Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

β-elemene Suppresses Migration of Esophageal Squamous Cell Carcinoma by Modulating Expression of MMP9 through the PI3K/Akt/NF-κB Pathway

Author(s): Yufei Liang and Shengmian Li*

Volume 26, Issue 13, 2023

Published on: 11 April, 2023

Page: [2304 - 2320] Pages: 17

DOI: 10.2174/1386207326666230303120514

Price: $65

conference banner
Abstract

Background and Objective: β-elemene is a plant-derived drug with broad-spectrum anticancer activity. Studies have found that β-elemene can inhibit tumor cell proliferation, induce tumor cell apoptosis, and resist tumor cell migration and invasion. Esophageal cancer is a common digestive tract malignant tumor. Progress has been made in the treatment of esophageal cancer, including the use of β-elemene, but the mechanism of anti-migration is unclear. PI3K/Akt/NF- κB/MMP9 signaling pathway is involved in the regulation of tumor cell proliferation, migration, extracellular matrix(ECM), and basement membrane(BM) degradation. This study aims to investigate the effect of β-elemene on the migration of esophageal squamous cell carcinoma (ESCC) and its related mechanisms by bioinformatics, network pharmacology, and molecular docking methods.

Methods: In this study, the differentially expressed genes (DEGs) of ESCC were screened through GeneCards and BATMAN-TCM databases combined with the Gene Expression Omnibus (GEO) database (GSE17351). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to identify the functions and related pathways of the genes. The protein-protein interaction (PPI) network of these DEGs was constructed with the STRING database. Five hub genes were screened by CytoHubba plug-in Cytoscape according to the principle of degree value and the expressions of which were validated by the UALCAN database from the Cancer Genome Atlas (TCGA). The hub gene with the strongest binding energy was identified by molecular docking. A wound healing assay was subjected to assess the migration ability. RT-PCR was used to detect the content of migration-related mRNA. Western blotting was performed to examine the expression rates of Akt, NF-κB, and MMP9 in ESCC tissues by β-elemene and SC79.

Results: 71 target genes were obtained which were mainly involved in biological processes such as epidermal development and extracellular matrix decomposition. In addition, critical pathways, including PI3K/AKT signaling pathway and focal adhesion, were verified to be subject to β-elemene regulation. It exhibited marked binding affinity between β-elemene and MMP9 with an excellent docking score of -6.56 kcal/mol. The expression levels of Akt, NF-κB, and MMP9 in ESCC tissues were significantly upregulated compared to normal tissues. Western blot detection demonstrated that β-elemene specifically reduced the phosphorylation level of Akt, and its downstream target molecule NF-κB, thus resulting in reduced levels of their target proteins, including MMP9 in ESCC. A wound healing assay showed β-elemene inhibited the migration of ESCC cells. RT-PCR results found that the mRNA expression of Akt, NF-κB, and MMP9 in the β-elemene group was significantly lower than that in the control group. However, the application of SC79 partially reversed the effect of β-elemene.

Conclusion: In summary, our study suggests that the anti-tumor migration effect of β-elemene on ESCC is associated with the inhibition of PI3K/Akt/NF-κB/MMP9 signalling pathway, and it provides a theoretical reference for further rational clinical application.

[1]
Murphy, G.; McCormack, V.; Abedi-Ardekani, B.; Arnold, M.; Camargo, M.C.; Dar, N.A.; Dawsey, S.M.; Etemadi, A.; Fitzgerald, R.C.; Fleischer, D.E.; Freedman, N.D.; Goldstein, A.M.; Gopal, S.; Hashemian, M.; Hu, N.; Hyland, P.L.; Kaimila, B.; Kamangar, F.; Malekzadeh, R.; Mathew, C.G.; Menya, D.; Mulima, G.; Mwachiro, M.M.; Mwasamwaja, A.; Pritchett, N.; Qiao, Y.L.; Ribeiro-Pinto, L.F.; Ricciardone, M.; Schüz, J.; Sitas, F.; Taylor, P.R.; Van Loon, K.; Wang, S.M.; Wei, W.Q.; Wild, C.P.; Wu, C.; Abnet, C.C.; Chanock, S.J.; Brennan, P. International cancer seminars: A focus on esophageal squamous cell carcinoma. Ann. Oncol., 2017, 28(9), 2086-2093.
[http://dx.doi.org/10.1093/annonc/mdx279] [PMID: 28911061]
[2]
Pan, R.; Zhu, M.; Yu, C.; Lv, J.; Guo, Y.; Bian, Z.; Yang, L.; Chen, Y.; Hu, Z.; Chen, Z.; Li, L.; Shen, H. China Kadoorie Biobank Collaborative Group. Cancer incidence and mortality: A cohort study in China, 2008–2013. Int. J. Cancer, 2017, 141(7), 1315-1323.
[http://dx.doi.org/10.1002/ijc.30825] [PMID: 28593646]
[3]
Li, Z.; Shi, C.; Zheng, J.; Guo, Y.; Fan, T.; Zhao, H.; Jian, D.; Cheng, X.; Tang, H.; Ma, J. Fusobacterium nucleatum predicts a high risk of metastasis for esophageal squamous cell carcinoma. BMC Microbiol., 2021, 21(1), 301.
[http://dx.doi.org/10.1186/s12866-021-02352-6] [PMID: 34717543]
[4]
Qi, F.; Zhao, L.; Zhou, A.; Zhang, B.; Li, A.; Wang, Z.; Han, J. The advantages of using traditional Chinese medicine as an adjunctive therapy in the whole course of cancer treatment instead of only terminal stage of cancer. Biosci. Trends, 2015, 9(1), 16-34.
[http://dx.doi.org/10.5582/bst.2015.01019] [PMID: 25787906]
[5]
Long, J.; Liu, Z.; Hui, L. Anti-tumor effect and mechanistic study of elemene on pancreatic carcinoma. BMC Complement. Altern. Med., 2019, 19(1), 133.
[http://dx.doi.org/10.1186/s12906-019-2544-2] [PMID: 31215421]
[6]
Zhai, B.; Zeng, Y.; Zeng, Z.; Zhang, N.; Li, C.; Zeng, Y.; You, Y.; Wang, S.; Chen, X.; Sui, X.; Xie, T. Drug delivery systems for elemene, its main active ingredient β-elemene, and its derivatives in cancer therapy. Int. J. Nanomedicine, 2018, 13, 6279-6296.
[http://dx.doi.org/10.2147/IJN.S174527] [PMID: 30349250]
[7]
Cheng, H.; Ge, X.; Zhuo, S.; Gao, Y.; Zhu, B.; Zhang, J.; Shang, W.; Xu, D.; Ge, W.; Shi, L. β-elemene synergizes with gefitinib to inhibit stem-like phenotypes and progression of lung cancer via down-regulating EZH2. Front. Pharmacol., 2018, 9, 1413.
[http://dx.doi.org/10.3389/fphar.2018.01413] [PMID: 30555330]
[8]
Li, Q.Q.; Wang, G.; Liang, H.; Li, J.M.; Huang, F.; Agarwal, P.K.; Zhong, Y.; Reed, E. β-Elemene promotes cisplatin-induced cell death in human bladder cancer and other carcinomas. Anticancer Res., 2013, 33(4), 1421-1428.
[PMID: 23564782]
[9]
Guo, Z.; Liu, Z.; Yue, H.; Wang, J. Retracted: Beta‐elemene increases chemosensitivity to 5‐fluorouracil through down‐regulating microRNA‐191 expression in colorectal carcinoma cells. J. Cell. Biochem., 2018, 119(8), 7032-7039.
[http://dx.doi.org/10.1002/jcb.26914] [PMID: 29737579]
[10]
Deng, M.; Liu, B.; Song, H.; Yu, R.; Zou, D.; Chen, Y.; Ma, Y.; Lv, F.; Xu, L.; Zhang, Z.; Lv, Q.; Yang, X.; Che, X.; Qu, X.; Liu, Y.; Zhang, Y.; Hu, X. β-Elemene inhibits the metastasis of multidrug-resistant gastric cancer cells through miR-1323/Cbl-b/EGFR pathway. Phytomedicine, 2020, 69, 153184.
[http://dx.doi.org/10.1016/j.phymed.2020.153184] [PMID: 32199253]
[11]
Chang, Z.; Gao, M.; Zhang, W.; Song, L.; Jia, Y.; Qin, Y. Beta-elemene treatment is associated with improved outcomes of patients with esophageal squamous cell carcinoma. Surg. Oncol., 2017, 26(4), 333-337.
[http://dx.doi.org/10.1016/j.suronc.2017.07.002] [PMID: 29113648]
[12]
You, J.; Li, C.; Chen, W.; Wu, X.; Huang, L.; Li, R.; Gao, F.; Zhang, M.; Liu, H.; Qu, W. A network pharmacology-based study on Alzheimer disease prevention and treatment of Qiong Yu Gao. BioData Min., 2020, 13(1), 2.
[http://dx.doi.org/10.1186/s13040-020-00212-z] [PMID: 32351618]
[13]
Kulkarni, B.; Manjunatha, K.; Joy, M.N.; Sajith, A.M.; Prashantha, C.N.; Pakkath, R.; Alshammari, M.B. Design, synthesis and molecular docking studies of some 1-(5-(2-fluoro-5-(trifluoromethoxy)phenyl)-1,2,4-oxadiazol-3-yl)piperazine derivatives as potential anti-inflammatory agents. Mol. Divers., 2022, 26(5), 2893-2905.
[http://dx.doi.org/10.1007/s11030-021-10340-1] [PMID: 34817768]
[14]
Yang, Z.; Wang, Z.; Li, J.; Long, J.; Peng, C.; Yan, D. Network pharmacology‐based dissection of the underlying mechanisms of dyspnoea induced by zedoary turmeric oil. Basic Clin. Pharmacol. Toxicol., 2022, 130(5), 606-617.
[http://dx.doi.org/10.1111/bcpt.13722] [PMID: 35318816]
[15]
Zhu, J.; Li, B.; Ji, Y.; Zhu, L.; Zhu, Y.; Zhao, H. β elemene inhibits the generation of peritoneum effusion in pancreatic cancer via suppression of the HIF1A-VEGFA pathway based on network pharmacology. Oncol. Rep., 2019, 42(6), 2561-2571.
[http://dx.doi.org/10.3892/or.2019.7360] [PMID: 31638231]
[16]
Liu, Z.; Guo, F.; Wang, Y.; Li, C.; Zhang, X.; Li, H.; Diao, L.; Gu, J.; Wang, W.; Li, D.; He, F. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional chinese medicine. Sci. Rep., 2016, 6(1), 21146.
[http://dx.doi.org/10.1038/srep21146] [PMID: 26879404]
[17]
Li, Y.; Gu, J.; Xu, F.; Zhu, Q.; Ge, D.; Lu, C. Transcriptomic and functional network features of lung squamous cell carcinoma through integrative analysis of GEO and TCGA data. Sci. Rep., 2018, 8(1), 15834.
[http://dx.doi.org/10.1038/s41598-018-34160-w] [PMID: 30367091]
[18]
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The GeneCards Suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform., 2016, 54, 1.30.1-1.30.33.
[http://dx.doi.org/10.1002/cpbi.5]
[19]
Lee, J.J.; Natsuizaka, M.; Ohashi, S.; Wong, G.S.; Takaoka, M.; Michaylira, C.Z.; Budo, D.; Tobias, J.W.; Kanai, M.; Shirakawa, Y.; Naomoto, Y.; Klein-Szanto, A.J.P.; Haase, V.H.; Nakagawa, H. Hypoxia activates the cyclooxygenase-2–prostaglandin E synthase axis. Carcinogenesis, 2010, 31(3), 427-434.
[http://dx.doi.org/10.1093/carcin/bgp326] [PMID: 20042640]
[20]
Yang, X.; Li, Y.; Qian, H. Study on the selection of the targets of esophageal carcinoma and interventions of ginsenosides based on network pharmacology and bioinformatics. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-10.
[http://dx.doi.org/10.1155/2020/4821056] [PMID: 32714406]
[21]
Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res., 2017, 45(D1), D362-D368.
[http://dx.doi.org/10.1093/nar/gkw937] [PMID: 27924014]
[22]
Zhao, J.; Lv, T.; Quan, J.; Zhao, W.; Song, J.; Li, Z.; Lei, H.; Huang, W.; Ran, L. Identification of target genes in cardiomyopathy with fibrosis and cardiac remodeling. J. Biomed. Sci., 2018, 25(1), 63.
[http://dx.doi.org/10.1186/s12929-018-0459-8] [PMID: 30115125]
[23]
Mente, S.; Kuhn, M. The use of the R language for medicinal chemistry applications. Curr. Top. Med. Chem., 2012, 12(18), 1957-1964.
[http://dx.doi.org/10.2174/156802612804910322] [PMID: 23110531]
[24]
Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: Empowering workflow-based network analysis. Genome Biol., 2019, 20(1), 185.
[http://dx.doi.org/10.1186/s13059-019-1758-4] [PMID: 31477170]
[25]
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol., 2014, 8(S4), S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[26]
Chandrashekar, D.S.; Karthikeyan, S.K.; Korla, P.K.; Patel, H.; Shovon, A.R.; Athar, M.; Netto, G.J.; Qin, Z.S.; Kumar, S.; Manne, U.; Creighton, C.J.; Varambally, S. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia, 2022, 25, 18-27.
[http://dx.doi.org/10.1016/j.neo.2022.01.001] [PMID: 35078134]
[27]
Hsin, K.Y.; Matsuoka, Y.; Asai, Y.; Kamiyoshi, K.; Watanabe, T.; Kawaoka, Y.; Kitano, H. systemsDock: A web server for network pharmacology-based prediction and analysis. Nucleic Acids Res., 2016, 44(W1), W507-W513.
[http://dx.doi.org/10.1093/nar/gkw335] [PMID: 27131384]
[28]
Tanchuk, V.; Tanin, V.; Vovk, A.; Poda, G. A new scoring function for molecular docking based on autodock and autodock vina. Curr. Drug Discov. Technol., 2015, 12(3), 170-178.
[http://dx.doi.org/10.2174/1570163812666150825110208] [PMID: 26302746]
[29]
Nemallapudi, B.R.; Zyryanov, G.V.; Avula, B.; Guda, M.R.; Cirandur, S.R.; Venkataramaiah, C.; Rajendra, W.; Gundala, S. Meglumine as a green, efficient and reusable catalyst for synthesis and molecular docking studies of bis(indolyl)methanes as antioxidant agents. Bioorg. Chem., 2019, 87, 465-473.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.005] [PMID: 30927587]
[30]
Li, X.; Yang, G.; Li, X.; Zhang, Y.; Yang, J.; Chang, J.; Sun, X.; Zhou, X.; Guo, Y.; Xu, Y.; Liu, J.; Bensoussan, A. Traditional Chinese medicine in cancer care: a review of controlled clinical studies published in Chinese. PLoS One, 2013, 8(4), e60338.
[http://dx.doi.org/10.1371/journal.pone.0060338] [PMID: 23560092]
[31]
Cai, M.H.; Bo, H.M.; Qiu, H.Y.; Liu, J.L. Efficacy of traditional Chinese medicine elemene combined with synchronous radiotherapy and chemotherapy in treatment of advanced esophageal cancer patients. Mod Oncol., 2015, 23(7), 957-959.
[http://dx.doi.org/10.3969/j.issn.1672-4992.2015.07.22]
[32]
Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol., 2008, 4(11), 682-690.
[http://dx.doi.org/10.1038/nchembio.118] [PMID: 18936753]
[33]
Goossens, N.; Nakagawa, S.; Sun, X.; Hoshida, Y. Cancer biomarker discovery and validation. Transl. Cancer Res., 2015, 4(3), 256-269.
[http://dx.doi.org/10.3978/j.issn.2218-676X.2015.06.04] [PMID: 26213686]
[34]
Dilly, A.; Ekambaram, P.; Guo, Y.; Cai, Y.; Tucker, S.C.; Fridman, R.; Kandouz, M.; Honn, K.V. Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-κ B. Int. J. Cancer, 2013, 133(8), 1784-1791.
[http://dx.doi.org/10.1002/ijc.28165] [PMID: 23526143]
[35]
Li, C.; Qin, Y.; Zhong, Y.; Qin, Y.; Wei, Y.; Li, L.; Xie, Y. Fentanyl inhibits the progression of gastric cancer through the suppression of MMP-9 via the PI3K/Akt signaling pathway. Ann. Transl. Med., 2020, 8(4), 118.
[http://dx.doi.org/10.21037/atm.2019.12.161] [PMID: 32175411]
[36]
Ke, S.; Liu, Z.; Wang, Q.; Zhai, G.; Shao, H.; Yu, X.; Guo, J. FAM107A inactivation associated with promoter methylation affects prostate cancer progression through the FAK/PI3K/AKT pathway. Cancers, 2022, 14(16), 3915.
[http://dx.doi.org/10.3390/cancers14163915] [PMID: 36010909]
[37]
Ye, F.; Song, J.; Wang, Y.; Xu, X.; Zhang, K. Proliferation potential-related protein promotes the esophageal cancer cell proliferation, migration and suppresses apoptosis by mediating the expression of p53 and interleukin-17. Pathobiology, 2018, 85(5-6), 322-331.
[http://dx.doi.org/10.1159/000492393] [PMID: 30223275]
[38]
Rolli, M.; Fransvea, E.; Pilch, J.; Saven, A.; Felding-Habermann, B. Activated integrin αvβ3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc. Natl. Acad. Sci. USA, 2003, 100(16), 9482-9487.
[http://dx.doi.org/10.1073/pnas.1633689100] [PMID: 12874388]
[39]
Deryugina, E.I.; Zajac, E.; Juncker-Jensen, A.; Kupriyanova, T.A.; Welter, L.; Quigley, J.P. Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia, 2014, 16(10), 771-788.
[http://dx.doi.org/10.1016/j.neo.2014.08.013] [PMID: 25379015]
[40]
Yu, X.Y.; Lin, S.C.; Zhang, M.Q.; Guo, X.T.; Ma, K.; Wang, L.X.; Huang, W.T.; Wang, Z.; Yu, X.; Wang, C.G.; Zhang, L.J.; Yu, Z.T. Association and prognostic significance of alpha-L-fucosidase-1 and matrix metalloproteinase 9 expression in esophageal squamous cell carcinoma. World J. Gastrointest. Oncol., 2022, 14(2), 498-510.
[http://dx.doi.org/10.4251/wjgo.v14.i2.498] [PMID: 35317318]
[41]
Li, H.; Yang, F.; Chai, L.; Zhang, L.; Li, S.; Xu, Z.; Kong, L. CCAAT/enhancer binding Protein β-Mediated MMP3 upregulation promotes esophageal squamous cell cancer invasion in vitro and is associated with metastasis in human patients. Genet. Test. Mol. Biomarkers, 2019, 23(5), 304-309.
[http://dx.doi.org/10.1089/gtmb.2018.0291] [PMID: 30969151]
[42]
Uraoka, N.; Oue, N.; Sakamoto, N.; Sentani, K.; Oo, H.Z.; Naito, Y.; Noguchi, T.; Yasui, W. NRD1, which encodes nardilysin protein, promotes esophageal cancer cell invasion through induction of MMP2 and MMP3 expression. Cancer Sci., 2014, 105(1), 134-140.
[http://dx.doi.org/10.1111/cas.12316] [PMID: 24168165]
[43]
Bufu, T.; Di, X.; Yilin, Z.; Gege, L.; Xi, C.; Ling, W. Celastrol inhibits colorectal cancer cell proliferation and migration through suppression of MMP3 and MMP7 by the PI3K/AKT signaling pathway. Anticancer Drugs, 2018, 29(6), 530-538.
[http://dx.doi.org/10.1097/CAD.0000000000000621] [PMID: 29553945]
[44]
Greenawalt, D.M.; Duong, C.; Smyth, G.K.; Ciavarella, M.L.; Thompson, N.J.; Tiang, T.; Murray, W.K.; Thomas, R.J.S.; Phillips, W.A. Gene expression profiling of esophageal cancer: Comparative analysis of Barrett’s esophagus, adenocarcinoma, and squamous cell carcinoma. Int. J. Cancer, 2007, 120(9), 1914-1921.
[http://dx.doi.org/10.1002/ijc.22501] [PMID: 17236199]
[45]
Li, J.; Tang, Y.; Huang, L.; Yu, Q.; Hu, G.; Chen, C.; Zhang, P.; Yuan, X. Genetic variants in CHEK1 gene are associated with the prognosis of thoracic esophageal squamous cell carcinoma patients treated with radical resection. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2016, 36(6), 828-833.
[http://dx.doi.org/10.1007/s11596-016-1670-z] [PMID: 27924519]
[46]
Li, J.; Wang, X.; Zheng, K.; Liu, Y.; Li, J.; Wang, S.; Liu, K.; Song, X.; Li, N.; Xie, S.; Wang, S. The clinical significance of collagen family gene expression in esophageal squamous cell carcinoma. PeerJ, 2019, 7, e7705.
[http://dx.doi.org/10.7717/peerj.7705] [PMID: 31598423]
[47]
Xing, S.; Zheng, X.; Wei, L.Q.; Song, S.J.; Liu, D.; Xue, N.; Liu, X.M.; Wu, M.T.; Zhong, Q.; Huang, C.M.; Zeng, M.S.; Liu, W.L. Development and validation of a serum biomarker panel for the detection of esophageal squamous cell carcinoma through RNA transcriptome sequencing. J. Cancer, 2017, 8(12), 2346-2355.
[http://dx.doi.org/10.7150/jca.19465] [PMID: 28819439]
[48]
Wu, L.; Zhao, K.; Wang, W.; Cui, L.; Hu, L.; Jiang, X.; Shuai, J.; Sun, Y. Nuclear receptor coactivator 6 promotes HTR‐8/SVneo cell invasion and migration by activating NF‐κB‐mediated MMP9 transcription. Cell Prolif., 2020, 53(9), e12876.
[http://dx.doi.org/10.1111/cpr.12876] [PMID: 32790097]
[49]
Jia, Y.; Hu, X.; Gabriella, H.; Qin, L.; Meggyeshazi, N. Antitumor activity of tenacissoside h on esophageal cancer through arresting cell cycle and regulating PI3K/Akt-NF- κ B transduction cascade. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/464937] [PMID: 26495015]
[50]
Xie, Q.; Li, F.; Fang, L.; Liu, W.; Gu, C. The antitumor efficacy of β -elemene by changing tumor inflammatory environment and tumor microenvironment. BioMed Res. Int., 2020, 2020, 1-13.
[http://dx.doi.org/10.1155/2020/6892961] [PMID: 32149121]
[51]
Lee, M.S.; Koh, D.; Kim, G.S.; Lee, S.E.; Noh, H.J.; Kim, S.Y.; Lee, Y.H.; Lim, Y.; Shin, S.Y. 2-Hydroxy-3,4-naphthochalcone (2H-NC) inhibits TNFα-induced tumor invasion through the downregulation of NF-κB-mediated MMP-9 gene expression. Bioorg. Med. Chem. Lett., 2015, 25(1), 128-132.
[http://dx.doi.org/10.1016/j.bmcl.2014.10.086] [PMID: 25466202]
[52]
Jayasooriya, R.G.P.T.; Dilshara, M.G.; Choi, Y.H.; Moon, S.K.; Kim, W.J.; Kim, G.Y. Tianeptine sodium salt suppresses TNF-α-induced expression of matrix metalloproteinase-9 in human carcinoma cells via suppression of the PI3K/Akt-mediated NF-κB pathway. Environ. Toxicol. Pharmacol., 2014, 38(2), 502-509.
[http://dx.doi.org/10.1016/j.etap.2014.07.023] [PMID: 25168152]
[53]
Tan, H.; Zhang, M.; Xu, L.; Zhang, X.; Zhao, Y. Gypensapogenin H suppresses tumor growth and cell migration in triple-negative breast cancer by regulating PI3K/AKT/NF-κB/MMP-9 signaling pathway. Bioorg. Chem., 2022, 126, 105913.
[http://dx.doi.org/10.1016/j.bioorg.2022.105913] [PMID: 35671647]
[54]
Lee, Y.R.; Noh, E.M.; Han, J.H.; Kim, J.M.; Hwang, B.M.; Kim, B.S.; Lee, S.H.; Jung, S.H.; Youn, H.J.; Chung, E.Y.; Kim, J.S. Sulforaphane controls TPA-induced MMP-9 expression through the NF-κB signaling pathway, but not AP-1, in MCF-7 breast cancer cells. BMB Rep., 2013, 46(4), 201-206.
[http://dx.doi.org/10.5483/BMBRep.2013.46.4.160] [PMID: 23615261]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy