Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Metallopeptidases as Key Virulence Attributes of Clinically Relevant Protozoa: New Discoveries, Perspectives, and Frontiers of Knowledge

Author(s): Graziela Vargas Rigo, Fernanda Gomes Cardoso, Giulia Bongiorni Galego, Deisiane Fernanda da Rosa, André Luis Souza dos Santos* and Tiana Tasca*

Volume 24, Issue 4, 2023

Published on: 07 April, 2023

Page: [307 - 328] Pages: 22

DOI: 10.2174/1389203724666230306153001

Price: $65

Abstract

This article provides a comprehensive review of several subclasses of metallo-type peptidases expressed by the main clinically relevant protozoa, including Plasmodium spp., Toxoplasma gondii, Cryptosporidium spp., Leishmania spp., Trypanosoma spp., Entamoeba histolytica, Giardia duodenalis, and Trichomonas vaginalis. These species comprise a diverse group of unicellular eukaryotic microorganisms responsible for widespread and severe human infections. Metallopeptidases, defined as hydrolases with activity mediated by divalent metal cation, play important roles in the induction and maintenance of parasitic infections. In this context, metallopeptidases can be considered veritable virulence factors in protozoa with direct/indirect participation in several key pathophysiological processes, including adherence, invasion, evasion, excystation, central metabolism, nutrition, growth, proliferation, and differentiation. Indeed, metallopeptidases have become an important and valid target to search for new compounds with chemotherapeutic purposes. The present review aims to gather updates regarding metallopeptidase subclasses, exploring their participation in protozoa virulence as well as investigating the similarity of peptidase sequences through bioinformatic techniques in order to discover clusters of great relevance for the development of new broad antiparasitic molecules.

Graphical Abstract

[1]
Klemba, M.; Goldberg, D.E. Biological roles of proteases in parasitic protozoa. Annu. Rev. Biochem., 2002, 71(1), 275-305.
[http://dx.doi.org/10.1146/annurev.biochem.71.090501.145453] [PMID: 12045098]
[2]
Hartley, B.S. Proteolytic enzymes. Annu. Rev. Biochem., 1960, 29(1), 45-72.
[http://dx.doi.org/10.1146/annurev.bi.29.070160.000401] [PMID: 14400122]
[3]
Hackett, F.; Sajid, M.; Withers-Martinez, C.; Grainger, M.; Blackman, M.J. PfSUB-2: A second subtilisin-like protein in Plasmodium falciparum merozoites. Mol. Biochem. Parasitol., 1999, 103(2), 183-195.
[http://dx.doi.org/10.1016/S0166-6851(99)00122-X] [PMID: 10551362]
[4]
Bivona, A.E.; Sánchez Alberti, A.; Matos, M.N.; Cerny, N.; Cardoso, A.C.; Morales, C.; González, G.; Cazorla, S.I.; Malchiodi, E.L. Trypanosoma cruzi 80 kDa prolyl oligopeptidase (Tc80) as a novel immunogen for Chagas disease vaccine. PLoS Negl. Trop. Dis., 2018, 12(3), e0006384.
[http://dx.doi.org/10.1371/journal.pntd.0006384] [PMID: 29601585]
[5]
Ward, W.; Alvarado, L.; Rawlings, N.D.; Engel, J.C.; Franklin, C.; McKerrow, J.H. A primitive enzyme for a primitive cell: the protease required for excystation of Giardia. Cell, 1997, 89(3), 437-444.
[http://dx.doi.org/10.1016/S0092-8674(00)80224-X] [PMID: 9150143]
[6]
Makioka, A.; Kumagai, M.; Kobayashi, S.; Takeuchi, T. Involvement of serine proteases in the excystation and metacystic development of Entamoeba invadens. Parasitol. Res., 2009, 105(4), 977-987.
[http://dx.doi.org/10.1007/s00436-009-1478-x] [PMID: 19479279]
[7]
Rosenthal, P.J. Cysteine proteases of malaria parasites. Int. J. Parasitol., 2004, 34(13-14), 1489-1499.
[http://dx.doi.org/10.1016/j.ijpara.2004.10.003] [PMID: 15582526]
[8]
Duschak, V.; Couto, A. Cruzipain, the major cysteine protease of Trypanosoma cruzi: a sulfated glycoprotein antigen as relevant candidate for vaccine development and drug target. A review. Curr. Med. Chem., 2009, 16(24), 3174-3202.
[http://dx.doi.org/10.2174/092986709788802971] [PMID: 19689291]
[9]
Caffrey, C.R.; Hansell, E.; Lucas, K.D.; Brinen, L.S.; Alvarez, H.A.; Cheng, J.; Gwaltney, S.L., II; Roush, W.R.; Stierhof, Y.D.; Bogyo, M.; Steverding, D.; McKerrow, J.H. Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Mol. Biochem. Parasitol., 2001, 118(1), 61-73.
[http://dx.doi.org/10.1016/S0166-6851(01)00368-1] [PMID: 11704274]
[10]
Gastelum-Martínez, A.; León-Sicairos, C.; Plata-Guzmán, L.; Soto-Castro, L.; León-Sicairos, N.; de la Garza, M. Iron-modulated virulence factors of Entamoeba histolytica. Future Microbiol., 2018, 13(11), 1329-1341.
[http://dx.doi.org/10.2217/fmb-2018-0066] [PMID: 30238768]
[11]
Mottram, J.C.; Coombs, G.H.; Alexander, J. Cysteine peptidases as virulence factors of Leishmania. Curr. Opin. Microbiol., 2004, 7(4), 375-381.
[http://dx.doi.org/10.1016/j.mib.2004.06.010] [PMID: 15358255]
[12]
Mendoza-López, M.R.; Becerril-Garcia, C.; Fattel-Facenda, L.V.; Avila-Gonzalez, L.; Ruíz-Tachiquín, M.E.; Ortega-Lopez, J.; Arroyo, R. CP30, a cysteine proteinase involved in Trichomonas vaginalis cytoadherence. Infect. Immun., 2000, 68(9), 4907-4912.
[http://dx.doi.org/10.1128/IAI.68.9.4907-4912.2000] [PMID: 10948104]
[13]
Ocádiz-Ruiz, R.; Fonseca, W.; Martínez, M.B.; Ocádiz-Quintanar, R.; Orozco, E.; Rodríguez, M.A. Effect of the silencing of the Ehcp112 gene on the in vitro virulence of Entamoeba histolytica. Parasit. Vectors, 2013, 6(1), 248.
[http://dx.doi.org/10.1186/1756-3305-6-248] [PMID: 23981435]
[14]
Rawlings, N.D.; Barrett, A.J. Introduction: Metallopeptidases and their clans. In: Handbook of proteolytic enzymes; Academic Press: Cambridge, Massachusetts, 2004; pp. 231-267.
[http://dx.doi.org/10.1016/B978-0-12-079611-3.50075-6]
[15]
Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res., 2018, 46(D1), D624-D632.
[http://dx.doi.org/10.1093/nar/gkx1134] [PMID: 29145643]
[16]
Cerdà-Costa, N.; Xavier Gomis-Rüth, F. Architecture and function of metallopeptidase catalytic domains. Protein Sci., 2014, 23(2), 123-144.
[http://dx.doi.org/10.1002/pro.2400] [PMID: 24596965]
[17]
Fingleton, B. MMPs as therapeutic targets-Still a viable option? Semin. Cell Dev. Biol., 2008, 19(1), 61-68.
[http://dx.doi.org/10.1016/j.semcdb.2007.06.006] [PMID: 17693104]
[18]
Fernández, D.; Russi, S.; Vendrell, J.; Monod, M.; Pallarès, I. A functional and structural study of the major metalloprotease secreted by the pathogenic fungus Aspergillus fumigatus. Acta Crystallogr. D Biol. Crystallogr., 2013, 69(10), 1946-1957.
[http://dx.doi.org/10.1107/S0907444913017642] [PMID: 24100314]
[19]
Wu, J.W.; Chen, X.L. Extracellular metalloproteases from bacteria. Appl. Microbiol. Biotechnol., 2011, 92(2), 253-262.
[http://dx.doi.org/10.1007/s00253-011-3532-8] [PMID: 21845384]
[20]
Hall, B.G. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol., 2013, 30(5), 1229-1235.
[http://dx.doi.org/10.1093/molbev/mst012] [PMID: 23486614]
[21]
Jones, D.T.; Taylor, W.R.; Thornton, J.M. The rapid generation of mutation data matrices from protein sequences. Bioinformatics, 1992, 8(3), 275-282.
[http://dx.doi.org/10.1093/bioinformatics/8.3.275] [PMID: 1633570]
[22]
Adamek, M.; Alanjary, M.; Ziemert, N. Applied evolution: Phylogeny-based approaches in natural products research. Nat. Prod. Rep., 2019, 36(9), 1295-1312.
[http://dx.doi.org/10.1039/C9NP00027E] [PMID: 31475269]
[23]
Su, X.; Lane, K.D.; Xia, L.; Sá, J.M.; Wellems, T.E. Plasmodium genomics and genetics: new insights into malaria pathogenesis, drug resistance, epidemiology, and evolution. Clin. Microbiol. Rev., 2019, 32(4), e00019-e19.
[http://dx.doi.org/10.1128/CMR.00019-19] [PMID: 31366610]
[24]
Sinnis, P.; Zavala, F. The skin: Where malaria infection and the host immune response begin. Semin. Immunopathol., 2012, 34(6), 787-792.
[http://dx.doi.org/10.1007/s00281-012-0345-5] [PMID: 23053392]
[25]
Trampuz, A.; Jereb, M.; Muzlovic, I.; Prabhu, R.M. Clinical review: Severe malaria. Crit. Care, 2003, 7(4), 315-323.
[http://dx.doi.org/10.1186/cc2183] [PMID: 12930555]
[26]
Phillips, M.A.; Burrows, J.N.; Manyando, C.; van Huijsduijnen, R.H.; Van Voorhis, W.C.; Wells, T.N.C. Malaria. Nat. Rev. Dis. Primers, 2017, 3(1), 17050.
[http://dx.doi.org/10.1038/nrdp.2017.50] [PMID: 28770814]
[27]
Wu, Y.; Wang, X.; Liu, X.; Wang, Y. Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res., 2003, 13(4), 601-616.
[http://dx.doi.org/10.1101/gr.913403] [PMID: 12671001]
[28]
Florent, I.; Derhy, Z.; Allary, M.; Monsigny, M.; Mayer, R.; Schrével, J. A Plasmodium falciparum aminopeptidase gene belonging to the m1 family of zinc-metallopeptidases is expressed in erythrocytic stages. Mol. Biochem. Parasitol., 1998, 97(1-2), 149-160.
[http://dx.doi.org/10.1016/S0166-6851(98)00143-1] [PMID: 9879894]
[29]
Allary, M.; Schrevel, J.; Florent, I. Properties, stage-dependent expression and localization of Plasmodium falciparum M1 family zinc-aminopeptidase. Parasitology, 2002, 125(1), 1-10.
[http://dx.doi.org/10.1017/S0031182002001828] [PMID: 12166515]
[30]
Gavigan, C.S.; Dalton, J.P.; Bell, A. The role of aminopeptidases in haemoglobin degradation in Plasmodium falciparum-infected erythrocytes. Mol. Biochem. Parasitol., 2001, 117(1), 37-48.
[http://dx.doi.org/10.1016/S0166-6851(01)00327-9] [PMID: 11551630]
[31]
McGowan, S.; Porter, C.J.; Lowther, J.; Stack, C.M.; Golding, S.J.; Skinner-Adams, T.S.; Dalton, J.P. Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. Proc. Natl. Acad. Sci. USA, 2009, 106(8), 2537-2542.
[http://dx.doi.org/10.1073/pnas.0807398106]
[32]
González-Bacerio, J.; Fando, R.; Monte-Martinez, A.; Charli, J.L.; Chávez, M. Plasmodium falciparum M1-aminopeptidase: A promising target for the development of antimalarials. Curr. Drug Targets, 2014, 15(12), 1144-1165.
[http://dx.doi.org/10.2174/1389450115666141024115641] [PMID: 25341419]
[33]
Harbut, M.B.; Velmourougane, G.; Dalal, S.; Reiss, G.; Whisstock, J.C.; Onder, O.; Brisson, D.; McGowan, S.; Klemba, M.; Greenbaum, D.C. Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases. Proc. Natl. Acad. Sci. USA, 2011, 108(34), E526-E534.
[http://dx.doi.org/10.1073/pnas.1105601108] [PMID: 21844374]
[34]
Mathew, R.; Wunderlich, J.; Thivierge, K.; Cwiklinski, K.; Dumont, C.; Tilley, L.; Rohrbach, P.; Dalton, J.P. Biochemical and cellular characterisation of the Plasmodium falciparum M1 alanyl aminopeptidase (PfM1AAP) and M17 leucyl aminopeptidase (PfM17LAP). Sci. Rep., 2021, 11(1), 2854.
[http://dx.doi.org/10.1038/s41598-021-82499-4] [PMID: 33536500]
[35]
Eggleson, K.K.; Duffin, K.L.; Goldberg, D.E. Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. J. Biol. Chem., 1999, 274(45), 32411-32417.
[http://dx.doi.org/10.1074/jbc.274.45.32411] [PMID: 10542284]
[36]
Murata, C.E.; Goldberg, D.E. Plasmodium falciparum Falcilysin. J. Biol. Chem., 2003, 278(39), 38022-38028.
[http://dx.doi.org/10.1074/jbc.M306842200] [PMID: 12876284]
[37]
Ponpuak, M.; Klemba, M.; Park, M.; Gluzman, I.Y.; Lamppa, G.K.; Goldberg, D.E. A role for falcilysin in transit peptide degradation in the Plasmodium falciparum apicoplast. Mol. Microbiol., 2007, 63(2), 314-334.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05443.x] [PMID: 17074076]
[38]
Gardiner, D.L.; Trenholme, K.R.; Skinner-Adams, T.S.; Stack, C.M.; Dalton, J.P. Overexpression of leucyl aminopeptidase in Plasmodium falciparum parasites. Target for the antimalarial activity of bestatin. J. Biol. Chem., 2006, 281(3), 1741-1745.
[http://dx.doi.org/10.1074/jbc.M508955200] [PMID: 16286469]
[39]
Maric, S.; Donnelly, S.M.; Robinson, M.W.; Skinner-Adams, T.; Trenholme, K.R.; Gardiner, D.L.; Dalton, J.P.; Stack, C.M.; Lowther, J. The M17 leucine aminopeptidase of the malaria parasite Plasmodium falciparum: Importance of active site metal ions in the binding of substrates and inhibitors. Biochemistry, 2009, 48(23), 5435-5439.
[http://dx.doi.org/10.1021/bi9003638] [PMID: 19408962]
[40]
Stack, C.M.; Lowther, J.; Cunningham, E.; Donnelly, S.; Gardiner, D.L.; Trenholme, K.R.; Skinner-Adams, T.S.; Teuscher, F.; Grembecka, J.; Mucha, A.; Kafarski, P.; Lua, L.; Bell, A.; Dalton, J.P. Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase. A protease involved in amino acid regulation with potential for antimalarial drug development. J. Biol. Chem., 2007, 282(3), 2069-2080.
[http://dx.doi.org/10.1074/jbc.M609251200] [PMID: 17107951]
[41]
Lee, J.Y.; Song, S.M.; Seok, J.W.; Jha, B.K. Eun-Taek Han; Song, H.O.; Yu, H.S.; Hong, Y.; Kong, H.H.; Chung, D.I. M17 leucine aminopeptidase of the human malaria parasite Plasmodium vivax. Mol. Biochem. Parasitol., 2010, 170(1), 45-48.
[http://dx.doi.org/10.1016/j.molbiopara.2009.11.003] [PMID: 19931315]
[42]
Teuscher, F.; Lowther, J.; Skinner-Adams, T.S.; Spielmann, T.; Dixon, M.W.A.; Stack, C.M.; Donnelly, S.; Mucha, A.; Kafarski, P.; Vassiliou, S.; Gardiner, D.L.; Dalton, J.P.; Trenholme, K.R. The M18 aspartyl aminopeptidase of the human malaria parasite Plasmodium falciparum. J. Biol. Chem., 2007, 282(42), 30817-30826.
[http://dx.doi.org/10.1074/jbc.M704938200] [PMID: 17720817]
[43]
Lauterbach, S.B.; Coetzer, T.L. The M18 aspartyl aminopeptidase of Plasmodium falciparum binds to human erythrocyte spectrin in vitro. Malar. J., 2008, 7(1), 161.
[http://dx.doi.org/10.1186/1475-2875-7-161] [PMID: 18721457]
[44]
Sivaraman, K.K.; Oellig, C.A.; Huynh, K.; Atkinson, S.C.; Poreba, M.; Perugini, M.A.; Trenholme, K.R.; Gardiner, D.L.; Salvesen, G.; Drag, M.; Dalton, J.P.; Whisstock, J.C.; McGowan, S. X-ray crystal structure and specificity of the Plasmodium falciparum malaria aminopeptidase PfM18AAP. J. Mol. Biol., 2012, 422(4), 495-507.
[http://dx.doi.org/10.1016/j.jmb.2012.06.006] [PMID: 22709581]
[45]
Rout, S.; Mahapatra, R.K. in silico study of M18 aspartyl amino peptidase (M18AAP) of Plasmodium vivax as an antimalarial drug target. Bioorg. Med. Chem., 2019, 27(12), 2553-2571.
[http://dx.doi.org/10.1016/j.bmc.2019.03.039] [PMID: 30929948]
[46]
Lourido, S. Toxoplasma gondii. Trends Parasitol., 2019, 35(11), 944-945.
[http://dx.doi.org/10.1016/j.pt.2019.07.001] [PMID: 31345768]
[47]
Centers for Disease Control and Prevention: Toxoplasmosis. Available from: cdc.gov/dpdx/toxoplasmosis/index.html (Accessed on: March 27, 2022).
[48]
Milne, G.; Webster, J.P.; Walker, M. Toxoplasma gondii: An underestimated threat? Trends Parasitol., 2020, 36(12), 959-969.
[http://dx.doi.org/10.1016/j.pt.2020.08.005] [PMID: 33012669]
[49]
McAuley, J.B. Congenital toxoplasmosis. J. Pediatric Infect. Dis. Soc., 2014, 3(S1), S30-S35.
[http://dx.doi.org/10.1093/jpids/piu077] [PMID: 25232475]
[50]
Escotte-Binet, S.; Huguenin, A.; Aubert, D.; Martin, A.P.; Kaltenbach, M.; Florent, I.; Villena, I. Metallopeptidases of Toxoplasma gondii: In silico identification and gene expression. Parasite, 2018, 25, 26.
[http://dx.doi.org/10.1051/parasite/2018025] [PMID: 29737275]
[51]
Berthonneau, J.; Rodier, M.H.; El Moudni, B.; Jacquemin, J.L. Toxoplasma gondii: Purification and characterization of an immunogenic metallopeptidase. Exp. Parasitol., 2000, 95(2), 158-162.
[http://dx.doi.org/10.1006/expr.2000.4524] [PMID: 10910719]
[52]
Li, Q.; Jia, H.; Cao, S.; Zhang, Z.; Zheng, J.; Zhang, Y. Biochemical characterization of aminopeptidase N2 from Toxoplasma gondii. J. Vet. Med. Sci., 2017, 79(8), 1404-1411.
[http://dx.doi.org/10.1292/jvms.17-0119] [PMID: 28701624]
[53]
Marijanovic, E.M.; Weronika, S.K.; Andersen, J.; Aschenbrenner, J.C.; Webb, C.T.; Drag, M.; Drinkwater, N.; McGowan, S. X-ray crystal structure and specificity of the Toxoplasma gondii ME49 Tg APN2. Biochem. J., 2020, 477(19), 3819-3832.
[http://dx.doi.org/10.1042/BCJ20200569] [PMID: 32926129]
[54]
Lu, W.; Lu, C.; Zhang, Q.; Cao, S.; Zhang, Z.; Jia, H.; Zheng, J. Localization and enzyme kinetics of aminopeptidase N3 from Toxoplasma gondii. Parasitol. Res., 2020, 119(1), 357-364.
[http://dx.doi.org/10.1007/s00436-019-06512-6] [PMID: 31836922]
[55]
Ramírez-Flores, C.J.; Cruz-Mirón, R.; Arroyo, R.; Mondragón-Castelán, M.E.; Nopal-Guerrero, T.; González-Pozos, S.; Ríos-Castro, E.; Mondragón-Flores, R. Characterization of metalloproteases and serine proteases of Toxoplasma gondii tachyzoites and their effect on epithelial cells. Parasitol. Res., 2019, 118(1), 289-306.
[http://dx.doi.org/10.1007/s00436-018-6163-5] [PMID: 30506516]
[56]
Hajagos, B.E.; Turetzky, J.M.; Peng, E.D.; Cheng, S.J.; Ryan, C.M.; Souda, P.; Whitelegge, J.P.; Lebrun, M.; Dubremetz, J.F.; Bradley, P.J. Molecular dissection of novel trafficking and processing of the Toxoplasma gondii rhoptry metalloprotease toxolysin-1. Traffic, 2012, 13(2), 292-304.
[http://dx.doi.org/10.1111/j.1600-0854.2011.01308.x] [PMID: 22035499]
[57]
Laliberté, J.; Carruthers, V.B. Toxoplasma gondii toxolysin 4 is an extensively processed putative metalloproteinase secreted from micronemes. Mol. Biochem. Parasitol., 2011, 177(1), 49-56.
[http://dx.doi.org/10.1016/j.molbiopara.2011.01.009] [PMID: 21277910]
[58]
Huynh, M.H.; Roiko, M.S.; Gomes, A.O.; Schinke, E.N.; Schultz, A.J.; Agrawal, S.; Oellig, C.A.; Sexton, T.R.; Beauchamp, J.M.; Laliberté, J.; Sivaraman, K.K.; Hersh, L.B.; McGowan, S.; Carruthers, V.B. Toxoplasma gondii Toxolysin 4 contributes to efficient parasite egress from host cells. MSphere, 2021, 6(3), e00444-e21.
[http://dx.doi.org/10.1128/mSphere.00444-21] [PMID: 34190588]
[59]
Jia, H.; Nishikawa, Y.; Luo, Y.; Yamagishi, J.; Sugimoto, C.; Xuan, X. Characterization of a leucine aminopeptidase from Toxoplasma gondii. Mol. Biochem. Parasitol., 2010, 170(1), 1-6.
[http://dx.doi.org/10.1016/j.molbiopara.2009.11.005] [PMID: 19931316]
[60]
Zheng, J.; Jia, H.; Zheng, Y. Knockout of leucine aminopeptidase in Toxoplasma gondii using CRISPR/Cas9. Int. J. Parasitol., 2015, 45(2-3), 141-148.
[http://dx.doi.org/10.1016/j.ijpara.2014.09.003] [PMID: 25444863]
[61]
Zheng, J.; Cheng, Z.; Jia, H.; Zheng, Y. Characterization of aspartyl aminopeptidase from Toxoplasma gondii. Sci. Rep., 2016, 6(1), 34448.
[http://dx.doi.org/10.1038/srep34448] [PMID: 27678060]
[62]
Yang, M.; Zheng, J.; Jia, H.; Song, M. Functional characterization of X-prolyl aminopeptidase from Toxoplasma gondii. Parasitology, 2016, 143(11), 1443-1449.
[http://dx.doi.org/10.1017/S0031182016000986] [PMID: 27220680]
[63]
Karnataki, A.; DeRocher, A.E.; Coppens, I.; Feagin, J.E.; Parsons, M. A membrane protease is targeted to the relict plastid of toxoplasma via an internal signal sequence. Traffic, 2007, 8(11), 1543-1553.
[http://dx.doi.org/10.1111/j.1600-0854.2007.00637.x] [PMID: 17822404]
[64]
Karnataki, A.; DeRocher, A.E.; Feagin, J.E.; Parsons, M. Sequential processing of the Toxoplasma apicoplast membrane protein FtsH1 in topologically distinct domains during intracellular trafficking. Mol. Biochem. Parasitol., 2009, 166(2), 126-133.
[http://dx.doi.org/10.1016/j.molbiopara.2009.03.004] [PMID: 19450729]
[65]
Pinto, D.J.; Vinayak, S. Cryptosporidium: Host-parasite interactions and pathogenesis. Curr. Clin. Microbiol. Rep., 2021, 8(2), 62-67.
[http://dx.doi.org/10.1007/s40588-021-00159-7] [PMID: 33585166]
[66]
Tandel, J.; English, E.D.; Sateriale, A.; Gullicksrud, J.A.; Beiting, D.P.; Sullivan, M.C.; Pinkston, B.; Striepen, B. Life cycle progression and sexual development of the apicomplexan parasite Cryptosporidium parvum. Nat. Microbiol., 2019, 4(12), 2226-2236.
[http://dx.doi.org/10.1038/s41564-019-0539-x] [PMID: 31477896]
[67]
Strong, W.; Nelson, R.G. Preliminary profile of the Cryptosporidium parvum genome: an expressed sequence tag and genome survey sequence analysis. Mol. Biochem. Parasitol., 2000, 107(1), 1-32.
[http://dx.doi.org/10.1016/S0166-6851(99)00225-X] [PMID: 10717299]
[68]
Padda, R.S.; Tsai, A.; Chappell, C.L.; Okhuysen, P.C. Molecular cloning and analysis of the Cryptosporidium parvum aminopeptidase N gene. Int. J. Parasitol., 2002, 32(2), 187-197.
[http://dx.doi.org/10.1016/S0020-7519(01)00317-4] [PMID: 11812496]
[69]
Liu, S.; Roellig, D.M.; Guo, Y.; Li, N.; Frace, M.A.; Tang, K.; Zhang, L.; Feng, Y.; Xiao, L. Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics, 2016, 17(1), 1006.
[http://dx.doi.org/10.1186/s12864-016-3343-5] [PMID: 27931183]
[70]
Xu, R.; Guo, Y.; Li, N.; Zhang, Q.; Wu, H.; Ryan, U.; Feng, Y.; Xiao, L. Characterization of INS-15, a metalloprotease potentially involved in the invasion of Cryptosporidium parvum. Microorganisms, 2019, 7(10), 452.
[http://dx.doi.org/10.3390/microorganisms7100452] [PMID: 31615118]
[71]
Zhang, S.; Wang, Y.; Wu, H.; Li, N.; Jiang, J.; Guo, Y.; Feng, Y.; Xiao, L. Characterization of a species-specific insulinase-like protease in Cryptosporidium parvum. Front. Microbiol., 2019, 10, 354.
[http://dx.doi.org/10.3389/fmicb.2019.00354] [PMID: 30894838]
[72]
Ni, N.; Jia, R.; Guo, Y.; Li, N.; Wu, H.; Feng, Y.; Xiao, L. Expression and functional studies of INS-5, an insulinase-like protein in Cryptosporidium parvum. Front. Microbiol., 2020, 11, 719.
[http://dx.doi.org/10.3389/fmicb.2020.00719] [PMID: 32457703]
[73]
Xu, R.; Feng, Y.; Xiao, L.; Sibley, L.D. Insulinase-like protease 1 contributes to macrogamont formation in Cryptosporidium parvum. MBio, 2021, 12(2), e03405-e03420.
[http://dx.doi.org/10.1128/mBio.03405-20] [PMID: 33688009]
[74]
Xu, R.; Lai, C.; Yang, F.; Zhang, Q.; Li, N.; Guo, Y.; Xiao, L.; Feng, Y. Preliminary characterization of two small insulinase-like proteases in Cryptosporidium parvum. Front. Microbiol., 2021, 12, 651512.
[http://dx.doi.org/10.3389/fmicb.2021.651512] [PMID: 34093467]
[75]
Kang, J.M.; Ju, H.L.; Sohn, W.M.; Na, B.K. Molecular cloning and characterization of a M17 leucine aminopeptidase of Cryptosporidium parvum. Parasitology, 2011, 138(6), 682-690.
[http://dx.doi.org/10.1017/S0031182011000199] [PMID: 21414242]
[76]
McConville, M.J.; Naderer, T. Metabolic pathways required for the intracellular survival of Leishmania. Annu. Rev. Microbiol., 2011, 65(1), 543-561.
[http://dx.doi.org/10.1146/annurev-micro-090110-102913] [PMID: 21721937]
[77]
Murray, H.W.; Berman, J.D.; Davies, C.R.; Saravia, N.G. Advances in leishmaniasis. Lancet, 2005, 366(9496), 1561-1577.
[http://dx.doi.org/10.1016/S0140-6736(05)67629-5] [PMID: 16257344]
[78]
Kaye, P.; Scott, P. Leishmaniasis: Complexity at the host–pathogen interface. Nat. Rev. Microbiol., 2011, 9(8), 604-615.
[http://dx.doi.org/10.1038/nrmicro2608] [PMID: 21747391]
[79]
Yamamoto, E.S.; de Jesus, J.A.; Bezerra-Souza, A.; Brito, J.R.; Lago, J.H.G.; Laurenti, M.D.; Passero, L.F.D. Tolnaftate inhibits ergosterol production and impacts cell viability of Leishmania sp. Bioorg. Chem., 2020, 102, 104056.
[http://dx.doi.org/10.1016/j.bioorg.2020.104056] [PMID: 32653607]
[80]
Silva-Almeida, M.; Souza-Silva, F.; Pereira, B.A.S.; Ribeiro-Guimarães, M.L.; Alves, C.R. Overview of the organization of protease genes in the genome of Leishmania spp. Parasit. Vectors, 2014, 7(1), 387.
[http://dx.doi.org/10.1186/1756-3305-7-387] [PMID: 25142315]
[81]
Chaudhuri, G.; Chaudhuri, M.; Pan, A.; Chang, K.P. Surface acid proteinase (gp63) of Leishmania mexicana. J. Biol. Chem., 1989, 264(13), 7483-7489.
[http://dx.doi.org/10.1016/S0021-9258(18)83260-4] [PMID: 2708373]
[82]
Frommel, T.O.; Button, L.L.; Fujikura, Y.; McMaster, W.R. The major surface glycoprotein (GP63) is present in both life stages of Leishmania. Mol. Biochem. Parasitol., 1990, 38(1), 25-32.
[http://dx.doi.org/10.1016/0166-6851(90)90201-V] [PMID: 2181303]
[83]
Santos, A.L.S.; Branquinha, M.H.; D’Avila-Levy, C.M. The ubiquitous gp63-like metalloprotease from lower trypanosomatids: in the search for a function. An. Acad. Bras. Cienc., 2006, 78(4), 687-714.
[http://dx.doi.org/10.1590/S0001-37652006000400006] [PMID: 17143406]
[84]
Murase, L.S.; de Souza, J.V.P.; de Lima Neto, Q.A.; de Mello, T.F.P.; Cardoso, B.M.; Lera-Nonose, D.S.S.L.; Teixeira, J.J.V.; Lonardoni, M.V.C.; Demarchi, I.G. The role of metalloproteases in leishmania species infection in the new world: A systematic review. Parasitology, 2018, 145(12), 1499-1509.
[http://dx.doi.org/10.1017/S0031182018000367] [PMID: 29530102]
[85]
Estrada-Figueroa, L.A.; Díaz-Gandarilla, J.A.; Hernández-Ramírez, V.I.; Arrieta-González, M.M.; Osorio-Trujillo, C.; Rosales-Encina, J.L.; Toledo-Leyva, A.; Talamás-Rohana, P. Leishmania mexicana gp63 is the enzyme responsible for cyclooxygenase (COX) activity in this parasitic protozoa. Biochimie, 2018, 151, 73-84.
[http://dx.doi.org/10.1016/j.biochi.2018.05.016] [PMID: 29864507]
[86]
Antonia, A.L.; Gibbs, K.D.; Trahair, E.D.; Pittman, K.J.; Martin, A.T.; Schott, B.H.; Smith, J.S.; Rajagopal, S.; Thompson, J.W.; Reinhardt, R.L.; Ko, D.C. Pathogen evasion of chemokine response through suppression of CXCL10. Front. Cell. Infect. Microbiol., 2019, 9, 280.
[http://dx.doi.org/10.3389/fcimb.2019.00280] [PMID: 31440475]
[87]
Antonia, A.L.; Barnes, A.B.; Martin, A.T.; Wang, L.; Ko, D.C. Variation in Leishmania chemokine suppression driven by diversification of the GP63 virulence factor. PLoS Negl. Trop. Dis., 2021, 15(10), e0009224.
[http://dx.doi.org/10.1371/journal.pntd.0009224] [PMID: 34710089]
[88]
Chan, A.; Ayala, J.M.; Alvarez, F.; Piccirillo, C.; Dong, G.; Langlais, D.; Olivier, M. The role of Leishmania GP63 in the modulation of innate inflammatory response to Leishmania major infection. PLoS One, 2021, 16(12), e0262158.
[http://dx.doi.org/10.1371/journal.pone.0262158] [PMID: 34972189]
[89]
da Silva Lira Filho, A.; Fajardo, E.F.; Chang, K.P.; Clément, P.; Olivier, M. Leishmania exosomes/extracellular vesicles containing gp63 are essential for enhance cutaneous leishmaniasis development upon co-inoculation of Leishmania amazonensis and its exosomes. Front. Cell. Infect. Microbiol., 2022, 11, 709258.
[http://dx.doi.org/10.3389/fcimb.2021.709258] [PMID: 35186777]
[90]
Arango Duque, G.; Jardim, A.; Gagnon, É.; Fukuda, M.; Descoteaux, A. The host cell secretory pathway mediates the export of Leishmania virulence factors out of the parasitophorous vacuole. PLoS Pathog., 2019, 15(7), e1007982.
[http://dx.doi.org/10.1371/journal.ppat.1007982] [PMID: 31356625]
[91]
Ropón-Palacios, G.; Chenet-Zuta, M.E.; Otazu, K.; Olivos-Ramirez, G.E.; Camps, I. Novel multi-epitope protein containing conserved epitopes from different Leishmania species as potential vaccine candidate: Integrated immunoinformatics and molecular dynamics approach. Comput. Biol. Chem., 2019, 83, 107157.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.107157] [PMID: 31751887]
[92]
Zhang, J.; He, J.; Liao, X.; Xiao, Y.; Liang, C.; Zhou, Q.; Chen, H.; Zheng, Z.; Qin, H.; Chen, D.; Chen, Q.; Li, J.; Chen, J. Development of dominant epitope-based vaccines encoding Gp63, Kmp-11 and Amastin against visceral leishmaniasis. Immunobiology, 2021, 226(3), 152085.
[http://dx.doi.org/10.1016/j.imbio.2021.152085] [PMID: 33910113]
[93]
da Silva Vieira, T.; Arango Duque, G.; Ory, K.; Gontijo, C.M.; Soares, R.P.; Descoteaux, A. Leishmania braziliensis: strain-specific modulation of phagosome maturation. Front. Cell. Infect. Microbiol., 2019, 9, 319.
[http://dx.doi.org/10.3389/fcimb.2019.00319] [PMID: 31555609]
[94]
Morty, R.E.; Morehead, J. Cloning and characterization of a leucyl aminopeptidase from three pathogenic Leishmania species. J. Biol. Chem., 2002, 277(29), 26057-26065.
[http://dx.doi.org/10.1074/jbc.M202779200] [PMID: 12006595]
[95]
Aguado, M.E.; González-Matos, M.; Izquierdo, M.; Quintana, J.; Field, M.C.; González-Bacerio, J. Expression in Escherichia coli, purification and kinetic characterization of LAPLm, a Leishmania major M17-aminopeptidase. Protein Expr. Purif., 2021, 183, 105877.
[http://dx.doi.org/10.1016/j.pep.2021.105877] [PMID: 33775769]
[96]
Bhat, S.Y.; Qureshi, I.A. Mutations of key substrate binding residues of leishmanial peptidase T alter its functional and structural dynamics. Biochim. Biophys. Acta, Gen. Subj., 2020, 1864(1), 129465.
[http://dx.doi.org/10.1016/j.bbagen.2019.129465] [PMID: 31676291]
[97]
Bhat, S.Y.; Dey, A.; Qureshi, I.A. Structural and functional highlights of methionine aminopeptidase 2 from Leishmania donovani. Int. J. Biol. Macromol., 2018, 115, 940-954.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.090] [PMID: 29680505]
[98]
Kumar, R.; Tiwari, K.; Dubey, V.K. Methionine aminopeptidase 2 is a key regulator of apoptotic like cell death in Leishmania donovani. Sci. Rep., 2017, 7(1), 95.
[http://dx.doi.org/10.1038/s41598-017-00186-9] [PMID: 28273904]
[99]
Angheben, A.; Boix, L.; Buonfrate, D.; Gobbi, F.; Bisoffi, Z.; Pupella, S.; Gandini, G.; Aprili, G. Chagas disease and transfusion medicine: A perspective from non-endemic countries. Blood Transfus., 2015, 13(4), 540-550.
[http://dx.doi.org/10.2450/2015.0040-15] [PMID: 26513769]
[100]
Bern, C. Chagas’ disease. N. Engl. J. Med., 2015, 373(5), 456-466.
[http://dx.doi.org/10.1056/NEJMra1410150] [PMID: 26222561]
[101]
Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet, 2018, 391(10115), 82-94.
[http://dx.doi.org/10.1016/S0140-6736(17)31612-4] [PMID: 28673423]
[102]
Brun, R.; Blum, J.; Chappuis, F.; Burri, C. Human African trypanosomiasis. Lancet, 2010, 375(9709), 148-159.
[http://dx.doi.org/10.1016/S0140-6736(09)60829-1] [PMID: 19833383]
[103]
Romero-Meza, G.; Mugnier, M.R. Trypanosoma brucei. Trends Parasitol., 2020, 36(6), 571-572.
[http://dx.doi.org/10.1016/j.pt.2019.10.007] [PMID: 31757771]
[104]
Büscher, P.; Cecchi, G.; Jamonneau, V.; Priotto, G. Human African trypanosomiasis. Lancet, 2017, 390(10110), 2397-2409.
[http://dx.doi.org/10.1016/S0140-6736(17)31510-6] [PMID: 28673422]
[105]
Morty, R.E.; Vadász, I.; Bulau, P.; Dive, V.; Oliveira, V.; Seeger, W.; Juliano, L. Tropolysin, a new oligopeptidase from African trypanosomes. Biochemistry, 2005, 44(44), 14658-14669.
[http://dx.doi.org/10.1021/bi051035k] [PMID: 16262265]
[106]
Grandgenett, P.M.; Coughlin, B.C.; Kirchhoff, L.V.; Donelson, J.E. Differential expression of GP63 genes in Trypanosoma cruzi. Mol. Biochem. Parasitol., 2000, 110(2), 409-415.
[http://dx.doi.org/10.1016/S0166-6851(00)00275-9] [PMID: 11071294]
[107]
Cuevas, I.C.; Cazzulo, J.J.; Sánchez, D.O. gp63 homologues in Trypanosoma cruzi: Surface antigens with metalloprotease activity and a possible role in host cell infection. Infect. Immun., 2003, 71(10), 5739-5749.
[http://dx.doi.org/10.1128/IAI.71.10.5739-5749.2003] [PMID: 14500495]
[108]
Jaffe, C.L.; Dwyer, D.M. Extracellular release of the surface metalloprotease, gp63, from Leishmania and insect trypanosomatids. Parasitol. Res., 2003, 91(3), 229-237.
[http://dx.doi.org/10.1007/s00436-003-0960-0] [PMID: 12923634]
[109]
LaCount, D.J.; Gruszynski, A.E.; Grandgenett, P.M.; Bangs, J.D.; Donelson, J.E. Expression and function of the Trypanosoma brucei major surface protease (GP63) genes. J. Biol. Chem., 2003, 278(27), 24658-24664.
[http://dx.doi.org/10.1074/jbc.M301451200] [PMID: 12707278]
[110]
Grandgenett, P.M.; Otsu, K.; Wilson, H.R.; Wilson, M.E.; Donelson, J.E. A function for a specific zinc metalloprotease of African trypanosomes. PLoS Pathog., 2007, 3(10), e150.
[http://dx.doi.org/10.1371/journal.ppat.0030150] [PMID: 17953481]
[111]
Peña-Diaz, P.; Vancová, M.; Resl, C.; Field, M.C.; Lukeš, J. A leucine aminopeptidase is involved in kinetoplast DNA segregation in Trypanosoma brucei. PLoS Pathog., 2017, 13(4), e1006310.
[http://dx.doi.org/10.1371/journal.ppat.1006310] [PMID: 28388690]
[112]
Cadavid-Restrepo, G.; Gastardelo, T.S.; Faudry, E.; de Almeida, H.; Bastos, I.M.D.; Negreiros, R.S.; Lima, M.M.; Assumpção, T.C.; Almeida, K.C.; Ragno, M.; Ebel, C.; Ribeiro, B.M.; Felix, C.R.; Santana, J.M. The major leucyl aminopeptidase of Trypanosoma cruzi (LAPTc) assembles into a homohexamer and belongs to the M17 family of metallopeptidases. BMC Biochem., 2011, 12(1), 46.
[http://dx.doi.org/10.1186/1471-2091-12-46] [PMID: 21861921]
[113]
Izquierdo, M.; Aguado, M.E.; Zoltner, M.; González-Bacerio, J. High-level expression in Escherichia coli, purification and kinetic characterization of LAPTc, a Trypanosoma cruzi M17-aminopeptidase. Protein J., 2019, 38(2), 167-180.
[http://dx.doi.org/10.1007/s10930-019-09823-w] [PMID: 30905022]
[114]
Ximénez, C.; Cerritos, R.; Rojas, L.; Dolabella, S.; Morán, P.; Shibayama, M.; González, E.; Valadez, A.; Hernández, E.; Valenzuela, O.; Limón, A.; Partida, O.; Silva, E.F. Human amebiasis: Breaking the paradigm? Int. J. Environ. Res. Public Health, 2010, 7(3), 1105-1120.
[http://dx.doi.org/10.3390/ijerph7031105] [PMID: 20617021]
[115]
Kantor, M.; Abrantes, A.; Estevez, A.; Schiller, A.; Torrent, J.; Gascon, J.; Hernandez, R.; Ochner, C. Entamoeba histolytica: Updates in clinical manifestation, pathogenesis, and vaccine development. Can. J. Gastroenterol. Hepatol., 2018, 2018, 1-6.
[http://dx.doi.org/10.1155/2018/4601420] [PMID: 30631758]
[116]
Carrero, J.C.; Reyes-López, M.; Serrano-Luna, J.; Shibayama, M.; Unzueta, J.; León-Sicairos, N.; de la Garza, M. Intestinal amoebiasis: 160 years of its first detection and still remains as a health problem in developing countries. Int. J. Med. Microbiol., 2020, 310(1), 151358.
[http://dx.doi.org/10.1016/j.ijmm.2019.151358] [PMID: 31587966]
[117]
König, C.; Honecker, B.; Wilson, I.W.; Weedall, G.D.; Hall, N.; Roeder, T.; Metwally, N.G.; Bruchhaus, I. Taxon-specific proteins of the pathogenic entamoeba species E. histolytica and E. nuttalli. Front. Cell. Infect. Microbiol., 2021, 11, 641472.
[http://dx.doi.org/10.3389/fcimb.2021.641472] [PMID: 33816346]
[118]
Teixeira, J.E.; Sateriale, A.; Bessoff, K.E.; Huston, C.D. Control of Entamoeba histolytica adherence involves metallosurface protease 1, an M8 family surface metalloprotease with homology to leishmanolysin. Infect. Immun., 2012, 80(6), 2165-2176.
[http://dx.doi.org/10.1128/IAI.06389-11] [PMID: 22451519]
[119]
Hasan, M.M.; Teixeira, J.E.; Huston, C.D. Invadosome-mediated human extracellular matrix degradation by Entamoeba histolytica. Infect. Immun., 2018, 86(9), e00287-e18.
[http://dx.doi.org/10.1128/IAI.00287-18] [PMID: 29914929]
[120]
Roncolato, E.C.; Teixeira, J.E.; Barbosa, J.E.; Zambelli Ramalho, L.N.; Huston, C.D. Immunization with the Entamoeba histolytica surface metalloprotease EhMSP-1 protects hamsters from amebic liver abscess. Infect. Immun., 2015, 83(2), 713-720.
[http://dx.doi.org/10.1128/IAI.02490-14] [PMID: 25452550]
[121]
Meyer, M.; Fehling, H.; Matthiesen, J.; Lorenzen, S.; Schuldt, K.; Bernin, H.; Bruchhaus, I. Overexpression of differentially expressed genes identified in non-pathogenic and pathogenic Entamoeba histolytica clones allow identification of new pathogenicity factors involved in amoebic liver abscess formation. PLoS Pathog., 2016, 12(8), e1005853.
[http://dx.doi.org/10.1371/journal.ppat.1005853] [PMID: 27575775]
[122]
Bennett, J.E.; Dolin, R.; Blaser, M.J. Mandell, douglas, and bennett’s principles and practice of infectious diseases E-book; Elsevier Health Sciences: Amsterdam, 2019.
[123]
Lacerda, A.G.; Lira, M. Acanthamoeba keratitis: A review of biology, pathophysiology and epidemiology. Ophthalmic Physiol. Opt., 2021, 41(1), 116-135.
[http://dx.doi.org/10.1111/opo.12752] [PMID: 33119189]
[124]
Lloyd, D. Encystment in Acanthamoeba castellanii: A review. Exp. Parasitol., 2014, 145, S20-S27.
[http://dx.doi.org/10.1016/j.exppara.2014.03.026] [PMID: 24726698]
[125]
Lee, Y.R.; Na, B.K.; Moon, E.K.; Song, S.M.; Joo, S.Y.; Kong, H.H.; Goo, Y.K.; Chung, D.I.; Hong, Y. Essential role for an M17 leucine aminopeptidase in encystation of Acanthamoeba castellanii. PLoS One, 2015, 10(6), e0129884.
[http://dx.doi.org/10.1371/journal.pone.0129884] [PMID: 26075721]
[126]
Einarsson, E.; Ma’ayeh, S.; Svärd, S.G. An up-date on Giardia and giardiasis. Curr. Opin. Microbiol., 2016, 34, 47-52.
[http://dx.doi.org/10.1016/j.mib.2016.07.019] [PMID: 27501461]
[127]
Barash, N.R.; Nosala, C.; Pham, J.K.; McInally, S.G.; Gourguechon, S.; McCarthy-Sinclair, B.; Dawson, S.C. Giardia colonizes and encysts in high-density foci in the murine small intestine. MSphere, 2017, 2(3), e00343-e16.
[http://dx.doi.org/10.1128/mSphere.00343-16] [PMID: 28656177]
[128]
Allain, T.; Buret, A.G. Pathogenesis and post-infectious complications in giardiasis. Adv. Parasitol., 2020, 107, 173-199.
[http://dx.doi.org/10.1016/bs.apar.2019.12.001] [PMID: 32122529]
[129]
Pires, S.M.; Fischer-Walker, C.L.; Lanata, C.F.; Devleesschauwer, B.; Hall, A.J.; Kirk, M.D.; Duarte, A.S.R.; Black, R.E.; Angulo, F.J. Aetiology-specific estimates of the global and regional incidence and mortality of diarrhoeal diseases commonly transmitted through food. PLoS One, 2015, 10(12), e0142927.
[http://dx.doi.org/10.1371/journal.pone.0142927] [PMID: 26632843]
[130]
Bartelt, L.A.; Sartor, R.B. Advances in understanding Giardia: Determinants and mechanisms of chronic sequelae. F1000Prime Rep., 2015, 7, 62.
[http://dx.doi.org/10.12703/P7-62] [PMID: 26097735]
[131]
Ryan, U.; Hijjawi, N.; Feng, Y.; Xiao, L. Giardia: An under-reported foodborne parasite. Int. J. Parasitol., 2019, 49(1), 1-11.
[http://dx.doi.org/10.1016/j.ijpara.2018.07.003] [PMID: 30391227]
[132]
Davids, B.J.; Gilbert, M.A.; Liu, Q.; Reiner, D.S.; Smith, A.J.; Lauwaet, T.; Lee, C.; McArthur, A.G.; Gillin, F.D. An atypical proprotein convertase in Giardia lamblia differentiation. Mol. Biochem. Parasitol., 2011, 175(2), 169-180.
[http://dx.doi.org/10.1016/j.molbiopara.2010.11.008] [PMID: 21075147]
[133]
Lalle, M.; Camerini, S.; Cecchetti, S.; Fantauzzi, C.B.; Crescenzi, M.; Pozio, E. Giardia duodenalis 14-3-3 protein is polyglycylated by a tubulin tyrosine ligase-like member and deglycylated by two metallocarboxypeptidases. J. Biol. Chem., 2011, 286(6), 4471-4484.
[http://dx.doi.org/10.1074/jbc.M110.181511] [PMID: 21135098]
[134]
Rowley, J.; Vander Hoorn, S.; Korenromp, E.; Low, N.; Unemo, M.; Abu-Raddad, L.J.; Chico, R.M.; Smolak, A.; Newman, L.; Gottlieb, S.; Thwin, S.S.; Broutet, N.; Taylor, M.M. Chlamydia, gonorrhoea, trichomoniasis and syphilis: Global prevalence and incidence estimates, 2016. Bull. World Health Organ., 2019, 97(8), 548-562P.
[http://dx.doi.org/10.2471/BLT.18.228486] [PMID: 31384073]
[135]
Menezes, C.B.; Amanda Piccoli Frasson, A.P.; Tasca, T. Trichomoniasis – are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microb. Cell, 2016, 3(9), 404-418.
[http://dx.doi.org/10.15698/mic2016.09.526] [PMID: 28357378]
[136]
Edwards, T.; Burke, P.; Smalley, H.; Hobbs, G. Trichomonas vaginalis: Clinical relevance, pathogenicity and diagnosis. Crit. Rev. Microbiol., 2016, 42(3), 406-417.
[PMID: 25383648]
[137]
Wendel, K.A.; Workowski, K.A. Trichomoniasis: Challenges to appropriate management. Clin. Infect. Dis., 2007, 44(S3), S123-S129.
[http://dx.doi.org/10.1086/511425] [PMID: 17342665]
[138]
Muzny, C.A.; Van Gerwen, O.T. Secnidazole for trichomoniasis in women and men. Sex. Med. Rev., 2022, 10(2), 255-262.
[http://dx.doi.org/10.1016/j.sxmr.2021.12.004] [PMID: 35153156]
[139]
Kirkcaldy, R.D.; Augostini, P.; Asbel, L.E.; Bernstein, K.T.; Kerani, R.P.; Mettenbrink, C.J.; Pathela, P.; Schwebke, J.R.; Secor, W.E.; Workowski, K.A.; Davis, D.; Braxton, J.; Weinstock, H.S. Trichomonas vaginalis antimicrobial drug resistance in 6 US cities, STD Surveillance Network, 2009-2010. Emerg. Infect. Dis., 2012, 18(6), 939-943.
[http://dx.doi.org/10.3201/eid1806.111590] [PMID: 22608054]
[140]
Ma, L.; Meng, Q.; Cheng, W.; Sung, Y.; Tang, P.; Hu, S.; Yu, J. Involvement of the GP63 protease in infection of Trichomonas vaginalis. Parasitol. Res., 2011, 109(1), 71-79.
[http://dx.doi.org/10.1007/s00436-010-2222-2] [PMID: 21221643]
[141]
Quan, J.H.; Choi, I.W.; Yang, J.B.; Zhou, W.; Cha, G.H.; Zhou, Y.; Ryu, J.S.; Lee, Y.H. Trichomonas vaginalis metalloproteinase induces mTOR cleavage of SiHa cells. Korean J. Parasitol., 2014, 52(6), 595-603.
[http://dx.doi.org/10.3347/kjp.2014.52.6.595] [PMID: 25548410]
[142]
Quintas-Granados, L.I.; Villalpando, J.L.; Vázquez-Carrillo, L.I.; Arroyo, R.; Mendoza-Hernández, G.; Álvarez-Sánchez, M.E. TvMP50 is an immunogenic metalloproteinase during male trichomoniasis. Mol. Cell. Proteomics, 2013, 12(7), 1953-1964.
[http://dx.doi.org/10.1074/mcp.M112.022012] [PMID: 23579185]
[143]
Puente-Rivera, J.; Villalpando, J.L.; Villalobos-Osnaya, A.; Vázquez-Carrillo, L.I.; León-Ávila, G.; Ponce-Regalado, M.D.; López-Camarillo, C.; Elizalde-Contreras, J.M.; Ruiz-May, E.; Arroyo, R.; Alvarez-Sánchez, M.E. The 50 kDa metalloproteinase TvMP50 is a zinc-mediated Trichomonas vaginalis virulence factor. Mol. Biochem. Parasitol., 2017, 217, 32-41.
[http://dx.doi.org/10.1016/j.molbiopara.2017.09.001] [PMID: 28887063]
[144]
Arreola, R.; Villalpando, J.L.; Puente-Rivera, J.; Morales-Montor, J.; Rudiño-Piñera, E.; Alvarez-Sánchez, M.E. Trichomonas vaginalis metalloproteinase TvMP50 is a monomeric Aminopeptidase P-like enzyme. Mol. Biotechnol., 2018, 60(8), 563-575.
[http://dx.doi.org/10.1007/s12033-018-0097-0] [PMID: 29936696]
[145]
Rigo, G.V.; Joaquim, A.R.; Macedo, A.J.; de Andrade, S.F.; Tasca, T. Iron chelation and inhibition of metallopeptidases mediate anti-Trichomonas vaginalis activity by a novel 8-hydroxyquinoline derivative. Bioorg. Chem., 2022, 125, 105912.
[http://dx.doi.org/10.1016/j.bioorg.2022.105912] [PMID: 35660839]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy