Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Interplay between Noncoding RNAs and p21 Signaling in Gastrointestinal Cancer: From Tumorigenesis to Metastasis

Author(s): Farzad Rahmani*, Mehrdad Zandigohar, Pegah Safavi, Maryam Behzadi, Zeynab Ghorbani, Mahya Payazdan, Gordon Ferns, Seyed Mahdi Hassanian and Amir Avan*

Volume 29, Issue 10, 2023

Published on: 29 March, 2023

Page: [766 - 776] Pages: 11

DOI: 10.2174/1381612829666230306123455

Price: $65

Abstract

Non-coding RNAs (ncRNAs) are emerging as important regulators in various pathological conditions, including human cancers. NcRNAs exert potentially crucial effects on cell cycle progression, proliferation, and invasion in cancer cells by targeting various cell cycle-related proteins at transcriptional and post-transcriptional levels. As one of the key cell cycle regulatory proteins, p21 is involved in various processes, including the cellular response to DNA damage, cell growth, invasion, metastasis, apoptosis, and senescence. P21 has been shown to have either a tumor-suppressive or oncogenic effect depending on the cellular localization and posttranslational modifications. P21 exerts a significant regulatory effect on both G1/S and G2/M checkpoints by regulating the function of cyclin-dependent kinase enzymes (CDKs) or interacting with proliferating cell nuclear antigen (PCNA). P21 has an important effect on the cellular response to DNA damage by separating DNA replication enzymes from PCNA and inhibiting DNA synthesis resulting in G1 phase arrest. Furthermore, p21 has been shown to negatively regulate the G2/M checkpoint through the inactivation of cyclin-CDK complexes. In response to any cell damage caused by genotoxic agents, p21 exerts its regulatory effects by nuclear preservation of cyclin B1-CDK1 and preventing their activation. Notably, several ncRNAs, including lncRNAs and miRNAs, have been shown to be involved in tumor initiation and progression through the regulation of the p21 signaling axis. In this review, we discuss the miRNA/lncRNA-dependent mechanisms that regulate p21 and their effects on gastrointestinal tumorigenesis. A better understanding of the regulatory effects of ncRNAs on the p21 signaling may help to discover novel therapeutic targets in gastrointestinal cancer.

[1]
Park JY, Herrero R. Recent progress in gastric cancer prevention. Best Pract Res Clin Gastroenterol 2021; 50-51: 101733.
[http://dx.doi.org/10.1016/j.bpg.2021.101733] [PMID: 33975687]
[2]
Shafabakhsh R, Arianfar F, Vosough M, et al. Autophagy and gastrointestinal cancers: The behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther 2021; 28(12): 1229-55.
[http://dx.doi.org/10.1038/s41417-020-00272-7] [PMID: 33432087]
[3]
Weng MT, Chiu YT, Wei PY, Chiang CW, Fang HL, Wei SC. Microbiota and gastrointestinal cancer. J Formos Med Assoc 2019; 118 (Suppl. 1): S32-41.
[http://dx.doi.org/10.1016/j.jfma.2019.01.002] [PMID: 30655033]
[4]
Ebrahimi V, Soleimanian A, Ebrahimi T, et al. Epigenetic modifications in gastric cancer: Focus on DNA methylation. Gene 2020; 742: 144577.
[http://dx.doi.org/10.1016/j.gene.2020.144577] [PMID: 32171825]
[5]
Parveen S, Ashfaq H, Shahid M, Kanwal A, Tayyeb A. Emerging therapeutic role of CDK inhibitors in targeting cancer stem cells. Journal of Biomedical Research & Environmental Sciences 2021; 2(11): 1111-6.
[http://dx.doi.org/10.37871/jbres1355]
[6]
Xiao W, Li J, Hu J, et al. Circular RNAs in cell cycle regulation: Mechanisms to clinical significance. Cell Prolif 2021; 54(12): e13143.
[http://dx.doi.org/10.1111/cpr.13143] [PMID: 34672397]
[7]
Chen J, Liu S, Hu X. Long non-coding RNAs: Crucial regulators of gastrointestinal cancer cell proliferation. Cell Death Discov 2018; 4(1): 50.
[http://dx.doi.org/10.1038/s41420-018-0051-8] [PMID: 29736267]
[8]
Kreis N-N, Louwen F, Yuan J. The multifaceted p21 (Cip1/Waf1/CDKN1A) in cell differentiation, migration and cancer therapy. Cancers 2019; 11(9): 1220.
[http://dx.doi.org/10.3390/cancers11091220] [PMID: 31438587]
[9]
Singh G, Storey KB. Regulation of the cell cycle under anoxia stress in tail muscle and hepatopancreas of the freshwater crayfish, Orconectes virilis. Comp Biochem Physiol A Mol Integr Physiol 2022; 269: 111215.
[http://dx.doi.org/10.1016/j.cbpa.2022.111215] [PMID: 35429664]
[10]
Shi T, van Soest DMK, Polderman PE, Burgering BMT, Dansen TB. DNA damage and oxidant stress activate p53 through differential upstream signaling pathways. Free Radic Biol Med 2021; 172: 298-311.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.06.013] [PMID: 34144191]
[11]
Shamloo B, Usluer S. p21 in cancer research. Cancers 2019; 11(8): 1178.
[http://dx.doi.org/10.3390/cancers11081178] [PMID: 31416295]
[12]
Mansilla SF, De La Vega MB, Calzetta NL, Siri SO, Gottifredi V. CDK-independent and PCNA-dependent functions of p21 in DNA replication. Genes 2020; 11(6): 593.
[http://dx.doi.org/10.3390/genes11060593] [PMID: 32481484]
[13]
Kciuk M, Gielecińska A, Mujwar S, Mojzych M, Kontek R. Cyclin-dependent kinases in DNA damage response. (BBA) Reviews on Cancer 2022: 188716.
[http://dx.doi.org/10.1016/j.bbcan.2022.188716]
[14]
Chen SM, Lin TK, Tseng YY, et al. Targeting inhibitors of apoptosis proteins suppresses medulloblastoma cell proliferation via G2/M phase arrest and attenuated neddylation of p21. Cancer Med 2018; 7(8): 3988-4003.
[http://dx.doi.org/10.1002/cam4.1658] [PMID: 29984917]
[15]
Al Bitar S, Gali-Muhtasib H. The role of the cyclin dependent kinase inhibitor p21cip1/waf1 in targeting cancer: Molecular mechanisms and novel therapeutics. Cancers 2019; 11(10): 1475.
[http://dx.doi.org/10.3390/cancers11101475] [PMID: 31575057]
[16]
Zhou Y, Tian B, Tang J, et al. SNHG7: A novel vital oncogenic lncRNA in human cancers. Biomed Pharmacother 2020; 124: 109921.
[http://dx.doi.org/10.1016/j.biopha.2020.109921] [PMID: 31986417]
[17]
Poursheikhani A, Abbaszadegan MR, Kerachian MA. Mechanisms of long non-coding RNA function in colorectal cancer tumorigenesis. Asia Pac J Clin Oncol 2021; 17(1): 7-23.
[http://dx.doi.org/10.1111/ajco.13452] [PMID: 32970938]
[18]
Huang H, Xue Q, Du X, et al. p21-activated kinase 4 promotes the progression of esophageal squamous cell carcinoma by targeting LASP1. Mol Carcinog 2021; 60(1): 38-50.
[http://dx.doi.org/10.1002/mc.23269] [PMID: 33289209]
[19]
Xiao BD, Zhao YJ, Jia XY, Wu J, Wang YG, Huang F. Multifaceted p21 in carcinogenesis, stemness of tumor and tumor therapy. World J Stem Cells 2020; 12(6): 481-7.
[http://dx.doi.org/10.4252/wjsc.v12.i6.481] [PMID: 32742565]
[20]
Kulaberoglu Y, Hergovich A, Gómez V. The role of p53/p21/p16 in DNA damage signaling and DNA repair. Genome Stability. In: Elsevier: Amsterdam, 2021; 257-74.
[21]
Kartika ID, Kotani H, Iida Y, Koyanagi A, Tanino R, Harada M. Protective role of cytoplasmic p21Cip1/Waf1 in apoptosis of CDK4/6 inhibitor-induced senescence in breast cancer cells. Cancer Med 2021; 10(24): 8988-99.
[http://dx.doi.org/10.1002/cam4.4410] [PMID: 34761877]
[22]
Maiuthed A, Ninsontia C, Erlenbach-Wuensch K, et al. Cytoplasmic p21 mediates 5-fluorouracil resistance by inhibiting pro-apoptotic Chk2. Cancers 2018; 10(10): 373.
[http://dx.doi.org/10.3390/cancers10100373] [PMID: 30304835]
[23]
Cazzalini O, Scovassi AI, Savio M, Stivala LA, Prosperi E. Multiple roles of the cell cycle inhibitor p21CDKN1A in the DNA damage response. Mutat Res Rev Mutat Res 2010; 704(1-3): 12-20.
[http://dx.doi.org/10.1016/j.mrrev.2010.01.009] [PMID: 20096807]
[24]
Dutto I, Tillhon M, Cazzalini O, Stivala LA, Prosperi E. Biology of the cell cycle inhibitor p21CDKN1A: Molecular mechanisms and relevance in chemical toxicology. Arch Toxicol 2015; 89(2): 155-78.
[http://dx.doi.org/10.1007/s00204-014-1430-4] [PMID: 25514883]
[25]
Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer 2018; 18(1): 5-18.
[http://dx.doi.org/10.1038/nrc.2017.99] [PMID: 29170536]
[26]
Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: A new paradigm. Cancer Res 2017; 77(15): 3965-81.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2634] [PMID: 28701486]
[27]
Chi Y, Wang D, Wang J, Yu W, Yang J. Long non-coding RNA in the pathogenesis of cancers. Cells 2019; 8(9): 1015.
[http://dx.doi.org/10.3390/cells8091015] [PMID: 31480503]
[28]
Wei L, Sun J, Zhang N, et al. Noncoding RNAs in gastric cancer: Implications for drug resistance. Mol Cancer 2020; 19(1): 62.
[http://dx.doi.org/10.1186/s12943-020-01185-7] [PMID: 32192494]
[29]
Hao A, Wang Y, Stovall DB, Wang Y, Sui G. Emerging roles of LncRNAs in the EZH2-regulated oncogenic network. Int J Biol Sci 2021; 17(13): 3268-80.
[http://dx.doi.org/10.7150/ijbs.63488] [PMID: 34512145]
[30]
Wan Z, Jiang H, Li L, Zhu S, Hou J, Yu Y. Carcinogenic roles and therapeutic effects of EZH2 in gynecological cancers. Bioorg Med Chem 2020; 28(7): 115379.
[http://dx.doi.org/10.1016/j.bmc.2020.115379] [PMID: 32098708]
[31]
Wang Z, Ren B, Huang J, Yin R, Jiang F, Zhang Q. LncRNA DUXAP10 modulates cell proliferation in esophageal squamous cell carcinoma through epigenetically silencing p21. Cancer Biol Ther 2018; 19(11): 998-1005.
[http://dx.doi.org/10.1080/15384047.2018.1470723] [PMID: 30215547]
[32]
Yan S, Xu J, Liu B, et al. Long non-coding RNA BCAR4 aggravated proliferation and migration in esophageal squamous cell carcinoma by negatively regulating p53/p21 signaling pathway. Bioengineered 2021; 12(1): 682-96.
[http://dx.doi.org/10.1080/21655979.2021.1887645] [PMID: 33602031]
[33]
Zhang Y, Miao Y, Shang M, et al. LincRNA-p21 leads to G1 arrest by p53 pathway in esophageal squamous cell carcinoma. Cancer Manag Res 2019; 11: 6201-14.
[http://dx.doi.org/10.2147/CMAR.S197557] [PMID: 31308755]
[34]
Zhou L, Du Y, Kong L, Zhang X, Chen Q. Identification of molecular target genes and key pathways in hepatocellular carcinoma by bioinformatics analysis. OncoTargets Ther 2018; 11: 1861-9.
[http://dx.doi.org/10.2147/OTT.S156737] [PMID: 29670361]
[35]
Ma X, Sun X, Li C, Zhang K, Xie Y. Silencing LncRNA SCAMP1 inhibits cell proliferation, induces G0/G1 arrest and apoptosis in hepatocellular carcinoma. 2021. Available from: https://assets.researchsquare.com/files/rs-956337/v1/1fb0ff34-3feb-4d99- 8aab-20edc6ab15b9.pdf?c=1634318773
[36]
Ye T, Ding W, Wang N, Huang H, Pan Y, Wei A. Long noncoding RNA linc00346 promotes the malignant phenotypes of bladder cancer. Biochem Biophys Res Commun 2017; 491(1): 79-84.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.045] [PMID: 28705739]
[37]
Sun J, Hu J, Wang G, Yang Z, Zhao C, Zhang X, et al. LncRNA TUG1 promoted KIAA1199 expression via miR-600 to accelerate cell metastasis and epithelial-mesenchymal transition in colorectal cancer. J Exp Clin Cancer Res 37(1): 106.2021;
[38]
Yin YZ, Zheng WH, Zhang X, Chen YH, Tuo YH. LINC00346 promotes hepatocellular carcinoma progression via activating the JAK-STAT3 signaling pathway. J Cell Biochem 2020; 121(1): 735-42.
[http://dx.doi.org/10.1002/jcb.29319] [PMID: 31478228]
[39]
Jin J, Xu H, Li W, Xu X, Liu H, Wei F. LINC00346 acts as a competing endogenous RNA regulating development of hepatocellular carcinoma via modulating CDK1/CCNB1 axis. Front Bioeng Biotechnol 2020; 8: 54.
[http://dx.doi.org/10.3389/fbioe.2020.00054] [PMID: 32133348]
[40]
Zhao L, Hu K, Cao J, et al. lncRNA miat functions as a ceRNA to upregulate sirt1 by sponging miR-22-3p in HCC cellular senescence. Aging 2019; 11(17): 7098-122.
[http://dx.doi.org/10.18632/aging.102240] [PMID: 31503007]
[41]
Xu X, Gu J, Ding X, et al. LINC00978 promotes the progression of hepatocellular carcinoma by regulating EZH2-mediated silencing of p21 and E-cadherin expression. Cell Death Dis 2019; 10(10): 752.
[http://dx.doi.org/10.1038/s41419-019-1990-6] [PMID: 31582742]
[42]
Ghasemian M, Rajabibazl M, Mirfakhraie R, Razavi AE, Sadeghi H. Long noncoding RNA LINC00978 acts as a potential diagnostic biomarker in patients with colorectal cancer. Exp Mol Pathol 2021; 122: 104666.
[http://dx.doi.org/10.1016/j.yexmp.2021.104666] [PMID: 34273360]
[43]
Bu JY, Lv WZ, Liao YF, Xiao XY, Lv BJ. RETRACTED: Long non-coding RNA LINC00978 promotes cell proliferation and tumorigenesis via regulating microRNA-497/NTRK3 axis in gastric cancer. Int J Biol Macromol 2019; 123: 1106-14.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.162] [PMID: 30452981]
[44]
Li X, Ren Y, Zuo T. Long noncoding RNA LINC00978 promotes cell proliferation and invasion in non-small cell lung cancer by inhibiting miR-6754-5p. Mol Med Rep 2018; 18(5): 4725-32.
[http://dx.doi.org/10.3892/mmr.2018.9463] [PMID: 30221669]
[45]
Deng L, Chi Y, Liu L, Huang N, Wang L, Wu J. LINC00978 predicts poor prognosis in breast cancer patients. Sci Rep 2016; 6(1): 37936.
[http://dx.doi.org/10.1038/srep37936] [PMID: 27897214]
[46]
Chen Z, Zuo X, Pu L, et al. circ LARP 4 induces cellular senescence through regulating miR-761/ RUNX 3/p53/p21 signaling in hepatocellular carcinoma. Cancer Sci 2019; 110(2): 568-81.
[http://dx.doi.org/10.1111/cas.13901] [PMID: 30520539]
[47]
Zhong Y, Wu X, Li Q, et al. Long noncoding RNAs as potential biomarkers and therapeutic targets in gallbladder cancer: A systematic review and meta-analysis. Cancer Cell Int 2019; 19(1): 169.
[http://dx.doi.org/10.1186/s12935-019-0891-1] [PMID: 31297033]
[48]
Qin Y, Meng L, Fu Y, et al. SNORA74B gene silencing inhibits gallbladder cancer cells by inducing PHLPP and suppressing Akt/mTOR signaling. Oncotarget 2017; 8(12): 19980-96.
[http://dx.doi.org/10.18632/oncotarget.15301] [PMID: 28212545]
[49]
Rana V, Parama D, Khatoon E, Girisa S, Sethi G, Kunnumakkara AB. Reiterating the emergence of noncoding RNAs as regulators of the critical hallmarks of gall bladder cancer. Biomolecules 2021; 11(12): 1847.
[http://dx.doi.org/10.3390/biom11121847] [PMID: 34944491]
[50]
Ramli S, Sim MS, Guad RM, Gopinath SC, Subramaniyan V, Fuloria S, et al. Long noncoding RNA UCA1 in gastrointestinal cancers: Molecular regulatory roles and patterns, mechanisms, and interactions. J Oncol 2021; 1-15.
[http://dx.doi.org/10.1155/2021/5519720]
[51]
Zhang Z, Li JZ, Wei ZW, et al. Correlation between expression levels of lncRNA UCA1 and miR-18a with prognosis of hepatocellular cancer. Eur Rev Med Pharmacol Sci 2020; 24(7): 3586-91.
[PMID: 32329833]
[52]
Ding Z, Ying W, He Y, et al. lncRNA-UCA1 in the diagnosis of bladder cancer. Medicine 2021; 100(11): e24805.
[http://dx.doi.org/10.1097/MD.0000000000024805] [PMID: 33725946]
[53]
Pérez-Moreno P, Riquelme I, Brebi P, Roa J. Role of lncRNAs in the development of an aggressive phenotype in gallbladder cancer. J Clin Med 2021; 10(18): 4206.
[http://dx.doi.org/10.3390/jcm10184206] [PMID: 34575316]
[54]
Cai Q, Jin L, Wang S, et al. Long non-coding RNA UCA1 promotes gallbladder cancer progression by epigenetically repressing p21 and E-cadherin expression. Oncotarget 2017; 8(29): 47957-68.
[http://dx.doi.org/10.18632/oncotarget.18204] [PMID: 28624787]
[55]
Barreca MM, Zichittella C, Alessandro R, Conigliaro A. Hypoxia- induced non-coding RNAs controlling cell viability in cancer. Int J Mol Sci 2021; 22(4): 1857.
[http://dx.doi.org/10.3390/ijms22041857] [PMID: 33673376]
[56]
Pea A, Jamieson NB, Braconi C. Biology and clinical application of regulatory RNAs in hepatocellular carcinoma. Hepatology 2021; 73(Suppl. 1): 38-48.
[http://dx.doi.org/10.1002/hep.31225] [PMID: 32160335]
[57]
Cho HS, Han TS, Hur K, Ban HS. The roles of hypoxia-inducible factors and non-coding RNAs in gastrointestinal cancer. Genes 2019; 10(12): 1008.
[http://dx.doi.org/10.3390/genes10121008] [PMID: 31817259]
[58]
Ma M, Kong X, Weng M, et al. Long non-coding RNA-LET is a positive prognostic factor and exhibits tumor-suppressive activity in gallbladder cancer. Mol Carcinog 2015; 54(11): 1397-406.
[http://dx.doi.org/10.1002/mc.22215] [PMID: 25213660]
[59]
Liu Y, Ding W, Yu W, Zhang Y, Ao X, Wang J. Long non-coding RNAs: Biogenesis, functions, and clinical significance in gastric cancer. Mol Ther Oncolytics 2021; 23: 458-76.
[http://dx.doi.org/10.1016/j.omto.2021.11.005] [PMID: 34901389]
[60]
Meng S, Dolo PR, Guo P, et al. The expression of long non-coding RNA LINC01279 in gastric adenocarcinoma and its clinical significance. Asian J Surg 2022; 45(6): 1231-6.
[http://dx.doi.org/10.1016/j.asjsur.2021.08.031] [PMID: 34507839]
[61]
Li Y, Li D, Zhao M, et al. Long noncoding RNA SNHG6 regulates p21 expression via activation of the JNK pathway and regulation of EZH2 in gastric cancer cells. Life Sci 2018; 208: 295-304.
[http://dx.doi.org/10.1016/j.lfs.2018.07.032] [PMID: 30031062]
[62]
Zhu H, Zhao S, Jiao R, et al. Prognostic and clinicopathological significance of SNHG20 in human cancers: A meta-analysis. Cancer Cell Int 2020; 20(1): 304.
[http://dx.doi.org/10.1186/s12935-020-01403-8] [PMID: 32675944]
[63]
Cui N, Liu J, Xia H, Xu D. LncRNA SNHG20 contributes to cell proliferation and invasion by upregulating ZFX expression sponging miR-495-3p in gastric cancer. J Cell Biochem 2019; 120(3): 3114-23.
[http://dx.doi.org/10.1002/jcb.27539] [PMID: 30520073]
[64]
Zhao W, Ma X, Liu L, et al. SNHG20: A vital lncRNA in multiple human cancers. J Cell Physiol 2019; 234(9): 14519-25.
[http://dx.doi.org/10.1002/jcp.28143] [PMID: 30644099]
[65]
Chen J, Liu L, Cai X, Yao Z, Huang J. Progress in the study of long noncoding RNA in tongue squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 129(1): 51-8.
[http://dx.doi.org/10.1016/j.oooo.2019.08.011] [PMID: 31611036]
[66]
Liu J, Liu L, Wan JX, Song Y. Long noncoding RNA SNHG20 promotes gastric cancer progression by inhibiting p21 expression and regulating the GSK-3β/ β-catenin signaling pathway. Oncotarget 2017; 8(46): 80700-8.
[http://dx.doi.org/10.18632/oncotarget.20959] [PMID: 29113337]
[67]
Hu B, Wang X, Li L. Long noncoding RNA LINC00337 promote gastric cancer proliferation through repressing p21 mediated by EZH2. Am J Transl Res 2019; 11(5): 3238-45.
[PMID: 31217892]
[68]
Ding J, Xie M, Lian Y, Zhu Y, Peng P, Wang J, et al. Long noncoding RNA HOXA-AS2 represses P21 and KLF2 expression transcription by binding with EZH2, LSD1 in colorectal cancer. Oncogenesis 6(1): e288-e.2017;
[69]
Xie M, Sun M, Zhu Y, et al. Long noncoding RNA HOXA-AS2 promotes gastric cancer proliferation by epigenetically silencing P21/PLK3/DDIT3 expression. Oncotarget 2015; 6(32): 33587-601.
[http://dx.doi.org/10.18632/oncotarget.5599] [PMID: 26384350]
[70]
Xia Y, Yan Z, Wan Y, et al. Knockdown of long noncoding RNA GHET1 inhibits cell-cycle progression and invasion of gastric cancer cells. Mol Med Rep 2018; 18(3): 3375-81.
[http://dx.doi.org/10.3892/mmr.2018.9332] [PMID: 30066922]
[71]
Ghafouri-Fard S, Khoshbakht T, Taheri M, khashefizadeh A. Hepatocyte nuclear factor 1A-antisense: Review of its role in the carcinogenesis. Pathol Res Pract 2021; 227: 153623.
[http://dx.doi.org/10.1016/j.prp.2021.153623] [PMID: 34563755]
[72]
Liu HT, Liu S, Liu L, Ma RR, Gao P. EGR1-mediated transcription of lncRNA-HNF1A-AS1 promotes cell-cycle progression in gastric cancer. Cancer Res 2018; 78(20): 5877-90.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1011] [PMID: 30185552]
[73]
Ji J, Dai X, Yeung SCJ, He X. The role of long non-coding RNA GAS5 in cancers. Cancer Manag Res 2019; 11: 2729-37.
[http://dx.doi.org/10.2147/CMAR.S189052] [PMID: 31114330]
[74]
Liu Y, Zhao J, Zhang W, et al. lncRNA GAS5 enhances G1 cell cycle arrest via binding to YBX1 to regulate p21 expression in stomach cancer. Sci Rep 2015; 5(1): 10159.
[http://dx.doi.org/10.1038/srep10159] [PMID: 25959498]
[75]
Chen W, Zhang K, Yang Y, et al. MEF2A-mediated lncRNA HCP5 inhibits gastric cancer progression via MiR-106b-5p/p21 axis. Int J Biol Sci 2021; 17(2): 623-34.
[http://dx.doi.org/10.7150/ijbs.55020] [PMID: 33613117]
[76]
Romano R, Picca A, Eusebi LHU, et al. Extracellular vesicles and pancreatic cancer: Insights on the roles of miRNA, lncRNA, and protein cargos in cancer progression. Cells 2021; 10(6): 1361.
[http://dx.doi.org/10.3390/cells10061361] [PMID: 34205944]
[77]
Zhang Y, Tang X, Shi M, Wen C, Shen B. MiR-216a decreases MALAT1 expression, induces G2/M arrest and apoptosis in pancreatic cancer cells. Biochem Biophys Res Commun 2017; 483(2): 816-22.
[http://dx.doi.org/10.1016/j.bbrc.2016.12.167] [PMID: 28034748]
[78]
Xu E, Liang X, Ji Z, Zhao S, Li L, Lang J. Blocking long noncoding RNA MALAT1 restrained the development of laryngeal and hypopharyngeal carcinoma. Eur Arch Otorhinolaryngol 2020; 277(2): 611-21.
[http://dx.doi.org/10.1007/s00405-019-05732-x] [PMID: 31792655]
[79]
Lu J, Xiao Z, Xu M, Li L. New insights into LINC00346 and its role in disease. Front Cell Dev Biol 2021; 9: 3925.
[PMID: 35096842]
[80]
Shi W, Zhang C, Ning Z, et al. Long non-coding RNA LINC00346 promotes pancreatic cancer growth and gemcitabine resistance by sponging miR-188-3p to derepress BRD4 expression. J Exp Clin Cancer Res 2019; 38(1): 60.
[http://dx.doi.org/10.1186/s13046-019-1055-9] [PMID: 30728036]
[81]
Meng XF, Liu AD, Li SL. SNHG1 promotes proliferation, invasion and EMT of prostate cancer cells through miR-195-5p. Eur Rev Med Pharmacol Sci 2020; 24(19): 9880-8.
[PMID: 33090391]
[82]
Guzel E, Okyay TM, Yalcinkaya B, Karacaoglu S, Gocmen M, Akcakuyu MH. Tumor suppressor and oncogenic role of long non-coding RNAs in cancer. North Clin Istanb 2019; 7(1): 81-6.
[http://dx.doi.org/10.14744/nci.2019.46873] [PMID: 32232211]
[83]
Liang S, Gong X, Zhang G, Huang G, Lu Y, Li Y. The lncRNA XIST interacts with miR-140/miR-124/iASPP axis to promote pancreatic carcinoma growth. Oncotarget 2017; 8(69): 113701-18.
[http://dx.doi.org/10.18632/oncotarget.22555] [PMID: 29371940]
[84]
Wu BQ, Jiang Y, Zhu F, Sun DL, He XZ. Long noncoding RNA PVT1 promotes EMT and cell proliferation and migration through downregulating p21 in pancreatic cancer cells. Technol Cancer Res Treat 2017; 16(6): 819-27.
[http://dx.doi.org/10.1177/1533034617700559] [PMID: 28355965]
[85]
Rahmani F, Avan A, Hashemy SI, Hassanian SM. Role of Wnt/β- catenin signaling regulatory microRNAs in the pathogenesis of colorectal cancer. J Cell Physiol 2018; 233(2): 811-7.
[http://dx.doi.org/10.1002/jcp.25897] [PMID: 28266708]
[86]
Soleimani A, Rahmani F, Ferns GA, Ryzhikov M, Avan A, Hassanian SM. Role of regulatory oncogenic or tumor suppressor miRNAs of PI3K/AKT signaling axis in the pathogenesis of colorectal cancer. Curr Pharm Des 2019; 24(39): 4605-10.
[http://dx.doi.org/10.2174/1381612825666190110151957] [PMID: 30636581]
[87]
Rahmani F, Hashemzehi M, Avan A, et al. Rigosertib elicits potent anti-tumor responses in colorectal cancer by inhibiting Ras signaling pathway. Cell Signal 2021; 85: 110069.
[http://dx.doi.org/10.1016/j.cellsig.2021.110069] [PMID: 34214591]
[88]
Zhao J, Xu L, Dong Z, et al. The LncRNA DUXAP10 could function as a promising oncogene in human cancer. Front Cell Dev Biol 2022; 10: 832388.
[http://dx.doi.org/10.3389/fcell.2022.832388] [PMID: 35186937]
[89]
Lian Y, Xu Y, Xiao C, et al. The pseudogene derived from long non-coding RNA DUXAP10 promotes colorectal cancer cell growth through epigenetically silencing of p21 and PTEN. Sci Rep 2017; 7(1): 7312.
[http://dx.doi.org/10.1038/s41598-017-07954-7] [PMID: 28779166]
[90]
Ghafouri-Fard S, Hussen BM, Gharebaghi A, Eghtedarian R, Taheri M. LncRNA signature in colorectal cancer. Pathol Res Pract 2021; 222: 153432.
[http://dx.doi.org/10.1016/j.prp.2021.153432] [PMID: 33857856]
[91]
Yu H, Ma J, Chen J, Yang Y, Liang J, Liang Y. LncRNA LINC00461 promotes colorectal cancer progression via miRNA-323b-3p/NFIB axis. OncoTargets Ther 2019; 12: 11119-29.
[http://dx.doi.org/10.2147/OTT.S228798] [PMID: 31908480]
[92]
Lin K, Jiang H, Zhang LL, et al. Down-regulated LncRNA-HOTAIR suppressed colorectal cancer cell proliferation, invasion, and migration by mediating p21. Dig Dis Sci 2018; 63(9): 2320-31.
[http://dx.doi.org/10.1007/s10620-018-5127-z] [PMID: 29808247]
[93]
Zhang R, Li J, Yan X, et al. Long non-coding RNA MLK7-AS1 promotes proliferation in human colorectal cancer via downregulation of p21 expression. Mol Med Rep 2019; 19(2): 1210-21.
[PMID: 30535460]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy