Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Research Progress of Aging-related MicroRNAs

Author(s): Zhongyu Chen, Chenxu Li, Haitao Huang, Yi-Ling Shi* and Xiaobo Wang*

Volume 19, Issue 3, 2024

Published on: 31 March, 2023

Page: [334 - 350] Pages: 17

DOI: 10.2174/1574888X18666230308111043

Price: $65

Abstract

Senescence refers to the irreversible state in which cells enter cell cycle arrest due to internal or external stimuli. The accumulation of senescent cells can lead to many age-related diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancers. MicroRNAs are short non-coding RNAs that bind to target mRNA to regulate gene expression after transcription and play an important regulatory role in the aging process. From nematodes to humans, a variety of miRNAs have been confirmed to alter and affect the aging process. Studying the regulatory mechanisms of miRNAs in aging can further deepen our understanding of cell and body aging and provide a new perspective for the diagnosis and treatment of aging-related diseases. In this review, we illustrate the current research status of miRNAs in aging and discuss the possible prospects for clinical applications of targeting miRNAs in senile diseases.

Graphical Abstract

[1]
Gorgoulis V, Adams PD, Alimonti A, et al. Cellular Senescence: Defining a Path Forward. Cell 2019; 179(4): 813-27.
[http://dx.doi.org/10.1016/j.cell.2019.10.005] [PMID: 31675495]
[2]
Bartel DP. Metazoan MicroRNAs. Cell 2018; 173(1): 20-51.
[http://dx.doi.org/10.1016/j.cell.2018.03.006] [PMID: 29570994]
[3]
Ito T, Yagi S, Yamakuchi M. MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun 2010; 398(4): 735-40.
[http://dx.doi.org/10.1016/j.bbrc.2010.07.012] [PMID: 20627091]
[4]
Ueda M, Sato T, Ohkawa Y, Inoue YH. Identification of miR-305, a microRNA that promotes aging, and its target mRNAs in Drosophila. Genes Cells 2018; 23(2): 80-93.
[5]
Liang R, Khanna A, Muthusamy S, et al. Post-transcriptional regulation of IGF1R by key microRNAs in long-lived mutant mice. Aging Cell 2011; 10(6): 1080-8.
[http://dx.doi.org/10.1111/j.1474-9726.2011.00751.x] [PMID: 21967153]
[6]
Dallaire A, Garand C, Paquet ER, et al. Down regulation of miR-124 in both Werner syndrome DNA helicase mutant mice and mutant Caenorhabditis elegans wrn-1 reveals the importance of this microRNA in accelerated aging. Aging (Albany NY) 2012; 4(9): 636-47.
[http://dx.doi.org/10.18632/aging.100489] [PMID: 23075628]
[7]
Cai WL, Huang WD, Li B, et al. microRNA-124 inhibits bone metastasis of breast cancer by repressing Interleukin-11. Mol Cancer 2018; 17(1): 9.
[http://dx.doi.org/10.1186/s12943-017-0746-0] [PMID: 29343249]
[8]
Sun Y, Luo ZM, Guo XM, Su DF, Liu X. An updated role of microRNA-124 in central nervous system disorders: A review. Front Cell Neurosci 2015; 9: 193.
[http://dx.doi.org/10.3389/fncel.2015.00193] [PMID: 26041995]
[9]
Liu N, Landreh M, Cao K, et al. The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. Nature 2012; 482(7386): 519-23.
[http://dx.doi.org/10.1038/nature10810] [PMID: 22343898]
[10]
Jiang X, Ruan X, Xue Y, Yang S, Shi M, Wang L. Metformin reduces the senescence of renal tubular epithelial cells in diabetic nephropathy via the MBNL1/miR-130a-3p/STAT3 Pathway. Oxid Med Cell Longev 2020; 2020: 8708236.
[http://dx.doi.org/10.1155/2020/8708236] [PMID: 32104542]
[11]
Vora M, Shah M, Ostafi S, et al. Deletion of microRNA-80 activates dietary restriction to extend C. elegans healthspan and lifespan. PLoS Genet 2013; 9(8): e1003737.
[http://dx.doi.org/10.1371/journal.pgen.1003737] [PMID: 24009527]
[12]
Liebig JK, Kuphal S, Bosserhoff AK. HuRdling Senescence: HuR breaks BRAF-induced senescence in melanocytes and supports melanoma growth. Cancers (Basel) 2020; 12(5): 1299.
[http://dx.doi.org/10.3390/cancers12051299] [PMID: 32455577]
[13]
Magenta A, Cencioni C, Fasanaro P, et al. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ 2011; 18(10): 1628-39.
[http://dx.doi.org/10.1038/cdd.2011.42] [PMID: 21527937]
[14]
Fulzele S, Mendhe B, Khayrullin A, et al. Muscle-derived miR-34a increases with age in circulating extracellular vesicles and induces senescence of bone marrow stem cells. Aging (Albany NY) 2019; 11(6): 1791-803.
[http://dx.doi.org/10.18632/aging.101874] [PMID: 30910993]
[15]
Xu R, Shen X, Si Y, et al. MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment. Aging Cell 2018; 17(4): e12794.
[http://dx.doi.org/10.1111/acel.12794] [PMID: 29896785]
[16]
Jazbutyte V, Fiedler J, Kneitz S, et al. MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age (Omaha) 2013; 35(3): 747-62.
[http://dx.doi.org/10.1007/s11357-012-9407-9] [PMID: 22538858]
[17]
Feng CZ, Yin JB, Yang JJ, Cao L. Regulatory factor X1 depresses ApoE-dependent Aβ uptake by miRNA-124 in microglial response to oxidative stress. Neuroscience 2017; 344: 217-28.
[http://dx.doi.org/10.1016/j.neuroscience.2016.12.017] [PMID: 28003160]
[18]
Ruediger C, Karimzadegan S, Lin S, Shapira M. miR-71 mediates age-dependent opposing contributions of the stress-activated kinase KGB-1 in Caenorhabditis elegans. Genetics 2021; 218(2): iyab049.
[http://dx.doi.org/10.1093/genetics/iyab049] [PMID: 33755114]
[19]
Horsburgh S, Fullard N, Roger M, et al. MicroRNAs in the skin: Role in development, homoeostasis and regeneration. Clinical science (London, England: 1979) 2017; 131(15): 1923-40.
[20]
Wu Y, Zhang K, Liu R, et al. MicroRNA-21-3p accelerates diabetic wound healing in mice by downregulating SPRY1. Aging (Albany NY) 2020; 12(15): 15436-45.
[http://dx.doi.org/10.18632/aging.103610] [PMID: 32634115]
[21]
Yin C, Tian Y, Yu Y, et al. miR-129-5p Inhibits Bone Formation Through TCF4. Front Cell Dev Biol 2020; 8: 600641.
[http://dx.doi.org/10.3389/fcell.2020.600641] [PMID: 33240893]
[22]
Su W, Hong L, Xu X, et al. miR-30 disrupts senescence and promotes cancer by targeting both p16INK4A and DNA damage pathways. Oncogene 2018; 37(42): 5618-32.
[http://dx.doi.org/10.1038/s41388-018-0358-1] [PMID: 29907771]
[23]
Kuo G, Wu CY, Yang HY. MiR-17-92 cluster and immunity. J Formosan Med Assoc 2019; 118(1 Pt 1): 2-6.
[24]
Friedman DB, Johnson TE. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 1988; 118(1): 75-86.
[http://dx.doi.org/10.1093/genetics/118.1.75] [PMID: 8608934]
[25]
Tatar M, Bartke A, Antebi A. The endocrine regulation of aging by insulin-like signals. Science 2003; 299(5611): 1346-51.
[http://dx.doi.org/10.1126/science.1081447] [PMID: 12610294]
[26]
Boehm M, Slack F. A developmental timing microRNA and its target regulate life span in C. elegans. Science 2005; 310(5756): 1954-7.
[http://dx.doi.org/10.1126/science.1115596] [PMID: 16373574]
[27]
Qi Z, Ji H, Le M, et al. Sulforaphane promotes C. elegans longevity and healthspan via DAF-16/DAF-2 insulin/IGF-1 signaling. Aging (Albany NY) 2021; 13(2): 1649-70.
[http://dx.doi.org/10.18632/aging.202512] [PMID: 33471780]
[28]
Luo X, Jiang X, Li J, et al. Insulin-like growth factor-1 attenuates oxidative stress-induced hepatocyte premature senescence in liver fibrogenesis via regulating nuclear p53–progerin interaction. Cell Death Dis 2019; 10(6): 451.
[http://dx.doi.org/10.1038/s41419-019-1670-6] [PMID: 31171766]
[29]
Pincus Z, Smith-Vikos T, Slack FJ. MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS Genet 2011; 7(9): e1002306.
[http://dx.doi.org/10.1371/journal.pgen.1002306] [PMID: 21980307]
[30]
Baugh LR, Sternberg PW. DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during C. elegans L1 arrest. Curr Biol 2006; 16(8): 780-5.
[http://dx.doi.org/10.1016/j.cub.2006.03.021] [PMID: 16631585]
[31]
Mariño G, Ugalde AP, Fernández ÁF, et al. Insulin-like growth factor 1 treatment extends longevity in a mouse model of human premature aging by restoring somatotroph axis function. Proc Natl Acad Sci USA 2010; 107(37): 16268-73.
[http://dx.doi.org/10.1073/pnas.1002696107] [PMID: 20805469]
[32]
Hyun S, Lee JH, Jin H, et al. Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell 2009; 139(6): 1096-108.
[http://dx.doi.org/10.1016/j.cell.2009.11.020] [PMID: 20005803]
[33]
Xia Q, Han T, Yang P, et al. MicroRNA-28-5p regulates liver cancer stem cell expansion via IGF-1 Pathway. Stem Cells Int 2019; 2019: 1-16.
[http://dx.doi.org/10.1155/2019/8734362] [PMID: 31885628]
[34]
Zhou Y, Li S, Li J, Wang D, Li Q. Effect of microRNA-135a on cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer. Cell Physiol Biochem 2017; 42(4): 1431-46.
[http://dx.doi.org/10.1159/000479207] [PMID: 28715819]
[35]
Dang X, Li X, Wang L, Sun X, Tian X. MicroRNA-3941 targets IGF-1 to regulate cell proliferation and migration of breast cancer cells. Int J Clin Exp Pathol 2017; 10(7): 7650-60.
[PMID: 31966610]
[36]
Hung TM, Ho CM, Liu YC, et al. Up-regulation of microRNA-190b plays a role for decreased IGF-1 that induces insulin resistance in human hepatocellular carcinoma. PLoS One 2014; 9(2): e89446.
[http://dx.doi.org/10.1371/journal.pone.0089446] [PMID: 24586785]
[37]
Salminen A, Kaarniranta K, Kauppinen A. AMPK and HIF signaling pathways regulate both longevity and cancer growth: the good news and the bad news about survival mechanisms. Biogerontology 2016; 17(4): 655-80.
[http://dx.doi.org/10.1007/s10522-016-9655-7] [PMID: 27259535]
[38]
Han X, Tai H, Wang X, et al. AMPK activation protects cells from oxidative stress‐induced senescence via autophagic flux restoration and intracellular NAD+ elevation. Aging Cell 2016; 15(3): 416-27.
[http://dx.doi.org/10.1111/acel.12446] [PMID: 26890602]
[39]
Han X, Zhang T, Zhang X, et al. AMPK alleviates oxidative stress induced premature senescence via inhibition of NF-κB/STAT3 axis-mediated positive feedback loop. Mech Ageing Dev 2020; 191: 111347.
[http://dx.doi.org/10.1016/j.mad.2020.111347] [PMID: 32882228]
[40]
Wang Y, Wang L, Wen X, et al. NF-κB signaling in skin aging. Mech Ageing Dev 2019; 184: 111160.
[http://dx.doi.org/10.1016/j.mad.2019.111160] [PMID: 31634486]
[41]
Podhorecka M, Ibanez B, Dmoszyńska A. Metformin – its potential anti-cancer and anti-aging effects. Postepy Hig Med Dosw 2017; 71(1): 3801.
[http://dx.doi.org/10.5604/01.3001.0010.3801] [PMID: 28258677]
[42]
Zhang H, Jin K. Peripheral circulating exosomal miRNAs potentially contribute to the regulation of molecular signaling networks in aging. Int J Mol Sci 2020; 21(6): 1908.
[http://dx.doi.org/10.3390/ijms21061908] [PMID: 32168775]
[43]
Hong Y, He H, Jiang G, et al. miR‐155‐5p inhibition rejuvenates aged mesenchymal stem cells and enhances cardioprotection following infarction. Aging Cell 2020; 19(4): e13128.
[http://dx.doi.org/10.1111/acel.13128] [PMID: 32196916]
[44]
(a) Kuo SJ, Liu SC, Huang YL, et al. TGF-β1 enhances FOXO3 expression in human synovial fibroblasts by inhibiting miR-92a through AMPK and p38 pathways. Aging (Albany NY) 2019; 11(12): 4075-89.
[http://dx.doi.org/10.18632/aging.102038] [PMID: 31232696];
(b) Rine J and, Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 1987; 116(1): 9-22.
[http://dx.doi.org/10.1093/genetics/116.1.9]
[45]
Kaeberlein M, Kirkland KT, Fields S, Kennedy BK. Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2004; 2(9): e296.
[http://dx.doi.org/10.1371/journal.pbio.0020296] [PMID: 15328540]
[46]
Frye RA. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun 1999; 260(1): 273-9.
[http://dx.doi.org/10.1006/bbrc.1999.0897] [PMID: 10381378]
[47]
Ota H. The mechanism of vascular senescence regulated by longevity gene, Sirt1. Nihon Ronen Igakkai Zasshi 2007; 44(2): 194-7.
[http://dx.doi.org/10.3143/geriatrics.44.194] [PMID: 17527017]
[48]
Liu W, Hong Q, Bai XY, et al. High-affinity Na+-dependent dicarboxylate cotransporter promotes cellular senescence by inhibiting SIRT1. Mech Ageing Dev 2010; 131(10): 601-13.
[http://dx.doi.org/10.1016/j.mad.2010.08.006] [PMID: 20813124]
[49]
Zu Y, Liu L, Lee MYK, et al. SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ Res 2010; 106(8): 1384-93.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.215483] [PMID: 20203304]
[50]
Tran D, Bergholz J, Zhang H, et al. Insulin‐like growth factor‐1 regulates the SIRT 1‐p53 pathway in cellular senescence. Aging Cell 2014; 13(4): 669-78.
[http://dx.doi.org/10.1111/acel.12219] [PMID: 25070626]
[51]
Aw S, Cohen SM. Time is of the essence: microRNAs and age-associated neurodegeneration. Cell Res 2012; 22(8): 1218-20.
[http://dx.doi.org/10.1038/cr.2012.59] [PMID: 22491478]
[52]
Zhang Q, Liu H, McGee J, Walsh EJ, Soukup GA, He DZZ. Identifying microRNAs involved in degeneration of the organ of corti during age-related hearing loss. PLoS One 2013; 8(4): e62786.
[http://dx.doi.org/10.1371/journal.pone.0062786] [PMID: 23646144]
[53]
Li T, Yan X, Jiang M, Xiang L. The comparison of microRNA profile of the dermis between the young and elderly. J Dermatol Sci 2016; 82(2): 75-83.
[http://dx.doi.org/10.1016/j.jdermsci.2016.01.005] [PMID: 26899446]
[54]
Yamakuchi M, Lowenstein CJ. MiR-34, SIRT1, and p53: The feedback loop. Cell Cycle 2009; 8(5): 712-5.
[http://dx.doi.org/10.4161/cc.8.5.7753] [PMID: 19221490]
[55]
Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 2008; 105(36): 13421-6.
[http://dx.doi.org/10.1073/pnas.0801613105] [PMID: 18755897]
[56]
Guo Q, Zhang H, Zhang B, Zhang E, Wu Y. Tumor Necrosis Factor-alpha (TNF-α) Enhances miR-155-mediated endothelial senescence by targeting Sirtuin1 (SIRT1). Med Sci Monit 2019; 25: 8820-35.
[http://dx.doi.org/10.12659/MSM.919721] [PMID: 31752013]
[57]
Tan P, Guo YH, Zhan JK, et al. LncRNA-ANRIL inhibits cell senescence of vascular smooth muscle cells by regulating miR-181a/Sirt1. Biochem Cell Biol 2019; 97(5): 571-80.
[http://dx.doi.org/10.1139/bcb-2018-0126] [PMID: 30789795]
[58]
Komarova EA, Antoch MP, Novototskaya LR, et al. Rapamycin extends lifespan and delays tumorigenesis in heterozygous p53+/− mice. Aging (Albany NY) 2012; 4(10): 709-14.
[http://dx.doi.org/10.18632/aging.100498] [PMID: 23123616]
[59]
Fingar DC, Blenis J. Target of rapamycin (TOR): An integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004; 23(18): 3151-71.
[http://dx.doi.org/10.1038/sj.onc.1207542] [PMID: 15094765]
[60]
Cai J, Zhang Y, Huang S, et al. MiR-100-5p, miR-199a-3p and miR-199b-5p induce autophagic death of endometrial carcinoma cell through targeting mTOR. Int J Clin Exp Pathol 2017; 10(9): 9262-72.
[PMID: 31966798]
[61]
Yu Z, Li N, Jiang K, Zhang N, Yao LL. MiR-100 up-regulation enhanced cell autophagy and apoptosis induced by cisplatin in osteosarcoma by targeting mTOR. Eur Rev Med Pharmacol Sci 2020; 24(14): 7570.
[PMID: 32744675]
[62]
Ge YY, Shi Q, Zheng ZY, et al. MicroRNA-100 promotes the autophagy of hepatocellular carcinoma cells by inhibiting the expression of mTOR and IGF-1R. Oncotarget 2014; 5(15): 6218-28.
[http://dx.doi.org/10.18632/oncotarget.2189] [PMID: 25026290]
[63]
Ma L, Tang X, Guo S, Liang M, Zhang B, Jiang Z. miRNA-21–3p targeting of FGF2 suppresses autophagy of bovine ovarian granulosa cells through AKT/mTOR pathway. Theriogenology 2020; 157: 226-37.
[http://dx.doi.org/10.1016/j.theriogenology.2020.06.021] [PMID: 32818880]
[64]
Zhang H, Zhang X, Zhang J. MiR-129-5p inhibits autophagy and apoptosis of H9c2 cells induced by hydrogen peroxide via the PI3K/AKT/mTOR signaling pathway by targeting ATG14. Biochem Biophys Res Commun 2018; 506(1): 272-7.
[http://dx.doi.org/10.1016/j.bbrc.2018.10.085] [PMID: 30348524]
[65]
Katoch A, George B, Iyyappan A, Khan D, Das S. Interplay between PTB and miR-1285 at the p53 3′UTR modulates the levels of p53 and its isoform Δ40p53α. Nucleic Acids Res 2017; 45(17): 10206-17.
[http://dx.doi.org/10.1093/nar/gkx630] [PMID: 28973454]
[66]
Xu S, Wu W, Huang H, et al. The p53/miRNAs/Ccna2 pathway serves as a novel regulator of cellular senescence: Complement of the canonical p53/p21 pathway. Aging Cell 2019; 18(3): e12918.
[http://dx.doi.org/10.1111/acel.12918] [PMID: 30848072]
[67]
Kitadate A, Ikeda S, Teshima K, et al. MicroRNA-16 mediates the regulation of a senescence–apoptosis switch in cutaneous T-cell and other non-Hodgkin lymphomas. Oncogene 2016; 35(28): 3692-704.
[http://dx.doi.org/10.1038/onc.2015.435] [PMID: 26640145]
[68]
Lal A, Kim HH, Abdelmohsen K, et al. p16(INK4a) translation suppressed by miR-24. PLoS One 2008; 3(3): e1864.
[http://dx.doi.org/10.1371/journal.pone.0001864] [PMID: 18365017]
[69]
O’Loghlen A, Brookes S, Martin N, Rapisarda V, Peters G, Gil J. CBX7 and miR-9 are part of an autoregulatory loop controlling p16 INK 4a. Aging Cell 2015; 14(6): 1113-21.
[http://dx.doi.org/10.1111/acel.12404] [PMID: 26416703]
[70]
O’Loghlen A, Muñoz-Cabello AM, Gaspar-Maia A, et al. MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. Cell Stem Cell 2012; 10(1): 33-46.
[http://dx.doi.org/10.1016/j.stem.2011.12.004] [PMID: 22226354]
[71]
Lin R, Rahtu-Korpela L, Magga J, et al. miR-1468-3p Promotes Aging-Related Cardiac Fibrosis. Mol Ther Nucleic Acids 2020; 20: 589-605.
[http://dx.doi.org/10.1016/j.omtn.2020.04.001] [PMID: 32348937]
[72]
Roush S, Slack FJ. The let-7 family of microRNAs. Trends Cell Biol 2008; 18(10): 505-16.
[http://dx.doi.org/10.1016/j.tcb.2008.07.007] [PMID: 18774294]
[73]
Su JL, Chen PS, Johansson G, Kuo ML. Function and regulation of let-7 family microRNAs. MicroRNA 2012; 1(1): 34-9.
[http://dx.doi.org/10.2174/2211536611201010034] [PMID: 25048088]
[74]
de Lencastre A, Pincus Z, Zhou K, Kato M, Lee SS, Slack FJ. MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol 2010; 20(24): 2159-68.
[http://dx.doi.org/10.1016/j.cub.2010.11.015] [PMID: 21129974]
[75]
Smith-Vikos T, de Lencastre A, Inukai S, Shlomchik M, Holtrup B, Slack FJ. MicroRNAs mediate dietary-restriction-induced longevity through PHA-4/FOXA and SKN-1/Nrf transcription factors. Curr Biol 2014; 24(19): 2238-46.
[http://dx.doi.org/10.1016/j.cub.2014.08.013] [PMID: 25242029]
[76]
Nehammer C, Podolska A, Mackowiak SD, Kagias K, Pocock R. Specific microRNAs regulate heat stress responses in Caenorhabditis elegans. Sci Rep 2015; 5(1): 8866.
[http://dx.doi.org/10.1038/srep08866] [PMID: 25746291]
[77]
Yang J, Chen D, He Y, et al. MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9. Age (Omaha) 2013; 35(1): 11-22.
[http://dx.doi.org/10.1007/s11357-011-9324-3] [PMID: 22081425]
[78]
Isik M, Blackwell TK, Berezikov E. MicroRNA mir-34 provides robustness to environmental stress response via the DAF-16 network in C. elegans. Sci Rep 2016; 6(1): 36766.
[http://dx.doi.org/10.1038/srep36766] [PMID: 27905558]
[79]
Aalto AP, Nicastro IA, Broughton JP, et al. Opposing roles of microRNA Argonautes during Caenorhabditis elegans aging. PLoS Genet 2018; 14(6): e1007379.
[http://dx.doi.org/10.1371/journal.pgen.1007379] [PMID: 29927939]
[80]
Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 2003; 13(9): 790-5.
[http://dx.doi.org/10.1016/S0960-9822(03)00250-1] [PMID: 12725740]
[81]
Varghese J, Cohen SM. microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. Genes Dev 2007; 21(18): 2277-82.
[http://dx.doi.org/10.1101/gad.439807] [PMID: 17761811]
[82]
Kennell JA, Cadigan KM, Shakhmantsir I, Waldron EJ. The MicroRNA miR-8 is a positive regulator of pigmentation and eclosion in Drosophila. Dev Dyn 2012; 241(1): 161-8.
[http://dx.doi.org/10.1002/dvdy.23705] [PMID: 22174085]
[83]
Jin H, Kim VN, Hyun S. Conserved microRNA miR-8 controls body size in response to steroid signaling in Drosophila. Genes Dev 2012; 26(13): 1427-32.
[http://dx.doi.org/10.1101/gad.192872.112] [PMID: 22751499]
[84]
Esslinger SM, Schwalb B, Helfer S, et al. Drosophila miR-277 controls branched-chain amino acid catabolism and affects lifespan. RNA Biol 2013; 10(6): 1042-56.
[http://dx.doi.org/10.4161/rna.24810] [PMID: 23669073]
[85]
Maes OC, An J, Sarojini H, Wang E. Murine microRNAs implicated in liver functions and aging process. Mech Ageing Dev 2008; 129(9): 534-41.
[http://dx.doi.org/10.1016/j.mad.2008.05.004] [PMID: 18561983]
[86]
Cui H, Ge J, Xie N, et al. miR-34a inhibits lung fibrosis by inducing lung fibroblast senescence. Am J Respir Cell Mol Biol 2017; 56(2): 168-78.
[http://dx.doi.org/10.1165/rcmb.2016-0163OC] [PMID: 27635790]
[87]
Du WW, Li X, Li T, et al. The microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4. J Cell Sci 2015; 128(2): 293-304.
[PMID: 25472717]
[88]
Li N, Bates DJ, An J, Terry DA, Wang E. Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol Aging 2011; 32(5): 944-55.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.04.020] [PMID: 19487051]
[89]
Tan J, Hu L, Yang X, et al. miRNA expression profiling uncovers a role of miR‐302b‐3p in regulating skin fibroblasts senescence. J Cell Biochem 2020; 121(1): 70-80.
[http://dx.doi.org/10.1002/jcb.28862] [PMID: 31074095]
[90]
Lan Y, Li YJ, Li DJ, et al. Long noncoding RNA MEG3 prevents vascular endothelial cell senescence by impairing miR-128-dependent Girdin downregulation. Am J Physiol Cell Physiol 2019; 316(6): C830-43.
[http://dx.doi.org/10.1152/ajpcell.00262.2018] [PMID: 30576236]
[91]
Du WW, Yang W, Fang L, et al. miR-17 extends mouse lifespan by inhibiting senescence signaling mediated by MKP7. Cell Death Dis 2014; 5(7): e1355-5.
[http://dx.doi.org/10.1038/cddis.2014.305] [PMID: 25077541]
[92]
Takeda T, Tanabe H. Lifespan and reproduction in brain-specific miR-29-knockdown mouse. Biochem Biophys Res Commun 2016; 471(4): 454-8.
[http://dx.doi.org/10.1016/j.bbrc.2016.02.055] [PMID: 26902119]
[93]
Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther 2016; 1(1): 15004.
[http://dx.doi.org/10.1038/sigtrans.2015.4] [PMID: 29263891]
[94]
Wang X, Li J, Dong K, et al. Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal 2015; 27(3): 443-52.
[http://dx.doi.org/10.1016/j.cellsig.2014.12.003] [PMID: 25499621]
[95]
Cortez MA, Ivan C, Valdecanas D, et al. PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst 2015; 108(1): djv303.
[PMID: 26577528]
[96]
Zhang L, Liao Y, Tang L. MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res 2019; 38(1): 53.
[http://dx.doi.org/10.1186/s13046-019-1059-5] [PMID: 30717802]
[97]
Vu T, Datta P. Regulation of EMT in Colorectal Cancer: A culprit in metastasis. Cancers (Basel) 2017; 9(12): 171.
[http://dx.doi.org/10.3390/cancers9120171] [PMID: 29258163]
[98]
Sánchez-Tilló E, Liu Y, de Barrios O, et al. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci 2012; 69(20): 3429-56.
[http://dx.doi.org/10.1007/s00018-012-1122-2] [PMID: 22945800]
[99]
Kaller M, Hermeking H. Interplay between transcription factors and MicroRNAs regulating epithelial-mesenchymal transitions in colorectal cancer. Adv Exp Med Biol 2016; 937: 71-92.
[http://dx.doi.org/10.1007/978-3-319-42059-2_4] [PMID: 27573895]
[100]
Li YJ, Du L, Aldana-Masangkay G, et al. Regulation of miR-34b/c-targeted gene expression program by SUMOylation. Nucleic Acids Res 2018; 46(14): 7108-23.
[http://dx.doi.org/10.1093/nar/gky484] [PMID: 29893976]
[101]
Xi L, Zhang Y, Kong S, Liang W. miR-34 inhibits growth and promotes apoptosis of osteosarcoma in nude mice through targetly regulating TGIF2 expression. Biosci Rep 2018; 38(3): BSR20180078.
[http://dx.doi.org/10.1042/BSR20180078] [PMID: 29895719]
[102]
Gang L, Qun L, Liu WD, Li YS, Xu YZ, Yuan DT. MicroRNA-34a promotes cell cycle arrest and apoptosis and suppresses cell adhesion by targeting DUSP1 in osteosarcoma. Am J Transl Res 2017; 9(12): 5388-99.
[PMID: 29312491]
[103]
Sun Y, Zhao Y, Zhao X, Lee RJ, Teng L, Zhou C. Enhancing the therapeutic delivery of oligonucleotides by chemical modification and nanoparticle encapsulation. Molecules 2017; 22(10): 1724.
[http://dx.doi.org/10.3390/molecules22101724] [PMID: 29027965]
[104]
Hui L, Zheng F, Bo Y, et al. MicroRNA let-7b inhibits cell proliferation via upregulation of p21 in hepatocellular carcinoma. Cell Biosci 2020; 10(1): 83.
[http://dx.doi.org/10.1186/s13578-020-00443-x] [PMID: 32626571]
[105]
Rong J, Xu L, Hu Y, et al. Inhibition of let-7b-5p contributes to an anti-tumorigenic macrophage phenotype through the SOCS1/STAT pathway in prostate cancer. Cancer Cell Int 2020; 20(1): 470.
[http://dx.doi.org/10.1186/s12935-020-01563-7] [PMID: 33005103]
[106]
Wu A, Wu K, Li J, et al. Let-7a inhibits migration, invasion and epithelial-mesenchymal transition by targeting HMGA2 in nasopharyngeal carcinoma. J Transl Med 2015; 13(1): 105.
[http://dx.doi.org/10.1186/s12967-015-0462-8] [PMID: 25884389]
[107]
Li Y, Zhang X, Chen D, Ma C. Let-7a suppresses glioma cell proliferation and invasion through TGF-β/Smad3 signaling pathway by targeting HMGA2. Tumour Biol 2016; 37(6): 8107-19.
[http://dx.doi.org/10.1007/s13277-015-4674-6] [PMID: 26715270]
[108]
Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M. MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 2008; 18(5): 549-57.
[http://dx.doi.org/10.1038/cr.2008.45] [PMID: 18379589]
[109]
Yang N, Kaur S, Volinia S, et al. MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res 2008; 68(24): 10307-14.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1954] [PMID: 19074899]
[110]
Shell S, Park SM, Radjabi AR, et al. Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA 2007; 104(27): 11400-5.
[http://dx.doi.org/10.1073/pnas.0704372104] [PMID: 17600087]
[111]
Sun X, Xu C, Tang S-C, et al. Let-7c blocks estrogen-activated Wnt signaling in induction of self-renewal of breast cancer stem cells. Cancer Gene Ther 2016; 23(4): 83-9.
[http://dx.doi.org/10.1038/cgt.2016.3] [PMID: 26987290]
[112]
Calatayud D, Dehlendorff C, Boisen MK, et al. Tissue MicroRNA profiles as diagnostic and prognostic biomarkers in patients with resectable pancreatic ductal adenocarcinoma and periampullary cancers. Biomark Res 2017; 5(1): 8.
[http://dx.doi.org/10.1186/s40364-017-0087-6] [PMID: 28239461]
[113]
Chen K, Hou Y, Wang K, et al. Reexpression of Let-7g microRNA inhibits the proliferation and migration via K-Ras/HMGA2/snail axis in hepatocellular carcinoma. BioMed Res Int 2014; 2014: 742417.
[http://dx.doi.org/10.1155/2014/742417] [PMID: 24724096]
[114]
Qattan A, Intabli H, Alkhayal W, Eltabache C, Tweigieri T, Amer SB. Robust expression of tumor suppressor miRNA’s let-7 and miR-195 detected in plasma of Saudi female breast cancer patients. BMC Cancer 2017; 17(1): 799.
[http://dx.doi.org/10.1186/s12885-017-3776-5] [PMID: 29183284]
[115]
Lu L, Katsaros D, Rigault de la Longrais IA, Sochirca O, Yu H. Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 2007; 67(21): 10117-22.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2544] [PMID: 17974952]
[116]
Shi W, Zhang Z, Yang B, et al. Overexpression of microRNA let-7 correlates with disease progression and poor prognosis in hepatocellular carcinoma. Medicine (Baltimore) 2017; 96(32): e7764.
[http://dx.doi.org/10.1097/MD.0000000000007764] [PMID: 28796071]
[117]
Bi R, Wei W, Lu Y, et al. High hsa_circ_0020123 expression indicates poor progression to non-small cell lung cancer by regulating the miR-495/HOXC9 axis. Aging (Albany NY) 2020; 12(17): 17343-52.
[http://dx.doi.org/10.18632/aging.103722] [PMID: 32927434]
[118]
Xu X, Zhu S, Tao Z, Ye S. High circulating miR-18a, miR-20a, and miR-92a expression correlates with poor prognosis in patients with non-small cell lung cancer. Cancer Med 2018; 7(1): 21-31.
[http://dx.doi.org/10.1002/cam4.1238] [PMID: 29266846]
[119]
Shu XL, Fan CB, Long B, Zhou X, Wang Y. The anti-cancer effects of cisplatin on hepatic cancer are associated with modulation of miRNA-21 and miRNA-122 expression. Eur Rev Med Pharmacol Sci 2016; 20(21): 4459-65.
[PMID: 27874954]
[120]
He Z, Long J, Yang C, et al. LncRNA DGCR5 plays a tumor-suppressive role in glioma via the miR-21/Smad7 and miR-23a/PTEN axes. Aging (Albany NY) 2020; 12(20): 20285-307.
[http://dx.doi.org/10.18632/aging.103800] [PMID: 33085646]
[121]
Luo X, Li Z, Wang G, et al. MicroRNA-catalyzed cancer therapeutics based on DNA-programmed nanoparticle complex. ACS Appl Mater Interfaces 2017; 9(39): 33624-31.
[http://dx.doi.org/10.1021/acsami.7b09420] [PMID: 28915002]
[122]
Liu T, Liu D, Guan S, Dong M. Diagnostic role of circulating MiR-21 in colorectal cancer: a update meta-analysis. Ann Med 2021; 53(1): 87-102.
[http://dx.doi.org/10.1080/07853890.2020.1828617] [PMID: 33108223]
[123]
Huang ZP, Chen J, Seok HY, et al. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res 2013; 112(9): 1234-43.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.300682] [PMID: 23524588]
[124]
Yang Y, Del Re DP, Nakano N, et al. miR-206 mediates YAP-induced cardiac hypertrophy and survival. Circ Res 2015; 117(10): 891-904.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306624] [PMID: 26333362]
[125]
Wu XC, Zhao Y, Li C, et al. Expression and bioinformatics analysis of miRNA in ISO-induced rat cardiac hypertrophy. Chinese J Appl Physiol 2019; 35(5): 476-80.
[126]
He R, Ding C, Yin P, et al. MiR-1a-3p mitigates isoproterenol-induced heart failure by enhancing the expression of mitochondrial ND1 and COX1. Exp Cell Res 2019; 378(1): 87-97.
[http://dx.doi.org/10.1016/j.yexcr.2019.03.012] [PMID: 30853447]
[127]
Garikipati VNS, Verma SK, Jolardarashi D, et al. Therapeutic inhibition of miR-375 attenuates post-myocardial infarction inflammatory response and left ventricular dysfunction via PDK-1-AKT signalling axis. Cardiovasc Res 2017; 113(8): 938-49.
[http://dx.doi.org/10.1093/cvr/cvx052] [PMID: 28371849]
[128]
Fan ZG, Qu XL, Chu P, et al. MicroRNA-210 promotes angiogenesis in acute myocardial infarction. Mol Med Rep 2018; 17(4): 5658-65.
[http://dx.doi.org/10.3892/mmr.2018.8620] [PMID: 29484401]
[129]
Wang X, Tian L, Sun Q. Diagnostic and prognostic value of circulating miRNA‐499 and miRNA‐22 in acute myocardial infarction. J Clin Lab Anal 2020; 34(8): 2410-7.
[http://dx.doi.org/10.1002/jcla.23332] [PMID: 32529742]
[130]
Yin Y, Lv L, Wang W. Expression of miRNA 214 in the sera of elderly patients with acute myocardial infarction and its effect on cardiomyocyte apoptosis. Exp Ther Med 2019; 17(6): 4657-62.
[http://dx.doi.org/10.3892/etm.2019.7464] [PMID: 31086597]
[131]
Geng T, Song ZY, Xing JX, Wang BX, Dai SP, Xu ZS. Exosome derived from coronary serum of patients with myocardial infarction promotes angiogenesis through the miRNA-143/IGF-IR pathway. Int J Nanomedicine 2020; 15: 2647-58.
[http://dx.doi.org/10.2147/IJN.S242908] [PMID: 32368046]
[132]
Zhang XG, Wang LQ, Guan HL. Investigating the expression of miRNA-133 in animal models of myocardial infarction and its effect on cardiac function. Eur Rev Med Pharmacol Sci 2019; 23(13): 5934-40.
[PMID: 31298344]
[133]
Song Y, Zhang C, Zhang J, et al. Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction. Theranostics 2019; 9(8): 2346-60.
[http://dx.doi.org/10.7150/thno.29945] [PMID: 31149048]
[134]
Fan PC, Chen CC, Peng CC, et al. A circulating miRNA signature for early diagnosis of acute kidney injury following acute myocardial infarction. J Transl Med 2019; 17(1): 139.
[http://dx.doi.org/10.1186/s12967-019-1890-7] [PMID: 31039814]
[135]
Konovalova J, Gerasymchuk D, Parkkinen I, Chmielarz P, Domanskyi A. Interplay between MicroRNAs and oxidative stress in neurodegenerative diseases. Int J Mol Sci 2019; 20(23): 6055.
[http://dx.doi.org/10.3390/ijms20236055] [PMID: 31801298]
[136]
Miñones-Moyano E, Porta S, Escaramís G, et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 2011; 20(15): 3067-78.
[http://dx.doi.org/10.1093/hmg/ddr210] [PMID: 21558425]
[137]
Kim J, Inoue K, Ishii J, et al. A MicroRNA feedback circuit in midbrain dopamine neurons. Science 2007; 317(5842): 1220-4.
[http://dx.doi.org/10.1126/science.1140481] [PMID: 17761882]
[138]
Cho HJ, Liu G, Jin SM, et al. MicroRNA-205 regulates the expression of Parkinson’s disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet 2013; 22(3): 608-20.
[http://dx.doi.org/10.1093/hmg/dds470] [PMID: 23125283]
[139]
Lee SWL, Paoletti C, Campisi M, et al. MicroRNA delivery through nanoparticles. J Control Release 2019; 313: 80-95.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.007] [PMID: 31622695]
[140]
Wang WX, Rajeev BW, Stromberg AJ, et al. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 2008; 28(5): 1213-23.
[http://dx.doi.org/10.1523/JNEUROSCI.5065-07.2008] [PMID: 18234899]
[141]
Goodall EF, Heath PR, Bandmann O, Kirby J, Shaw PJ. Neuronal dark matter: The emerging role of microRNAs in neurodegeneration. Front Cell Neurosci 2013; 7: 178.
[http://dx.doi.org/10.3389/fncel.2013.00178] [PMID: 24133413]
[142]
Chen J, Zhao B, Zhao J, Li S. Potential roles of exosomal MicroRNAs as diagnostic biomarkers and therapeutic application in Alzheimer’s Disease. Neural Plast 2017; 2017: 1-12.
[http://dx.doi.org/10.1155/2017/7027380] [PMID: 28770113]
[143]
Gui Y, Liu H, Zhang L, Lv W, Hu X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2015; 6(35): 37043-53.
[http://dx.doi.org/10.18632/oncotarget.6158] [PMID: 26497684]
[144]
Gaughwin PM, Ciesla M, Lahiri N, Tabrizi SJ, Brundin P, Björkqvist M. Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum Mol Genet 2011; 20(11): 2225-37.
[http://dx.doi.org/10.1093/hmg/ddr111] [PMID: 21421997]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy