Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

BAAE-AgNPs Improve Symptoms of Diabetes in STZ-induced Diabetic Rats

Author(s): Yasser Omar Mosaad, Mohammed Abdalla Hussein*, Hayam Ateyya, Soha Ahmed Hassan, Michael Wink, Naglaa Abd El Khalik Gobba and Zahraa Nassar Mohamed

Volume 24, Issue 14, 2023

Published on: 28 April, 2023

Page: [1812 - 1826] Pages: 15

DOI: 10.2174/1389201024666230313105049

Price: $65

Abstract

Objectives: Nanoparticles can be employed to improve the therapeutic activity of natural products. Type 2 diabetes mellitus is a serious health condition that has spread like a "modern pandemic" worldwide. In the present study, we developed silver nanoparticles, Ag-NPs, with an aqueous extract from Balanites aegyptiaca to investigate their antioxidant and anti-inflammatory activity in STZ-induced diabetic rats.

Methods: Aqueous extracts of Balanites aegyptiaca seeds (BAAE) were used in the synthesis of BAAE-AgNPs, which were characterized using FTIR and TEM. Different doses of BAAE-AgNP (1/50 LD50; 29.4 mg/kg b.w. and 1/20 LD50: 73.5 mg/kg b.w.) were administered to STZ-induced diabetic rats to evaluate their potential antidiabetic activity.

Results: FTIR spectral data indicated the presence of flavonoids and polyphenols in BAAEAgNPs. The size of the BAAE-AgNPs, determined by TEM examination, was 49.33 ± 7.59 nm, with a zeta potential of +25.37. BAAE-AgNPs were characterized by an LD50 value of 1470 mg/kg b.w. In diabetic rats, the daily oral administration of both doses of BAAE-AgNPs (29.4 and 73.5 mg/kg b.w.) for 12 weeks resulted in a significant improvement in body weight, insulin homeostasis, HbA1c, HDL-C, MDA, and pancreatic SOD, CAT, and GSH. They reduced plasma glucose, cholesterol, and triglycerides. This treatment also resulted in a significant decrease in pancreatic IL-6, p53, and TNF-α in diabetic rats. Furthermore, BAAE-AgNPs down-regulated pancreatic TGF-β1 and Akt gene expression in diabetic rats and resulted in a significant decrease in the regulation of hepatic GLUT-2, as well as an increase in the regulation of hepatic GK and pancreatic B-cl2 gene expression. The histopathological results obtained indicated that BAAEAgNPs improved pancreatic tissue metabolism by enhancing antioxidant enzymes, suppressing inflammatory cytokines, and scavenging free radicals.

Conclusion: The findings implied that similar to the glibenclamide-treated groups, in the BAAEAgNPs treated group, the compromised antioxidant status normalized in STZ-induced diabetes. By scavenging free radicals, BAAE-Ag-NPs protected against lipid peroxidation while reducing the risk of complications from diabetes. Compared to the daily dose of 29.4 mg, the impact was more prominent at 73.5 mg.

Graphical Abstract

[1]
Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract., 2011, 94(3), 311-321.
[http://dx.doi.org/10.1016/j.diabres.2011.10.029] [PMID: 22079683]
[2]
Shoback, D.G.; Gardner, D. Greenspan’s basic & clinical endocrinology, 9th ed; McGraw-Hill Medical: New York, 2011.
[3]
IDF Diabetes Atlas. Ninth Edition 2019. Available on: https://www.diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf (Accessed on: 18 May 2020).
[4]
WHO Diabetes mellitus. WHO. 2004. Available on: https://web.archive.org/web/20040611164055/http://www.who.int/mediacentre/factsheets/fs138/en/ (Accessed on 2019-03-23).
[5]
Verrotti, A.; Scaparrotta, A.; Olivieri, C.; Chiarelli, F. Mechanisms in endocrinology: Seizures and type 1 diabetes mellitus: Current state of knowledge. Eur. J. Endocrinol., 2012, 167(6), 749-758.
[http://dx.doi.org/10.1530/EJE-12-0699] [PMID: 22956556]
[6]
Sarwar, N.; Gao, P.; Seshasai, S.R.; Gobin, R.; Kaptoge, S.; Di Angelantonio, E.; Ingelsson, E.; Lawlor, D.A.; Selvin, E.; Stampfer, M.; Stehouwer, C.D.; Lewington, S.; Pennells, L.; Thompson, A.; Sattar, N.; White, I.R.; Ray, K.K.; Danesh, J. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet, 2010, 375(9733), 2215-2222.
[http://dx.doi.org/10.1016/S0140-6736(10)60484-9] [PMID: 20609967]
[7]
Papatheodorou, K.; Banach, M.; Bekiari, E.; Rizzo, M.; Edmonds, M. Complications of diabetes 2017. J. Diabetes Res., 2018, 2018, 1-4.
[http://dx.doi.org/10.1155/2018/3086167] [PMID: 29713648]
[8]
Lin, X.; Xu, Y.; Pan, X.; Xu, J.; Ding, Y.; Sun, X.; Song, X.; Ren, Y.; Shan, P.F. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Sci. Rep., 2020, 10(1), 14790.
[http://dx.doi.org/10.1038/s41598-020-71908-9] [PMID: 32901098]
[9]
Agrawal, N.; Maiti, R.; Dash, D.; Pandey, B. Cilostazol reduces inflammatory burden and oxidative stress in hypertensive type 2 diabetes mellitus patients. Pharmacol. Res., 2007, 56(2), 118-123.
[http://dx.doi.org/10.1016/j.phrs.2007.04.007] [PMID: 17548203]
[10]
Saravanan, G.; Pari, L. Hypoglycaemic and antihyperglycaemic effect of Syzygium cumini bark in streptozotocin-induced diabetic rats. J Pharmacol Toxicol, 2008, 3, 1-10.
[http://dx.doi.org/10.3923/jpt.2008.1.10]
[11]
Abdel Maksoud, H.A.; Elharrif, M.G.; Mahfouz, M.K.; Omnia, M.A.; Abdullah, M.H.; Eltabey, M. Biochemical study on occupational inhalation of benzene vapours in petrol station. Respir. Med. Case Rep., 2019, 27, 100836.
[http://dx.doi.org/10.1016/j.rmcr.2019.100836]
[12]
Kumar, R.; Pate, D.K.; Prasad, S.K.; Sairam, K.; Hemalatha, S. Antidiabetic activity of alcoholic leaves extract of Alangium lamarckii Thwaites on streptozotocin–nicotinamide induced type 2 diabetic rats. Asian Pac. J. Trop. Med., 2011, 4(11), 904-909.
[http://dx.doi.org/10.1016/S1995-7645(11)60216-2] [PMID: 22078954]
[13]
Farid, H.; Haslinger, E.; Kunert, O.; Wegner, C.; Hamburger, M. New steroidal glycosides from Balanites aegyptiaca. Helv. Chim. Acta, 2002, 85(4), 1019-1026.
[http://dx.doi.org/10.1002/1522-2675(200204)85:4<1019:AID-HLCA1019>3.0.CO;2-S]
[14]
Gad, M.Z.; El-Sawalhi, M.M.; Ismail, M.F.; El-Tanbouly, N.D. Biochemical study of the anti-diabetic action of the Egyptian plants Fenugreek and Balanites. Mol. Cell. Biochem., 2006, 281(1-2), 173-183.
[http://dx.doi.org/10.1007/s11010-006-0996-4] [PMID: 16328970]
[15]
Abdel Motaal, A.; El-Askary, H.; Crockett, S.; Kunert, O.; Sakr, B.; Shaker, S.; Grigore, A.; Albulescu, R.; Bauer, R. Aldose reductase inhibition of a saponin-rich fraction and new furostanol saponin derivatives from Balanites aegyptiaca. Phytomedicine, 2015, 22(9), 829-836.
[http://dx.doi.org/10.1016/j.phymed.2015.05.059] [PMID: 26220630]
[16]
Meda, R.N.T.; Vlase, L.; Lamien-Meda, A.; Lamien, C.E.; Muntean, D.; Tiperciuc, B.; Oniga, I.; Nacoulma, O.G. Identification and quantification of phenolic compounds from Balanites aegyptiaca (L) Del (Balanitaceae) galls and leaves by HPLC–MS. Nat. Prod. Res., 2011, 25(2), 93-99.
[http://dx.doi.org/10.1080/14786419.2010.482933] [PMID: 21246435]
[17]
Yoshinari, O.; Takenake, A.; Igarashi, K. Trigonelline ameliorates oxidative stress in type 2 diabetic Goto-Kakizaki rats. J. Med. Food, 2013, 16(1), 34-41.
[http://dx.doi.org/10.1089/jmf.2012.2311] [PMID: 23256445]
[18]
Sengottaiyan, A.; Aravinthan, A.; Sudhakar, C.; Selvam, K.; Srinivasan, P.; Govarthanan, M.; Manoharan, K.; Selvankumar, T. Synthesis and characterization of Solanum nigrum-mediated silver nanoparticles and its protective effect on alloxan-induced diabetic rats. J. Nanostructure Chem., 2016, 6(1), 41-48.
[http://dx.doi.org/10.1007/s40097-015-0178-6]
[19]
Hussein, M.A. Synthesis of some novel triazoloquinazolines and triazinoquinazolines and their evaluation for anti-inflammatory activity. Med. Chem. Res., 2012, 21(8), 1876-1886.
[http://dx.doi.org/10.1007/s00044-011-9707-0]
[20]
Martínez-Esquivias, F.; Guzmán-Flores, J.M.; Pérez-Larios, A.; Rico, J.L.; Becerra-Ruiz, J.S. A review of the efects of gold, silver, selenium, and zinc nanoparticles on diabetes mellitus in murine models. Mini Rev. Med. Chem., 2021, 21(14), 1798-1812.
[http://dx.doi.org/10.2174/18755607MTEziOTEv4] [PMID: 33535949]
[21]
Soliman, S.M.; Mosallam, S.; Mamdouh, M.A.; Hussein, M.A.; Abd El-Halim, S.M. Design and optimization of cranberry extract loaded bile salt augmented liposomes for targeting of MCP-1/STAT3/VEGF signaling pathway in DMN-intoxicated liver in rats. Drug Deliv., 2022, 29(1), 427-439.
[http://dx.doi.org/10.1080/10717544.2022.2032875]
[22]
Tang, K.S. The current and future perspectives of zinc oxide nanoparticles in the treatment of diabetes mellitus. Life Sci., 2019, 239, 117011.
[http://dx.doi.org/10.1016/j.lfs.2019.117011] [PMID: 31669241]
[23]
Liu, Y.C.; Lin, L.H. New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochem. Commun., 2004, 6(11), 1163-1168.
[http://dx.doi.org/10.1016/j.elecom.2004.09.010]
[24]
Bae, C.H.; Nam, S.H.; Park, S.M. Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution. Appl. Surf. Sci., 2002, 197-198, 628-634.
[http://dx.doi.org/10.1016/S0169-4332(02)00430-0]
[25]
Basavaraja, S.; Balaji, S.D.; Lagashetty, A.; Rajasab, A.H.; Venkataraman, A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bull., 2008, 43(5), 1164-1170.
[http://dx.doi.org/10.1016/j.materresbull.2007.06.020]
[26]
Jha, A.K.; Prasad, K. Green synthesis of silver nanoparticles using Cycas leaf. Int. J. Green Nanotechnol., 2010, 1(2), 110-P117.
[27]
Virgen-Ortiz, A.; Limon-Miranda, S.; Soto-Covarrubias, M.; Apolinar-Iribe, A.; Rodriguez-Leon, E.; Iniguez-Palomares, R. Biocompatible silver nanoparticles synthesized using Rumex hymenosepalus extract decreases fasting glucose levels in diabetic rats. Dig. J. Nanomater. Biostruct., 2015, 10(3), 927-933.
[28]
Ge, L.; Li, Q.; Wang, M.; Ouyang, J.; Li, X.; Xing, M.M. Nanosilver particles in medical applications: Synthesis, performance, and toxicity. Int. J. Nanomedicine, 2014, 9, 2399-2407.
[PMID: 24876773]
[29]
Mirza, A.Z.; Siddiqui, F.A. Nanomedicine and drug delivery: A mini review. Int. Nano Lett., 2014, 4(1), 94.
[http://dx.doi.org/10.1007/s40089-014-0094-7]
[30]
Hussein, M.A.; Ismail, N.E.M.; Mohamed, A.H.; Borik, R.M.; Ali, A.A.; Mosaad, Y.O. Plasma phospholipids: A promising simple biochemical parameter to evaluate COVID-19 infection severity. Bioinform. Biol. Insights, 2021, 15, 11779322211055891.
[http://dx.doi.org/10.1177/11779322211055891]
[31]
Ghorab, M.; Ismail, Z.; Abdala, M. Synthesis and biological activities of some novel triazoloquinazolines and triazinoquinazolines containing benzenesulfonamide moieties. Arzneimittelforschung, 2011, 60(2), 87-95.
[http://dx.doi.org/10.1055/s-0031-1296254] [PMID: 20329657]
[32]
Boshra, S.A.; Hussein, M.A. Cranberry extract as a supplemented food in treatment of oxidative stress and breast cancer induced by N-Methyl-N-Nitrosourea in female virgin rats. Int. J. Phytomed., 2016, 8, 217-227.
[33]
Abal, P.; Louzao, M.; Antelo, A.; Alvarez, M.; Cagide, E.; Vilariño, N.; Vieytes, M.; Botana, L. Acute oral toxicity of tetrodotoxin in mice: Determination of lethal dose 50 (LD50) and no observed adverse effect level (NOAEL). Toxins, 2017, 9(3), 75.
[http://dx.doi.org/10.3390/toxins9030075] [PMID: 28245573]
[34]
Hussein, M.A. Antidiabetic and antioxidant activity of Jasonia Montana extract in streptozotocin-induced diabetic rats. Saudi Pharm. J., 2008, 16(3), 214-221.
[35]
Abdelaziz, S.M.; Lemine, F.M.M.; Tfeil, H.O.; Filali-Maltouf, A.; Boukhary, A.O.M.S. Phytochemicals, antioxidant activity and ethnobotanical uses of Balanites aegyptiaca (L.) Del. Fruits from the Arid Zone of Mauritania, Northwest Africa. Plants, 2020, 9(3), 401.
[http://dx.doi.org/10.3390/plants9030401] [PMID: 32213817]
[36]
Feng, D.; Ling, W.H.; Duan, R.D. Lycopene suppresses LPS-induced NO and IL-6 production by inhibiting the activation of ERK, p38MAPK, and NF-κB in macrophages. Inflamm. Res., 2010, 59(2), 115-121.
[http://dx.doi.org/10.1007/s00011-009-0077-8] [PMID: 19693648]
[37]
Bancroft, G.D.; Steven, A. Theory and Practice of Histological Technique, 4th ed; Churchill Livingstone: New York, 1983, pp. 99-112.
[38]
Abubakar, M.S.; Usman, B. Investigation of corrosion inhibition potential of ethanol extract of Balanites aegyptiaca leaves on mild steel in 1 M hydrochloric acid solution. Mor. J. Chem, 2019, 7, 082-097.
[39]
Hassan, D.M.; Anigo, K.M.; Umar, I.A.; Alegbejo, J.O. Evaluation of phytoconstituent of Balanites aegyptiaca (L) Del leaves and fruit-mesocarp extracts. MOJ Bioorg Org Chem, 2017, 1(6), 228-232.
[http://dx.doi.org/10.15406/mojboc.2017.01.00039]
[40]
Chothani, D.; Vaghasiya, H.U. A review on Balanites aegyptiaca Del (desert date): Phytochemical constituents, traditional uses, and pharmacological activity. Pharmacogn. Rev., 2011, 5(9), 55-62.
[http://dx.doi.org/10.4103/0973-7847.79100] [PMID: 22096319]
[41]
Motaal, A.A.; Shaker, S.; Haddad, P.S. Antidiabetic activity of standardized extracts of Balanites aegyptiaca fruits using cell-based bioassays. Pharmacogn. J., 2012, 4(30), 20-24.
[http://dx.doi.org/10.5530/pj.2012.30.4]
[42]
Ajitha, B.; Ashok Kumar Reddy, Y.; Sreedhara Reddy, P. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Mater. Sci. Eng. C, 2015, 49, 373-381.
[http://dx.doi.org/10.1016/j.msec.2015.01.035] [PMID: 25686962]
[43]
Atale, N.; Saxena, S.; Nirmala, J.G.; Narendhirakannan, R.T.; Mohanty, S.; Rani, V. Synthesis and characterization of Sygyzium cumini nanoparticles for its protective potential in high glucose-induced cardiac stress: A green approach. Appl. Biochem. Biotechnol., 2017, 181(3), 1140-1154.
[http://dx.doi.org/10.1007/s12010-016-2274-6] [PMID: 27734287]
[44]
Gasmalla, H.B.; Idris, A.M.; Shinger, M.I.; Qin, D.; Shan, D.; Lu, X. Balanites aegyptiaca oil synthesized iron oxide nanoparticles: Characterization and antibacterial activity. J. Biomater. Nanobiotechnol., 2016, 7(3), 154-165.
[http://dx.doi.org/10.4236/jbnb.2016.73016]
[45]
Zhang, W.; Shi, X.; Huang, J.; Zhang, Y.; Wu, Z.; Xian, Y. Bacitracin-conjugated superparamagnetic iron oxide nanoparticles: Synthesis, characterization and antibacterial activity. ChemPhysChem, 2012, 13(14), 3388-3396.
[http://dx.doi.org/10.1002/cphc.201200161] [PMID: 22753190]
[46]
Strath, L.J.; Sorge, R.E. Racial differences in pain, nutrition, and oxidative stress. Pain Ther., 2022, 11(1), 37-56.
[http://dx.doi.org/10.1007/s40122-022-00359-z] [PMID: 35106711]
[47]
Bahr, P.R. Race and nutrition: An investigation of Black-White differences in health-related nutritional behaviours. Sociol. Health Illn., 2007, 29(6), 831-856.
[http://dx.doi.org/10.1111/j.1467-9566.2007.01049.x] [PMID: 17986018]
[48]
Kaneto, H.; Xu, G.; Song, K.H.; Suzuma, K.; Bonner-Weir, S.; Sharma, A.; Weir, G.C. Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stress. J. Biol. Chem., 2001, 276(33), 31099-31104.
[http://dx.doi.org/10.1074/jbc.M104115200] [PMID: 11390407]
[49]
Haidara, M.; Yassin, H.; Rateb, M.; Ammar, H.; Zorkani, M. Role of oxidative stress in development of cardiovascular complications in diabetes mellitus. Curr. Vasc. Pharmacol., 2006, 4(3), 215-227.
[http://dx.doi.org/10.2174/157016106777698469] [PMID: 16842139]
[50]
Saratale, R.G.; Shin, H.S.; Kumar, G.; Benelli, G.; Kim, D.S.; Saratale, G.D. Exploiting antidiabetic activity of silver nanoparticles synthesized using Punica granatum leaves and anticancer potential against human liver cancer cells (HepG2). Artif. Cells Nanomed. Biotechnol., 2018, 46(1), 211-222.
[http://dx.doi.org/10.1080/21691401.2017.1337031] [PMID: 28612655]
[51]
Al-Ghannam, S.M.; Ahmed, H.H.; Zein, N.; Zahran, F. Antitumor activity of balanitoside extracted from Balanites aegyptiaca fruit. J. Appl. Pharm. Sci., 2013, 3, 179-191.
[52]
Elgizawy, H.A.; Ali, A.A.; Hussein, M.A. Resveratrol: Isolation, and its nanostructured lipid carriers, inhibits cell proliferation, induces cell apoptosis in certain human cell lines carcinoma and exerts protective effect against paraquat-induced hepatotoxicity. J. Med. Food, 2021, 24(1), 89-100.
[http://dx.doi.org/10.1089/jmf.2019.0286]
[53]
Booth, D.A.; Gibson, E.L. Physics and physiology of obesity: Higher rate of energy input than output. Comment on “The carbohydrate–insulin model: A physiological perspective on the obesity pandemic”. Am. J. Clin. Nutr., 2022, 115(2), 590-591.
[http://dx.doi.org/10.1093/ajcn/nqab382] [PMID: 35139169]
[54]
El Gizawy, H.A.; Abo-Salem, H.M.; Ali, A.A.; Hussein, M.A. Phenolic profiling and therapeutic potential of certain isolated compounds from Parkia roxburghii against AChE Activity as well as GABA A α5, GSK-3β, and p38α MAP-Kinase Genes. ACS Omega, 2021, 6(31), 20492-20511.
[http://dx.doi.org/10.1021/acsomega.1c02340] [PMID: 34395996]
[55]
Oloyede, O.B.; Ajiboye, T.O.; Abdussalam, A.F.; Adeleye, A.O. Blighia sapida leaves halt elevated blood glucose, dyslipidemia and oxidative stress in alloxan-induced diabetic rats. J. Ethnopharmacol., 2014, 157, 309-319.
[http://dx.doi.org/10.1016/j.jep.2014.08.022] [PMID: 25172468]
[56]
Pugalendi, K.V.; Kalaivanan, K. Antihyperglycemic effect of the alcoholic seed extract of Swietenia macrophylla on streptozotocin-diabetic rats. Pharmacognosy Res., 2011, 3(1), 67-71.
[http://dx.doi.org/10.4103/0974-8490.79119] [PMID: 21731399]
[57]
Balzarro, M.; Rubilotta, E.; Trabacchin, N.; Soldano, A.; Cerrato, C.; Migliorini, F.; Mancini, V.; Pastore, A.L.; Carbone, A.; Cormio, L.; Carrieri, G.; Antonelli, A. Early and late efficacy on wound healing of silver nanoparticle gel in males after circumcision. J. Clin. Med., 2020, 9(6), 1822.
[http://dx.doi.org/10.3390/jcm9061822] [PMID: 32545258]
[58]
Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharm. J., 2016, 24(4), 473-484.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[59]
Nickavar, B.; Abolhasani, L. Bioactivity-guided separation of an a-amylase inhibitor flavonoid from Salvia virgata. Iran. J. Pharm. Res., 2013, 12(1), 57-61.
[PMID: 24250572]
[60]
Dipankar, C.; Murugan, S. The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf. B Biointerfaces, 2012, 98, 112-119.
[http://dx.doi.org/10.1016/j.colsurfb.2012.04.006] [PMID: 22705935]
[61]
Mata, R.; Nakkala, J.R.; Sadras, S.R. Biogenic silver nanoparticles from Abutilon indicum: Their antioxidant, antibacterial and cytotoxic effects in vitro. Colloids Surf. B Biointerfaces, 2015, 128, 276-286.
[http://dx.doi.org/10.1016/j.colsurfb.2015.01.052] [PMID: 25701118]
[62]
Sarker, S.D.; Bartholomew, B.; Nash, R.J. Alkaloids from Balanites aegyptiaca. Fitoterapia, 2000, 71(3), 328-330.
[http://dx.doi.org/10.1016/S0367-326X(99)00149-5] [PMID: 10844174]
[63]
Murthy, H.N.; Yadav, G.G.; Dewir, Y.H.; Ibrahim, A. Phytochemicals and biological activity of desert date (Balanites aegyptiaca (L.) Delile). Plants, 2020, 10(1), 32.
[http://dx.doi.org/10.3390/plants10010032] [PMID: 33375570]
[64]
Khamis, G.; Saleh, A.M.; Habeeb, T.H.; Hozzein, W.N.; Wadaan, M.A.M.; Papenbrock, J. AbdElgawad, H. Provenance effect on bioactive phytochemicals and nutritional and health benefits of the desert date Balanites aegyptiaca. J. Food Biochem., 2020, 44(6), e13229.
[http://dx.doi.org/10.1111/jfbc.13229] [PMID: 32250478]
[65]
El-Gizawy, H.A.; Hussein, M.A. Fatty acids profile, nutritional values, anti-diabetic and antioxidant activity of the fixed oil of Malva parviflora growing in Egypt. Int. J. Phytomed., 2015, 7, 219-230.
[66]
Jaiswal, S.; Mishra, P. Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Med. Microbiol. Immunol., 2018, 207(1), 39-53.
[http://dx.doi.org/10.1007/s00430-017-0525-y] [PMID: 29081001]
[67]
Amina, M.; Al Musayeib, N.M.; Alarfaj, N.A.; El-Tohamy, M.F.; Al-Hamoud, G.A. Antibacterial and immunomodulatory potentials of biosynthesized Ag, Au, Ag-Au bimetallic alloy nanoparticles using the Asparagus racemosus root extract. Nanomaterials, 2020, 10(12), 2453.
[http://dx.doi.org/10.3390/nano10122453] [PMID: 33302432]
[68]
Nandipati, K.C.; Subramanian, S.; Agrawal, D.K. Protein kinases: Mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. Mol. Cell. Biochem., 2017, 426(1-2), 27-45.
[http://dx.doi.org/10.1007/s11010-016-2878-8] [PMID: 27868170]
[69]
Yu, N.; Fang, X.; Zhao, D.; Mu, Q.; Zuo, J.; Ma, Y.; Zhang, Y.; Mo, F.; Zhang, D.; Jiang, G.; Wu, R.; Gao, S. Anti-diabetic effects of Jiang Tang Xiao Ke granule via PI3K/Akt signalling pathway in type 2 diabetes KKAy mice. PLoS One, 2017, 12(1), e0168980.
[http://dx.doi.org/10.1371/journal.pone.0168980] [PMID: 28045971]
[70]
Chen, L.; Xiang, Y.; Kong, L.; Zhang, X.; Sun, B.; Wei, X.; Liu, H. Hydroxysafflor yellow A protects against cerebral ischemia-reperfusion injury by anti-apoptotic effect through PI3K/Akt/GSK3β pathway in rat. Neurochem. Res., 2013, 38(11), 2268-2275.
[http://dx.doi.org/10.1007/s11064-013-1135-8] [PMID: 23990223]
[71]
Spitzer, N.; Patterson, K.C.K.; Kipps, D.W. Akt and MAPK/ERK signaling regulate neurite extension in adult neural progenitor cells but do not directly mediate disruption of cytoskeletal structure and neurite dynamics by low-level silver nanoparticles. Toxicol. In Vitro, 2021, 74, 105151.
[http://dx.doi.org/10.1016/j.tiv.2021.105151] [PMID: 33753175]
[72]
Song, S.; Andrikopoulos, S.; Filippis, C.; Thorburn, A.W.; Khan, D.; Proietto, J. Mechanism of fat-induced hepatic gluconeogenesis: Effect of metformin. Am. J. Physiol. Endocrinol. Metab., 2001, 281(2), E275-E282.
[http://dx.doi.org/10.1152/ajpendo.2001.281.2.E275] [PMID: 11440903]
[73]
Eisenberg, M.; Maker, A.; Slezak, L.; Nathan, J.; Sritharan, K.; Jena, B.; Geibel, J.; Andersen, D. Insulin receptor (IR) and glucose transporter 2 (GLUT-2) proteins form a complex on the rat hepatocyte membrane. Cell. Physiol. Biochem., 2005, 15(1-4), 051-058.
[http://dx.doi.org/10.1159/000083638] [PMID: 15665515]
[74]
Borik, R.M.; Hussein, M.A. A novel Qquinazoline-4-one derivatives as a promising cytokine inhibitors: synthesis, molecular docking, and structure-activity relationship. Curr. Pharm. Biotechnol., 2022, 23(9), 1179-1203.
[http://dx.doi.org/10.2174/1389201022666210601170650]
[75]
Gholami, M.; Hemmati, M.; Taheri-Ghahfarokhi, A.; Hoshyar, R.; Moossavi, M. Expression of glucokinase, glucose 6-phosphatase, and stress protein in streptozotocin-induced diabetic rats treated with natural honey. Int. J. Diabetes Dev. Ctries., 2016, 36(1), 125-131.
[http://dx.doi.org/10.1007/s13410-015-0456-3]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy