-1003.
[http://dx.doi.org/10.1016/j.bbagrm.2016.06.004] [PMID: 27321819]
[28]
Rizos, C.V.; Elisaf, M.S.; Liberopoulos, E.N. Effects of thyroid dysfunction on lipid profile. Open Cardiovasc. Med. J., 2011, 5(1), 76-84.
[http://dx.doi.org/10.2174/1874192401105010076] [PMID: 21660244]
[29]
Zhang, X.; Song, Y.; Feng, M.; Zhou, X.; Lu, Y.; Gao, L.; Yu, C.; Jiang, X.; Zhao, J. Thyroid-stimulating hormone decreases HMG-CoA reductase phosphorylation via AMP-activated protein kinase in the liver. J. Lipid Res., 2015, 56(5), 963-971.
[http://dx.doi.org/10.1194/jlr.M047654] [PMID: 25713102]
[30]
El Amrousy, D.; El-Afify, D.; Salah, S. Insulin resistance, leptin and adiponectin in lean and hypothyroid children and adolescents with obesity. BMC Pediatr., 2022, 22(1), 245.
[http://dx.doi.org/10.1186/s12887-022-03318-x] [PMID: 35501770]
[31]
Ríos-Prego, M.; Anibarro, L.; Sánchez-Sobrino, P. Relationship between thyroid dysfunction and body weight: A not so evident paradigm. Int. J. Gen. Med., 2019, 12, 299-304.
[http://dx.doi.org/10.2147/IJGM.S206983] [PMID: 31692525]
[32]
Bandyopadhyay, D.; Ghosh, D.; Chattopadhyay, A. Lead induced oxidative stress mediated myocardial injury: A review. Int. J. Pharm. Sci. Rev. Res., 2014, 29(2), 67-71.
[33]
Delli Bovi, A.P.; Marciano, F.; Mandato, C.; Siano, M.A.; Savoia, M.; Vajro, P. Oxidative stress in non-alcoholic fatty liver disease. an updated mini review. Front. Med., 2021, 8, 595371.
[http://dx.doi.org/10.3389/fmed.2021.595371] [PMID: 33718398]
[34]
Masarone, M.; Rosato, V.; Dallio, M.; Gravina, A.G.; Aglitti, A.; Loguercio, C.; Federico, A.; Persico, M. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid. Med. Cell. Longev., 2018, 2018, 1-14.
[http://dx.doi.org/10.1155/2018/9547613] [PMID: 29991976]
[35]
Kumar, R.; Prakash, S.; Chhabra, S.; Singla, V.; Madan, K.; Gupta, S.D.; Panda, S.K.; Khanal, S.; Acharya, S.K. Association of pro-inflammatory cytokines, adipokines & oxidative stress with insulin resistance & non-alcoholic fatty liver disease. Indian J. Med. Res., 2012, 136(2), 229-236.
[PMID: 22960889]
[36]
Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Abbate, M.; Montemayor, S.; Mascaró, C.M.; Casares, M.; Tejada, S.; Abete, I.; Zulet, M.A.; Tur, J.A.; Martínez, J.A.; Sureda, A. Oxidative stress and pro-inflammatory status in patients with non-alcoholic fatty liver disease. Antioxidants, 2020, 9(8), 759.
[http://dx.doi.org/10.3390/antiox9080759] [PMID: 32824349]
[37]
Bahtiyar, N.; Yoldaş, A.; Aydemir, B.; Toplan, S. Influence of hyperthyroidism on hepatic antioxidants and cytokines Levels: An experimental study. Med. Sci. Disc., 2020, 7(3), 439-444.
[http://dx.doi.org/10.36472/msd.v7i3.362]
[38]
Zhang, Y.N.; Fowler, K.J.; Hamilton, G.; Cui, J.Y.; Sy, E.Z.; Balanay, M.; Hooker, J.C.; Szeverenyi, N.; Sirlin, C.B. Liver fat imaging—a clinical overview of ultrasound, CT, and MR imaging. Br. J. Radiol., 2018, 91(1089), 20170959.
[http://dx.doi.org/10.1259/bjr.20170959] [PMID: 29722568]
[39]
Do not worry when ultrasound result is fatty liver. Available from: https://www.victoriavn.com/en/healthlibrary/do-not-worry-when-ultrasound-result-is-fattyliver
[40]
Piantanida, E.; Ippolito, S.; Gallo, D.; Masiello, E.; Premoli, P.; Cusini, C.; Rosetti, S.; Sabatino, J.; Segato, S.; Trimarchi, F.; Bartalena, L.; Tanda, M.L. The interplay between thyroid and liver: implications for clinical practice. J. Endocrinol. Invest., 2020, 43(7), 885-899.
[http://dx.doi.org/10.1007/s40618-020-01208-6] [PMID: 32166702]
[41]
Ferri, C.; Colaci, M.; Fallahi, P.; Ferrari, S.M.; Antonelli, A.; Giuggioli, D. Thyroid involvement in hepatitis c virus-infected patients with/without mixed cryoglobulinemia. Front. Endocrinol., 2017, 7(8), 159.
[http://dx.doi.org/10.3389/fendo.2017.00159]
[42]
Rosenthal, E.; Cacoub, P. Extrahepatic manifestations in chronic hepatitis C virus carriers. Lupus, 2015, 24(4-5), 469-482.
[http://dx.doi.org/10.1177/0961203314556140] [PMID: 25801890]
[43]
Cordeiro, A.; Souza, L.L.; Einicker-Lamas, M.; Pazos-Moura, C.C. Non-classic thyroid hormone signalling involved in hepatic lipid metabolism. J. Endocrinol., 2013, 216(3), R47-R57.
[http://dx.doi.org/10.1530/JOE-12-0542] [PMID: 23297113]
[44]
Maia, A.L.; Goemann, I.M.; Meyer, E.L.S.; Wajner, S.M. Type 1 iodothyronine deiodinase in human physiology and disease. J. Endocrinol., 2011, 209(3), 283-297.
[http://dx.doi.org/10.1530/JOE-10-0481] [PMID: 21415143]
[45]
Bruinstroop, E.; Dalan, R.; Cao, Y.; Bee, Y.M.; Chandran, K.; Cho, L.W.; Soh, S.B.; Teo, E.K.; Toh, S.A.; Leow, M.K.S.; Sinha, R.A.; Sadananthan, S.A.; Michael, N.; Stapleton, H.M.; Leung, C.; Angus, P.W.; Patel, S.K.; Burrell, L.M.; Lim, S.C.; Sum, C.F.; Velan, S.S.; Yen, P.M. Low-dose levothyroxine reduces intrahepatic lipid content in patients with type 2 diabetes mellitus and NAFLD. J. Clin. Endocrinol. Metab., 2018, 103(7), 2698-2706.
[http://dx.doi.org/10.1210/jc.2018-00475] [PMID: 29718334]
[46]
Sayre, N.L.; Lechleiter, J.D. Fatty acid metabolism and thyroid hormones. Curr. Trends Endocrinol., 2012, 6, 65-76.
[PMID: 24436572]
[47]
Mashek, D.G. Hepatic fatty acid trafficking: Multiple forks in the road. Adv. Nutr., 2013, 4(6), 697-710.
[http://dx.doi.org/10.3945/an.113.004648] [PMID: 24228201]
[48]
Damiano, F.; Rochira, A.; Gnoni, A.; Siculella, L. Action of thyroid hormones, t3 and t2, on hepatic fatty acids: differences in metabolic effects and molecular mechanisms. Int. J. Mol. Sci., 2017, 18(4), 744.
[http://dx.doi.org/10.3390/ijms18040744]
[49]
Webb, P. Thyroid hormone receptor and lipid regulation. Curr. Opin. Investig. Drugs, 2010, 11(10), 1135-1142.
[PMID: 20872316]
[50]
Sinha, R.A.; Bruinstroop, E.; Singh, B.K.; Yen, P.M. Nonalcoholic fatty liver disease and hypercholesterolemia: Roles of thyroid hormones, metabolites, and agonists. Thyroid, 2019, 29(9), 1173-1191.
[http://dx.doi.org/10.1089/thy.2018.0664] [PMID: 31389309]
[51]
Yao, X.; Hou, S.; Zhang, D.; Xia, H.; Wang, Y.C.; Jiang, J.; Yin, H.; Ying, H. Regulation of fatty acid composition and lipid storage by thyroid hormone in mouse liver. Cell Biosci., 2014, 4(1), 38.
[http://dx.doi.org/10.1186/2045-3701-4-38] [PMID: 25105012]
[52]
Freake, H.C.; Schwartz, H.L.; Oppenheimer, J.H. The regulation of lipogenesis by thyroid hormone and its contribution to thermogenesis. Endocrinology, 1989, 125(6), 2868-2874.
[http://dx.doi.org/10.1210/endo-125-6-2868] [PMID: 2583043]
[53]
SCD stearoyl-CoA desaturase [ Homo sapiens (human)].. Available from: https://www.ncbi.nlm.nih.gov/gene/6319
[54]
Duntas, L.H.; Brenta, G. A renewed focus on the association between thyroid hormones and lipid metabolism. Front. Endocrinol., 2018, 9, 511.
[http://dx.doi.org/10.3389/fendo.2018.00511] [PMID: 30233497]
[55]
Goldberg, I.J.; Huang, L.S.; Huggins, L.A.; Yu, S.; Nagareddy, P.R.; Scanlan, T.S.; Ehrenkranz, J.R. Thyroid hormone reduces cholesterol via a non-LDL receptor-mediated pathway. Endocrinology, 2012, 153(11), 5143-5149.
[http://dx.doi.org/10.1210/en.2012-1572] [PMID: 22948212]
[56]
Jakobsson, T.; Vedin, L.L.; Parini, P. Potential role of thyroid receptor β agonists in the treatment of hyperlipidemia. Drugs, 2017, 77(15), 1613-1621.
[http://dx.doi.org/10.1007/s40265-017-0791-4] [PMID: 28865063]
[57]
Davidson, N.O.; Powell, L.M.; Wallis, S.C.; Scott, J. Thyroid hormone modulates the introduction of a stop codon in rat liver apolipoprotein B messenger RNA. J. Biol. Chem., 1988, 263(27), 13482-13485.
[http://dx.doi.org/10.1016/S0021-9258(18)68263-8] [PMID: 3417667]
[58]
Babenko, N.A. Long- and short-term effects of thyroxine on sphingolipid metabolism in rat liver. Med. Sci. Monit., 2005, 11(5), BR131-BR138.
[PMID: 15874883]
[59]
Iannucci, L.F.; Cioffi, F.; Senese, R.; Goglia, F.; Lanni, A.; Yen, P.M.; Sinha, R.A. Metabolomic analysis shows differential hepatic effects of T2 and T3 in rats after short-term feeding with high fat diet. Sci. Rep., 2017, 7(1), 2023.
[http://dx.doi.org/10.1038/s41598-017-02205-1] [PMID: 28515456]
[60]
Bucki, R.; Górska, M.; Zendzian-Piotrowska, M.; Górski, J. Effect of triiodothyronine on the content of phospholipids in the rat liver nuclei. J. Physiol. Pharmacol., 2000, 51(3), 535-540.
[PMID: 11016872]
[61]
Kihara, S.; Wölle, J.; Ehnholm, C.; Chan, L.; Oka, K. Regulation of hepatic triglyceride lipase by thyroid hormone in HepG2 cells. J. Lipid Res., 1993, 34(6), 961-970.
[http://dx.doi.org/10.1016/S0022-2275(20)39682-6] [PMID: 8354961]
[62]
Brenta, G.; Berg, G.; Miksztowicz, V.; Lopez, G.; Lucero, D.; Faingold, C.; Murakami, M.; Machima, T.; Nakajima, K.; Schreier, L. Atherogenic lipoproteins in subclinical hypothyroidism and their relationship with hepatic lipase activity: Response to replacement treatment with levothyroxine. Thyroid, 2016, 26(3), 365-372.
[http://dx.doi.org/10.1089/thy.2015.0140] [PMID: 26839156]
[63]
Simó, R.; Hernández, C.; Sáez-López, C.; Soldevila, B.; Puig-Domingo, M.; Selva, D.M. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue. PLoS One, 2014, 9(1), e85753.
[http://dx.doi.org/10.1371/journal.pone.0085753] [PMID: 24465683]
[64]
Wei, X.; Liu, X.; Tan, C.; Mo, L.; Wang, H.; Peng, X.; Deng, F.; Chen, L. Expression and function of zinc-α2-glycoprotein. Neurosci. Bull., 2019, 35(3), 540-550.
[http://dx.doi.org/10.1007/s12264-018-00332-x] [PMID: 30610461]
[65]
Tan, M.; Korkmaz, H.; Aydin, H.; Kumbul Doğuç, D. FABP4 levels in hypothyroidism and its relationship with subclinical atherosclerosis. Turk. J. Med. Sci., 2019, 49(5), 1490-1497.
[http://dx.doi.org/10.3906/sag-1904-41] [PMID: 31651119]
[66]
Anderson, C.M.; Stahl, A. SLC27 fatty acid transport proteins. Mol. Aspects Med., 2013, 34(2-3), 516-528.
[http://dx.doi.org/10.1016/j.mam.2012.07.010] [PMID: 23506886]
[67]
McIntosh, A.L.; Atshaves, B.P.; Martin, G.G.; Landrock, D.; Milligan, S.; Landrock, K.K.; Huang, H.; Storey, S.M.; Mackie, J.; Schroeder, F.; Kier, A.B. Effect of liver fatty acid binding protein (L-FABP) gene ablation on lipid metabolism in high glucose diet (HGD) pair-fed mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2019, 1864(7), 985-1004.
[http://dx.doi.org/10.1016/j.bbalip.2019.03.009] [PMID: 30910689]
[68]
Atshaves, B.P.; Martin, G.G.; Hostetler, H.A.; McIntosh, A.L.; Kier, A.B.; Schroeder, F. Liver fatty acid-binding protein and obesity. J. Nutr. Biochem., 2010, 21(11), 1015-1032.
[http://dx.doi.org/10.1016/j.jnutbio.2010.01.005] [PMID: 20537520]
[69]
Fisher, E.; Lake, E.; McLeod, R.S. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. J. Biomed. Res., 2014, 28(3), 178-193.
[http://dx.doi.org/10.7555/JBR.28.20140019] [PMID: 25013401]
[70]
LIPC lipase C, hepatic type Available from:https://www.ncbi.nlm.nih.gov/gtr/genes/3990/LIPC lipase C, hepatic type - NIH Genetic Testing Registry (GTR) – NCBI https://www.ncbi.nlm.nih.gov
[71]
Valdemarsson, S.; Hansson, P.; Hedner, P.; Nilsson-Ehle, P. Relations between thyroid function, hepatic and lipoprotein lipase activities, and plasma lipoprotein concentrations. Acta Endocrinol, 1983, 104(1), 50-56.
[http://dx.doi.org/10.1530/acta.0.1040050]
[72]
Berti, J.A.; Amaral, M.E.C.; Boschero, A.C.; Nunes, V.S.; Harada, L.M.; Castilho, L.N.; Oliveira, H.C.F. Thyroid hormone increases plasma cholesteryl ester transfer protein activity and plasma high-density lipoprotein removal rate in transgenic mice. Metabolism, 2001, 50(5), 530-536.
[http://dx.doi.org/10.1053/meta.2001.22514] [PMID: 11319713]
[73]
Chirala, S.S.; Jayakumar, A.; Gu, Z.W.; Wakil, S.J. Human fatty acid synthase: Role of interdomain in the formation of catalytically active synthase dimer. Proc. Natl. Acad. Sci. USA, 2001, 98(6), 3104-3108.
[http://dx.doi.org/10.1073/pnas.051635998] [PMID: 11248039]
[74]
Huang, C.; Freake, H.C. Thyroid hormone regulates the acetyl-CoA carboxylase PI promoter. Biochem. Biophys. Res. Commun., 1998, 249(3), 704-708.
[http://dx.doi.org/10.1006/bbrc.1998.9217] [PMID: 9731201]
[75]
Strait, K.A.; Kinlaw, W.B.; Mariash, C.N.; Oppenheimer, J.H. Kinetics of induction by thyroid hormone of the two hepatic mRNAs coding for cytosolic malic enzyme in the hypothyroid and euthyroid states. J. Biol. Chem., 1989, 264(33), 19784-19789.
[http://dx.doi.org/10.1016/S0021-9258(19)47181-0] [PMID: 2584194]
[76]
Kuemmerle, N.B.; Kinlaw, W.B. THRSP (thyroid hormone responsive). Atlas Genet. Cytogenet. Oncol. Haematol., 2011, 15(6), 480-482.
[PMID: 24174994]
[77]
Moriles, K.E. Aze,r S.A. alanine amino transferase.StatPearls; StatPearls Publishing: Treasure Island, FL, , 2022. Internet
[78]
Olichwier, A.; Balatskyi, V.V.; Wolosiewicz, M.; Ntambi, J.M.; Dobrzyn, P. Interplay between thyroid hormones and stearoyl-coa desaturase 1 in the regulation of lipid metabolism in the heart. Int. J. Mol. Sci., 2020, 22(1), 109.
[http://dx.doi.org/10.3390/ijms22010109] [PMID: 33374300]
[79]
Hlaihel, A.F.; Al-Khairalla, M.Z.H. Levothyroxine-induced liver injury followed by complete recovery upon cessation of the drug: a case report. J. Med. Case Reports, 2019, 13(1), 311.
[http://dx.doi.org/10.1186/s13256-019-2244-z] [PMID: 31623668]
[80]
Medline Plus Levothyroxine. Available from: https://medlineplus.gov/druginfo/meds/a682461.html [Accessed on 07.08.2022]
[81]
CDC 24/7. Pharmacogenomics: What does it mean for your health?. Available from: https://www.cdc.gov/genomics/disease/pharma.htm#:~:text=Pharmacogenomics% 20is%20an%20important%20example,way%20you%20respond%20to%20drugs[Accessed on 07.08.2022]
[82]
Pacifico, L.; Osborn, J.; Bonci, E.; Pierimarchi, P.; Chiesa, C. Association between vitamin d levels and nonalcoholic fatty liver disease: Potential confounding variables. Mini Rev. Med. Chem., 2019, 19(4), 310-332.
[http://dx.doi.org/10.2174/1389557518666181025153712] [PMID: 30360708]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy