Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

β-sitosterol Protects against Aluminium Chloride-mediated Neurotoxicity

Author(s): Sanjay Yadav, Punita Aggarwal, Faiz Khan, Gopal Khodve, Dibya Sundar Padhy, Poonam Yadav and Sugato Banerjee*

Volume 20, Issue 1, 2023

Published on: 21 March, 2023

Page: [29 - 37] Pages: 9

DOI: 10.2174/1567205020666230308151443

Price: $65

conference banner
Abstract

Objective: The objective of this study is to investigate the neuroprotective effects of β- sitosterol using the AlCl3 model of Alzheimer's Disease.

Methods: AlCl3 model was used to study cognition decline and behavioral impairments in C57BL/6 mice. Animals were randomly assigned into 4 groups with the following treatments: Group 1 received normal saline for 21 days, Group 2 received AlCl3 (10 mg/kg) for 14 days; Group 3 received AlCl3(10 mg/kg) for 14 days + β-sitosterol (25mg/kg) for 21 days; while Group 4 was administered β-sitosterol (25mg/kg) for 21 days. On day 22, we performed the behavioral studies using a Y maze, passive avoidance test, and novel object recognition test for all groups. Then the mice were sacrificed. The corticohippocampal region of the brain was isolated for acetylcholinesterase (AChE), acetylcholine (ACh), and GSH estimation. We conducted histopathological studies using Congo red staining to measure β -amyloid deposition in the cortex and hippocampal region for all animal groups.

Results: AlCl3 successfully induced cognitive decline in mice following a 14-day induction period, as shown by significantly decreased (p < 0.001) in step-through latency, % alterations, and preference index values. These animals also exhibited a substantial decrease in ACh (p <0.001) and GSH (p < 0.001) and a rise in AChE (p < 0.001) compared to the control group. Mice administered with AlCl3 and β-sitosterol showed significantly higher step-through latency time, % alteration time, and % preference index (p < 0.001) and higher levels of ACh, GSH, and lower levels of AChE in comparison to the AlCl3 model. AlCl3-administered animals also showed higher β-amyloid deposition, which got significantly reduced in the β-sitosterol treated group.

Conclusion: AlCl3 was effectively employed to induce a cognitive deficit in mice, resulting in neurochemical changes and cognitive decline. β -sitosterol treatment mitigated AlCl3-mediated cognitive impairment.

[1]
Duron, E.; Hanon, O. Antihypertensive treatments, cognitive decline, and dementia. J. Alzheimers Dis., 2010, 20(3), 903-914.
[http://dx.doi.org/10.3233/JAD-2010-091552] [PMID: 20182022]
[2]
Levy, R. Aging-associated cognitive decline. Int. Psychogeriatr., 1994, 6(1), 63-68.
[http://dx.doi.org/10.1017/S1041610294001626] [PMID: 8054494]
[3]
Adebiyi, O.E.; Olayemi, F.O.; Olopade, J.O.; Tan, N.H. Βeta-sitosterol enhances motor coordination, attenuates memory loss and demyelination in a vanadium-induced model of experimental neurotoxicity. Pathophysiology, 2019, 26(1), 21-29.
[http://dx.doi.org/10.1016/j.pathophys.2018.12.002] [PMID: 30551913]
[4]
Singh, M.; Prashar, Y. Cerebral cortex and hippocampal protection mediated by callistemon viminalis in aluminium chloride induced Alzheimer’s disease. Indian J. Pharm. Educ. Res., 2020, 54(2), 422-431.
[http://dx.doi.org/10.5530/ijper.54.2.48]
[5]
Ye, J.Y. β -Sitosterol treatment attenuates cognitive deficits and prevents amyloid plaque deposition in amyloid protein precursor/presenilin 1 mice. Korean J. Physiol. Pharmacol., 2019, 24(1), 39-46.
[http://dx.doi.org/10.4196/kjpp.2020.24.1.39] [PMID: 31908573]
[6]
Ayaz, M. Anti-Alzheimer’s studies on β-sitosterol isolated from Polygonum hydropiper L. Front. Pharmacol., 2017, 8, 697.
[http://dx.doi.org/10.3389/fphar.2017.00697]
[7]
Salen, G.; Ahrens, E.H., Jr; Grundy, S.M. Metabolism of β-sitosterol in man. J. Clin. Invest., 1970, 49(5), 952-967.
[http://dx.doi.org/10.1172/JCI106315] [PMID: 5441548]
[8]
Babu, S.; Jayaraman, S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed. Pharmacother., 2020, 131, 110702.
[http://dx.doi.org/10.1016/j.biopha.2020.110702] [PMID: 32882583]
[9]
Ponnulakshmi, R.; Shyamaladevi, B.; Vijayalakshmi, P. In silico and in vivo analysis to identify the antidiabetic activity of beta sitosterol in adipose tissue of high fat diet and sucrose induced type-2 diabetic experimental rats. Toxicol. Mech. Methods, 2019, 29(4), 276-290.
[http://dx.doi.org/10.1080/15376516.2018.1545815] [PMID: 30461321]
[10]
Duester, K.C. Avocado fruit is a rich source of beta-sitosterol. J. Am. Diet. Assoc., 2001, 101(4), 404-405.
[http://dx.doi.org/10.1016/S0002-8223(01)00102-X] [PMID: 11320941]
[11]
Saeidnia, S. The story of beta-sitosterol-a review. European J. Med. Plants, 2014, 4(5), 590.
[http://dx.doi.org/10.9734/EJMP/2014/7764]
[12]
Katan, M.B. Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clinic Proceedings; Elsevier: Amsterdam, 2003.
[13]
Flaten, T.P. Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Res. Bull., 2001, 55(2), 187-196.
[http://dx.doi.org/10.1016/S0361-9230(01)00459-2] [PMID: 11470314]
[14]
Rizwan, S.; Idrees, A.; Ashraf, M.; Ahmed, T. Memory-enhancing effect of aspirin is mediated through opioid system modulation in an AlCl3-induced neurotoxicity mouse model. Exp. Ther. Med., 2016, 11(5), 1961-1970.
[http://dx.doi.org/10.3892/etm.2016.3147] [PMID: 27168835]
[15]
Hampel, H. Amyloid-β and cognition in aging and Alzheimer’s disease: Molecular and neurophysiological mechanisms. J. Alzheimers Dis., 2012, 33(S1), S79-S86.
[http://dx.doi.org/10.3233/JAD-2012-129003] [PMID: 22531423]
[16]
Toledano, A.; Alvarez, M. Lesions and dysfunctions of the nucleus basalis as Alzheimer’s disease models: general and critical overview and analysis of the long-term changes in several excitotoxic models. Curr. Alzheimer Res., 2004, 1(3), 189-214.
[http://dx.doi.org/10.2174/1567205043332117] [PMID: 15975067]
[17]
Cheng, X.; Gu, J.; Pang, Y.; Liu, J.; Xu, T.; Li, X.; Hua, Y.; Newell, K.A.; Huang, X.F.; Yu, Y.; Liu, Y. Tacrine–hydrogen sulfide donor hybrid ameliorates cognitive impairment in the aluminum chloride mouse model of Alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(8), 3500-3509.
[http://dx.doi.org/10.1021/acschemneuro.9b00120] [PMID: 31244052]
[18]
Luna-Herrera, C.; Martínez-Dávila, I.A.; Soto-Rojas, L.O.; Flores-Martinez, Y.M.; Fernandez-Parrilla, M.A.; Ayala-Davila, J.; León-Chavez, B.A.; Soto-Rodriguez, G.; Blanco-Alvarez, V.M.; Lopez-Salas, F.E.; Gutierrez-Castillo, M.E.; Gatica-Garcia, B.; Padilla-Viveros, A.; Bañuelos, C.; Reyes-Corona, D.; Espadas-Alvarez, A.J.; Garcés-Ramírez, L.; Hidalgo-Alegria, O.; De La Cruz-lópez, F.; Martinez-Fong, D. Intranigral administration of β-Sitosterol-β-D-Glucoside Elicits neurotoxic a1 astrocyte reactivity and chronic neuroinflammation in the rat substantia nigra. J. Immunol. Res., 2020, 2020, 5907591.
[http://dx.doi.org/10.1155/2020/5907591] [PMID: 33282962]
[19]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[20]
Bester, S.M. The structural and biochemical impacts of monomerizing human acetylcholinesterase. Protein Sci., 2019, 28(6), 1106-1114.
[http://dx.doi.org/10.1002/pro.3625]
[21]
Prieur, E.; Jadavji, N. Assessing spatial working memory using the spontaneous alternation y-maze test in aged male mice. Bio Protoc., 2019, 9(3), e3162.
[http://dx.doi.org/10.21769/BioProtoc.3162] [PMID: 33654968]
[22]
Ennaceur, A. One-trial object recognition in rats and mice: Methodological and theoretical issues. Behav. Brain Res., 2010, 215(2), 244-254.
[http://dx.doi.org/10.1016/j.bbr.2009.12.036] [PMID: 20060020]
[23]
Wang, D.; Noda, Y.; Zhou, Y.; Mouri, A.; Mizoguchi, H.; Nitta, A.; Chen, W.; Nabeshima, T. The allosteric potentiation of nicotinic acetylcholine receptors by galantamine ameliorates the cognitive dysfunction in beta amyloid25-35 i.c.v.-injected mice: Involvement of dopaminergic systems. Neuropsychopharmacology, 2007, 32(6), 1261-1271.
[http://dx.doi.org/10.1038/sj.npp.1301256] [PMID: 17133263]
[24]
Hammond, R.; Tull, L.E.; Stackman, R.W. On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol. Learn. Mem., 2004, 82(1), 26-34.
[http://dx.doi.org/10.1016/j.nlm.2004.03.005] [PMID: 15183168]
[25]
Senechal, Y.; Kelly, P.H.; Dev, K.K. Amyloid precursor protein knockout mice show age-dependent deficits in passive avoidance learning. Behav. Brain Res., 2008, 186(1), 126-132.
[http://dx.doi.org/10.1016/j.bbr.2007.08.003] [PMID: 17884188]
[26]
Micale, V.; Cristino, L.; Tamburella, A.; Petrosino, S.; Leggio, G.M.; Di Marzo, V.; Drago, F. Enhanced cognitive performance of dopamine D3 receptor “knock-out” mice in the step-through passive-avoidance test: Assessing the role of the endocannabinoid/endovanilloid systems. Pharmacol. Res., 2010, 61(6), 531-536.
[http://dx.doi.org/10.1016/j.phrs.2010.02.003] [PMID: 20149873]
[27]
Marubio, L.M.; Paylor, R. Impaired passive avoidance learning in mice lacking central neuronal nicotinic acetylcholine receptors. Neuroscience, 2004, 129(3), 575-582.
[http://dx.doi.org/10.1016/j.neuroscience.2004.09.003] [PMID: 15541879]
[28]
Deutsch, J.A. The cholinergic synapse and the site of memory. Science, 1971, 174(4011), 788-794.
[http://dx.doi.org/10.1126/science.174.4011.788] [PMID: 4330469]
[29]
Mishin, V.; Gray, J.P.; Heck, D.E.; Laskin, D.L.; Laskin, J.D. Application of the Amplex red/horseradish peroxidase assay to measure hydrogen peroxide generation by recombinant microsomal enzymes. Free Radic. Biol. Med., 2010, 48(11), 1485-1491.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.02.030] [PMID: 20188819]
[30]
Santillo, M.F.; Liu, Y. A fluorescence assay for measuring acetylcholinesterase activity in rat blood and a human neuroblastoma cell line (SH-SY5Y). J. Pharmacol. Toxicol. Methods, 2015, 76, 15-22.
[http://dx.doi.org/10.1016/j.vascn.2015.07.002] [PMID: 26165232]
[31]
Moron, M.; Depierre, J.; Mannervik, B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim. Biophys. Acta, Gen. Subj., 1979, 582(1), 67-78.
[http://dx.doi.org/10.1016/0304-4165(79)90289-7] [PMID: 760819]
[32]
Carter, D.B.; Chou, K.C. A model for structure-dependent binding of Congo red to Alzheimer β-amyloid fibrils. Neurobiol. Aging, 1998, 19(1), 37-40.
[http://dx.doi.org/10.1016/S0197-4580(97)00164-4] [PMID: 9562501]
[33]
Yakupova, E.I.; Bobyleva, L.G.; Vikhlyantsev, I.M.; Bobylev, A.G. Congo Red and amyloids: History and relationship. Biosci. Rep., 2019, 39(1), BSR20181415.
[http://dx.doi.org/10.1042/BSR20181415] [PMID: 30567726]
[34]
Kotla, N.K. Nootropic herbal formulations for the treatment of Alzheimer’s disease: in vivo pharmacological assay and molecular docking studies. J. Fac. Pharm. İst. Univ., 2020, 50(2), 116-125.
[35]
Bahadori, M.B.; Dinparast, L.; Valizadeh, H.; Farimani, M.M.; Ebrahimi, S.N. Bioactive constituents from roots of Salvia syriaca L.: Acetylcholinesterase inhibitory activity and molecular docking studies. S. Afr. J. Bot., 2016, 106, 1-4.
[http://dx.doi.org/10.1016/j.sajb.2015.12.003]
[36]
Faloye, K.O. Revealing the acetylcholinesterase inhibitory potential of phyllanthus amarus and its phytoconstituents: in vitro and in silico Approach. Bioinform. Biol. Insights, 2022, 16, 1-11.
[http://dx.doi.org/10.1177/11779322221118330]
[37]
Westerman, M.A.; Cooper-Blacketer, D.; Mariash, A.; Kotilinek, L.; Kawarabayashi, T.; Younkin, L.H.; Carlson, G.A.; Younkin, S.G.; Ashe, K.H. The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J. Neurosci., 2002, 22(5), 1858-1867.
[http://dx.doi.org/10.1523/JNEUROSCI.22-05-01858.2002] [PMID: 11880515]
[38]
Saeed, A.A. Increased flux of the plant sterols campesterol and sitosterol across a disrupted blood brain barrier. Steroids, 2015, 99, 183-188.
[http://dx.doi.org/10.1016/j.steroids.2015.02.005]
[39]
Shi, C. β -sitosterol inhibits high cholesterol-induced platelet β - amyloid release. J. Bioenerg. Biomembr., 2011, 43(6), 691-697.
[http://dx.doi.org/10.1007/s10863-011-9383-2] [PMID: 21969169]
[40]
Holttum, J.R.; Gershon, S.J.D.; Disorders, G.C. The cholinergic model of dementia, Alzheimer type: progression from the unitary transmitter concept. Dement. Geriatr. Cogn. Disord., 1992, 3(3), 174-185.
[http://dx.doi.org/10.1159/000107013]
[41]
Bartus, R.T. The cholinergic hypothesis: A historical overview, current perspective, and future directions. Ann N Y Acad Sci, 1985, 444, 332-358.
[http://dx.doi.org/10.1111/j.1749-6632.1985.tb37600.x]
[42]
Dumas, J.A.; Newhouse, P.A. Newhouse, and Behavior, The cholinergic hypothesis of cognitive aging revisited again: Cholinergic functional compensation. Pharmacol. Biochem. Behav., 2011, 99(2), 254-261.
[http://dx.doi.org/10.1016/j.pbb.2011.02.022] [PMID: 21382398]
[43]
Hagan, J.; Morris, R.J.H. The cholinergic hypothesis of memory: A review of animal experiments. Iversen, L.L.; Iversen, S.D.; Snyder, S.H. In: Handbook of Psychopharmacology; Springer: Boston, MA, 1988; pp. 237-323.
[http://dx.doi.org/10.1007/978-1-4613-0933-8_7]
[44]
Hasselmo, M.E.J. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol., 2006, 16(6), 710-715.
[http://dx.doi.org/10.1016/j.conb.2006.09.002]
[45]
Gupta, R. Antidiabetic and antioxidant potential of β‐sitosterol in streptozotocin‐induced experimental hyperglycemia. J. Diabetes, 2011, 3(1), 29-37.
[http://dx.doi.org/10.1111/j.1753-0407.2010.00107.x]
[46]
Yang, Q.; Yu, D.; Zhang, Y.J.P. β-Sitosterol attenuates the intracranial aneurysm growth by suppressing TNF-α-mediated mechanism. Pharmacology., 2019, 104(5-6), 303-311.
[http://dx.doi.org/10.1159/000502221]
[47]
Vivancos, M.; Moreno, J.J. β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic. Biol. Med., 2005, 39(1), 91-97.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.02.025] [PMID: 15925281]
[48]
Halliwell, B.; Gutteridge, J.M.C. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J., 1984, 219(1), 1-14.
[http://dx.doi.org/10.1042/bj2190001] [PMID: 6326753]
[49]
Guénette, S.Y.J.N.m. Mechanisms of Aβ clearance and catabolism. 2003, 4(3), 147-160.
[http://dx.doi.org/10.1385/NMM:4:3:147]
[50]
Ingelsson, M. Early Aβ accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology., 2004, 62(6), 925-931.
[http://dx.doi.org/10.1212/01.WNL.0000115115.98960.37]
[51]
Moussa-Pacha, N.M.; Abdin, S.M.; Omar, H.A.; Alniss, H.; Al-Tel, T.H. BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease. Med. Res. Rev., 2020, 40(1), 339-384.
[http://dx.doi.org/10.1002/med.21622] [PMID: 31347728]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy