Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Network Pharmacology Study to Reveal the Mechanism of Zuogui Pill for Treating Osteoporosis

Author(s): Gaoxiang Wang, Huilin Li*, Hengxia Zhao, Deliang Liu, Shufang Chu, Maosheng Lee and Zebin Fang

Volume 20, Issue 1, 2024

Published on: 07 April, 2023

Page: [2 - 15] Pages: 14

DOI: 10.2174/1573409919666230302111951

Price: $65

conference banner
Abstract

Background: To our knowledge, there is still a lack of scientific reports on the pharmacological mechanism of the Zuogui Pill (ZGP) for treating osteoporosis (OP).

Aims: This study aimed to explore it via network pharmacology and molecular docking.

Methods: We identified active compounds and associated targets in ZGP via two drug databases. Disease targets of OP were obtained utilizing five disease databases. Networks were established and analyzed through the Cytoscape software and STRING databases. Enrichment analyses were performed using the DAVID online tools. Molecular docking was performed using Maestro, PyMOL, and Discovery Studio software.

Results: 89 drug active compounds, 365 drug targets, 2514 disease targets, and 163 drug-disease common targets were obtained. Quercetin, kaempferol, phenylalanine, isorhamnetin, betavulgarin, and glycitein may be the crucial compounds of ZGP in treating OP. AKT1, MAPK14, RELA, TNF, and JUN may be the most important therapeutic targets. Osteoclast differentiation, TNF, MAPK, and thyroid hormone signaling pathways may be the critical therapeutic signaling pathways. The potential therapeutic mechanism mainly relates to osteoblastic or osteoclastic differentiation, oxidative stress, and osteoclastic apoptosis.

Conclusion: This study has revealed the anti-OP mechanism of ZGP, which offers objective evidence for relevant clinical application and further basic research.

Graphical Abstract

[1]
Pagnotti, G.M.; Styner, M.; Uzer, G.; Patel, V.S.; Wright, L.E.; Ness, K.K.; Guise, T.A.; Rubin, J.; Rubin, C.T. Combating osteoporosis and obesity with exercise: Leveraging cell mechanosensitivity. Nat. Rev. Endocrinol., 2019, 15(6), 339-355.
[http://dx.doi.org/10.1038/s41574-019-0170-1] [PMID: 30814687]
[2]
Bellavia, D.; Dimarco, E.; Costa, V.; Carina, V.; De Luca, A.; Raimondi, L.; Fini, M.; Gentile, C.; Caradonna, F.; Giavaresi, G. Flavonoids in bone erosive diseases: Perspectives in osteoporosis treatment. Trends Endocrinol. Metab., 2021, 32(2), 76-94.
[http://dx.doi.org/10.1016/j.tem.2020.11.007] [PMID: 33288387]
[3]
Cummings, S.R.; Melton, L.J. Epidemiology and outcomes of osteoporotic fractures. Lancet, 2002, 359(9319), 1761-1767.
[http://dx.doi.org/10.1016/S0140-6736(02)08657-9] [PMID: 12049882]
[4]
Lancet, D. Endocrinology, osteoporosis: Overlooked in men for too long. Lancet Diabetes Endocrinol., 2021, 9(1), 1.
[http://dx.doi.org/10.1016/S2213-8587(20)30408-3]
[5]
Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet, 2019, 393(10169), 364-376.
[http://dx.doi.org/10.1016/S0140-6736(18)32112-3] [PMID: 30696576]
[6]
Langdahl, B.L. Overview of treatment approaches to osteoporosis. Br. J. Pharmacol., 2021, 178(9), 1891-1906.
[http://dx.doi.org/10.1111/bph.15024] [PMID: 32060897]
[7]
Ensrud, K.E. Bisphosphonates for postmenopausal osteoporosis. JAMA, 2021, 325(1), 96.
[http://dx.doi.org/10.1001/jama.2020.2923] [PMID: 33399841]
[8]
Mullard, A. FDA approves first-in-class osteoporosis drug. Nat. Rev. Drug Discov., 2019, 18(6), 411.
[PMID: 31160772]
[9]
Estell, E.G.; Rosen, C.J. Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis. Nat. Rev. Endocrinol., 2021, 17(1), 31-46.
[http://dx.doi.org/10.1038/s41574-020-00426-5] [PMID: 33149262]
[10]
Zhang, M.; Moalin, M.; Haenen, G.R.M.M. Connecting West and East. Int. J. Mol. Sci., 2019, 20(9), 2333.
[http://dx.doi.org/10.3390/ijms20092333] [PMID: 31083489]
[11]
Li, J.; Sun, K.; Qi, B.; Feng, G.; Wang, W.; Sun, Q.; Zheng, C.; Wei, X.; Jia, Y. An evaluation of the effects and safety of Zuogui pill for treating osteoporosis: Current evidence for an ancient Chinese herbal formula. Phytother. Res., 2021, 35(4), 1754-1767.
[http://dx.doi.org/10.1002/ptr.6908] [PMID: 33089589]
[12]
Yin, H.; Wang, S.; Zhang, Y.; Wu, M.; Wang, J.; Ma, Y. Zuogui Pill improves the dexamethasone-induced osteoporosis progression in zebrafish larvae. Biomed. Pharmacother., 2018, 97, 995-999.
[http://dx.doi.org/10.1016/j.biopha.2017.11.029] [PMID: 29136778]
[13]
Li, Y.H.; Yu, C.Y.; Li, X.X.; Zhang, P.; Tang, J.; Yang, Q.; Fu, T.; Zhang, X.; Cui, X.; Tu, G.; Zhang, Y.; Li, S.; Yang, F.; Sun, Q.; Qin, C.; Zeng, X.; Chen, Z.; Chen, Y.Z.; Zhu, F. Therapeutic target database update 2018: Enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res., 2018, 46(D1), D1121-D1127.
[http://dx.doi.org/10.1093/nar/gkx1076] [PMID: 29140520]
[14]
Wenxiong, L.; Kuaiqiang, Z.; Zhu, L.; Li, L.; Yan, C.; Jichao, Y.; Yindi, S.; Feng, Y.; Yin, J.; Sun, Y. Effect of zuogui pill and yougui pill on osteoporosis: A randomized controlled trial. J. Tradit. Chin. Med., 2018, 38(1), 33-42.
[http://dx.doi.org/10.1016/j.jtcm.2018.01.005] [PMID: 32185949]
[15]
Liu, S.H.; Chuang, W.C.; Lam, W.; Jiang, Z.; Cheng, Y.C. Safety surveillance of traditional Chinese medicine: Current and future. Drug Saf., 2015, 38(2), 117-128.
[http://dx.doi.org/10.1007/s40264-014-0250-z] [PMID: 25647717]
[16]
Zhang, L.; Han, L.; Wang, X.; Wei, Y.; Zheng, J.; Zhao, L.; Tong, X. Exploring the mechanisms underlying the therapeutic effect of Salvia miltiorrhiza in diabetic nephropathy using network pharmacology and molecular docking. Biosci. Rep., 2021, 41(6), BSR20203520.
[http://dx.doi.org/10.1042/BSR20203520] [PMID: 33634308]
[17]
Hopkins, A.L. Network pharmacology. Nat. Biotechnol., 2007, 25(10), 1110-1111.
[http://dx.doi.org/10.1038/nbt1007-1110] [PMID: 17921993]
[18]
Ning, K.; Zhao, X.; Poetsch, A.; Chen, W.H.; Yang, J. Computational molecular networks and network pharmacology. BioMed Res. Int., 2017, 2017, 1.
[http://dx.doi.org/10.1155/2017/7573904] [PMID: 29250548]
[19]
Boezio, B.; Audouze, K.; Ducrot, P.; Taboureau, O. Network-based approaches in pharmacology. Mol. Inform., 2017, 36(10), 1700048.
[http://dx.doi.org/10.1002/minf.201700048] [PMID: 28692140]
[20]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[21]
Liu, Z.; Guo, F.; Wang, Y.; Li, C.; Zhang, X.; Li, H.; Diao, L.; Gu, J.; Wang, W.; Li, D.; He, F. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional chinese medicine. Sci. Rep., 2016, 6(1), 21146.
[http://dx.doi.org/10.1038/srep21146] [PMID: 26879404]
[22]
Huang, J.; Cheung, F.; Tan, H.Y.; Hong, M.; Wang, N.; Yang, J.; Feng, Y.; Zheng, Q. Identification of the active compounds and significant pathways of yinchenhao decoction based on network pharmacology. Mol. Med. Rep., 2017, 16(4), 4583-4592.
[http://dx.doi.org/10.3892/mmr.2017.7149] [PMID: 28791364]
[23]
Qin, X.; Niu, Z.; Han, X.; Yang, Y.; Wei, Q.; Gao, X.; An, R.; Han, L.; Yang, W.; Chai, L.; Liu, E.; Gao, X.; Mao, H. Anti-perimenopausal osteoporosis effects of Erzhi formula via regulation of bone resorption through osteoclast differentiation: A network pharmacology-integrated experimental study. J. Ethnopharmacol., 2021, 270, 113815.
[http://dx.doi.org/10.1016/j.jep.2021.113815] [PMID: 33444724]
[24]
The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2018, 46(5), 2699.
[http://dx.doi.org/10.1093/nar/gky092] [PMID: 29425356]
[25]
Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2020, 48(D1), D845-D855.
[http://dx.doi.org/10.1093/nar/gkz1021] [PMID: 31680165]
[26]
Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. GeneCards version 3: The human gene integrator. Database, 2010, 2010, baq020.
[http://dx.doi.org/10.1093/database/baq020] [PMID: 20689021]
[27]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[28]
Amberger, J.S.; Hamosh, A. Searching online mendelian inheritance in man (OMIM): A knowledgebase of human genes and genetic phenotypes. Curr Protoc Bioinformatics, 2017, 58(1), 1-2.
[http://dx.doi.org/10.1002/cpbi.27] [PMID: 28654725]
[29]
Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive venn diagram viewer. BMC Bioinformatics, 2014, 15(1), 293.
[http://dx.doi.org/10.1186/1471-2105-15-293] [PMID: 25176396]
[30]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[31]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[32]
Tang, Y.; Li, M.; Wang, J.; Pan, Y.; Wu, F.X. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems, 2015, 127, 67-72.
[http://dx.doi.org/10.1016/j.biosystems.2014.11.005] [PMID: 25451770]
[33]
Jiao, X.; Sherman, B.T.; Huang, D.W.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. DAVID-WS: A stateful web service to facilitate gene/protein list analysis. Bioinformatics, 2012, 28(13), 1805-1806.
[http://dx.doi.org/10.1093/bioinformatics/bts251] [PMID: 22543366]
[34]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[35]
Kouranov, A.; Xie, L.; de la Cruz, J.; Chen, L.; Westbrook, J.; Bourne, P.E.; Berman, H.M. The RCSB PDB information portal for structural genomics. Nucleic Acids Res., 2006, 34(90001), D302-D305.
[http://dx.doi.org/10.1093/nar/gkj120] [PMID: 16381872]
[36]
Miyauchi, Y.; Sato, Y.; Kobayashi, T.; Yoshida, S.; Mori, T.; Kanagawa, H.; Katsuyama, E.; Fujie, A.; Hao, W.; Miyamoto, K.; Tando, T.; Morioka, H.; Matsumoto, M.; Chambon, P.; Johnson, R.S.; Kato, S.; Toyama, Y.; Miyamoto, T. HIF1α is required for osteoclast activation by estrogen deficiency in postmenopausal osteoporosis. Proc. Natl. Acad. Sci. USA, 2013, 110(41), 16568-16573.
[http://dx.doi.org/10.1073/pnas.1308755110] [PMID: 24023068]
[37]
Cole, H.A.; Ohba, T.; Nyman, J.S.; Hirotaka, H.; Cates, J.M.M.; Flick, M.J.; Degen, J.L.; Schoenecker, J.G. Fibrin accumulation secondary to loss of plasmin-mediated fibrinolysis drives inflammatory osteoporosis in mice. Arthritis Rheumatol., 2014, 66(8), 2222-2233.
[http://dx.doi.org/10.1002/art.38639] [PMID: 24664548]
[38]
Li, C.; Du, X.; Liu, Y.; Liu, Q.Q.; Zhi, W.B.; Wang, C.L.; Zhou, J.; Li, Y.; Zhang, H. A systems pharmacology approach for identifying the multiple mechanisms of action for the rougui-fuzi herb pair in the treatment of cardiocerebral vascular diseases. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-17.
[http://dx.doi.org/10.1155/2020/5196302] [PMID: 32025235]
[39]
Fuggle, N.R.; Curtis, E.M.; Ward, K.A.; Harvey, N.C.; Dennison, E.M.; Cooper, C. Fracture prediction, imaging and screening in osteoporosis. Nat. Rev. Endocrinol., 2019, 15(9), 535-547.
[http://dx.doi.org/10.1038/s41574-019-0220-8] [PMID: 31189982]
[40]
Chen, G.; Zhang, Z.; Liu, Y.; Lu, J.; Qi, X.; Fang, C.; Zhou, C. Efficacy and safety of Zuogui Pill in treating osteoporosis. Medicine, 2019, 98(8), e13936.
[http://dx.doi.org/10.1097/MD.0000000000013936] [PMID: 30813123]
[41]
Liu, M.; Li, Y.; Pan, J.; Liu, H.; Wang, S.; Teng, J.; Zhao, H.; Ju, D. Effects of zuogui pill (see text) on Wnt singal transduction in rats with glucocorticoid-induced osteoporosis. J. Tradit. Chin. Med., 2011, 31(2), 98-102.
[http://dx.doi.org/10.1016/S0254-6272(11)60020-4] [PMID: 21977807]
[42]
Yang, A.; Yu, C.; You, F.; He, C.; Li, Z. Mechanisms of zuogui pill in treating osteoporosis: Perspective from bone marrow mesenchymal stem cells. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/3717391] [PMID: 30327678]
[43]
Liu, F-X.; Tan, F.; Fan, Q-L.; Tong, W-W.; Teng, Z-L.; Ye, S-M.; Li, X.; Zhang, M-Y.; Chai, Y.; Mai, C-Y. Zuogui Wan improves trabecular bone microarchitecture in ovariectomy-induced osteoporosis rats by regulating orexin-A and orexin receptor. J. Tradit. Chin. Med., 2021, 41(6), 927-934.
[http://dx.doi.org/10.19852/j.cnki.jtcm.20210903.001] [PMID: 34939389]
[44]
Zhou, W.; Wang, Y.; Lu, A.; Zhang, G. Systems pharmacology in small molecular drug discovery. Int. J. Mol. Sci., 2016, 17(2), 246.
[http://dx.doi.org/10.3390/ijms17020246] [PMID: 26901192]
[45]
Wang, N.; Wang, L.; Yang, J.; Wang, Z.; Cheng, L. Quercetin promotes osteogenic differentiation and antioxidant responses of mouse bone mesenchymal stem cells through activation of the AMPK/SIRT1 signaling pathway. Phytother. Res., 2021, 35(5), 2639-2650.
[http://dx.doi.org/10.1002/ptr.7010] [PMID: 33421256]
[46]
Pandit, A.P.; Omase, S.B.; Mute, V.M. A chitosan film containing quercetin-loaded transfersomes for treatment of secondary osteoporosis. Drug Deliv. Transl. Res., 2020, 10(5), 1495-1506.
[http://dx.doi.org/10.1007/s13346-020-00708-5] [PMID: 31942700]
[47]
Vakili, S.; Zal, F.; Mostafavi-pour, Z.; Savardashtaki, A.; Koohpeyma, F. Quercetin and vitamin E alleviate ovariectomy‐induced osteoporosis by modulating autophagy and apoptosis in rat bone cells. J. Cell. Physiol., 2021, 236(5), 3495-3509.
[http://dx.doi.org/10.1002/jcp.30087] [PMID: 33030247]
[48]
Liu, H.; Yi, X.; Tu, S.; Cheng, C.; Luo, J. Kaempferol promotes BMSC osteogenic differentiation and improves osteoporosis by downregulating miR-10a-3p and upregulating CXCL12. Mol. Cell. Endocrinol., 2021, 520, 111074.
[http://dx.doi.org/10.1016/j.mce.2020.111074] [PMID: 33157164]
[49]
Wong, S.K.; Chin, K.Y.; Ima-Nirwana, S. The osteoprotective effects of kaempferol: The evidence from in vivo and in vitro studies. Drug Des. Devel. Ther., 2019, 13, 3497-3514.
[http://dx.doi.org/10.2147/DDDT.S227738] [PMID: 31631974]
[50]
Koura, H.M.; Ismail, N.A.; Kamel, A.F.; Ahmed, A.M.; Saad-Hussein, A.; Effat, L.K. A long-term study of bone mineral density in patients with phenylketonuria under diet therapy. Arch. Med. Sci., 2011, 3(3), 493-500.
[http://dx.doi.org/10.5114/aoms.2011.23417] [PMID: 22295034]
[51]
Messer, J.G.; Hopkins, R.G.; Kipp, D.E. Quercetin metabolites up-regulate the antioxidant response in osteoblasts isolated from fetal rat calvaria. J. Cell. Biochem., 2015, 116(9), 1857-1866.
[http://dx.doi.org/10.1002/jcb.25141] [PMID: 25716194]
[52]
Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules, 2019, 24(6), 1076.
[http://dx.doi.org/10.3390/molecules24061076] [PMID: 30893792]
[53]
He, Q.; Yang, J.; Zhang, G.; Chen, D.; Zhang, M.; Pan, Z.; Wang, Z.; Su, L.; Zeng, J.; Wang, B.; Wang, H.; Chen, P. Sanhuang Jiangtang tablet protects type 2 diabetes osteoporosis via AKT-GSK3β-NFATc1 signaling pathway by integrating bioinformatics analysis and experimental validation. J. Ethnopharmacol., 2021, 273, 113946.
[http://dx.doi.org/10.1016/j.jep.2021.113946] [PMID: 33647426]
[54]
Zhang, Y.; Wang, N.; Ma, J.; Chen, X.C.; Li, Z.; Zhao, W. Expression profile analysis of new candidate genes for the therapy of primary osteoporosis. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(3), 433-440.
[PMID: 26914116]
[55]
Jia, X.; Yang, M.; Hu, W.; Cai, S. Overexpression of miRNA-22-3p attenuates osteoporosis by targeting MAPK14. Exp. Ther. Med., 2021, 22(1), 692.
[http://dx.doi.org/10.3892/etm.2021.10124] [PMID: 33986857]
[56]
Li, J.; Ayoub, A.; Xiu, Y.; Yin, X.; Sanders, J.O.; Mesfin, A.; Xing, L.; Yao, Z.; Boyce, B.F. TGFβ-induced degradation of TRAF3 in mesenchymal progenitor cells causes age-related osteoporosis. Nat. Commun., 2019, 10(1), 2795.
[http://dx.doi.org/10.1038/s41467-019-10677-0] [PMID: 31243287]
[57]
Neugebauer, J.; Heilig, J.; Hosseinibarkooie, S.; Ross, B.C.; Mendoza-Ferreira, N.; Nolte, F.; Peters, M.; Hölker, I.; Hupperich, K.; Tschanz, T.; Grysko, V.; Zaucke, F.; Niehoff, A.; Wirth, B. Plastin 3 influences bone homeostasis through regulation of osteoclast activity. Hum. Mol. Genet., 2018, 27(24), 4249-4262.
[http://dx.doi.org/10.1093/hmg/ddy318] [PMID: 30204862]
[58]
Liu, Z.; Li, C.; Huang, P.; Hu, F.; Jiang, M.; Xu, X.; Li, B.; Deng, L.; Ye, T.; Guo, L. CircHmbox1 targeting mirna-1247-5p is involved in the regulation of bone metabolism by tnf-α in postmenopausal osteoporosis. Front. Cell Dev. Biol., 2020, 8, 594785.
[http://dx.doi.org/10.3389/fcell.2020.594785] [PMID: 33425899]
[59]
Yang, F.; Jia, Y.; Sun, Q.; Zheng, C.; Liu, C.; Wang, W.; Du, L.; Kang, S.; Niu, X.; Li, J. Raloxifene improves TNF α induced osteogenic differentiation inhibition of bone marrow mesenchymal stem cells and alleviates osteoporosis. Exp. Ther. Med., 2020, 20(1), 309-314.
[http://dx.doi.org/10.3892/etm.2020.8689] [PMID: 32550885]
[60]
Lerbs, T.; Cui, L.; Muscat, C.; Saleem, A.; van Neste, C.; Domizi, P.; Chan, C.; Wernig, G. Expansion of bone precursors through jun as a novel treatment for osteoporosis-associated fractures. Stem Cell Reports, 2020, 14(4), 603-613.
[http://dx.doi.org/10.1016/j.stemcr.2020.02.009] [PMID: 32197115]
[61]
Chen, S.; Li, Y.; Zhi, S.; Ding, Z.; Huang, Y.; Wang, W.; Zheng, R.; Yu, H.; Wang, J.; Hu, M.; Miao, J.; Li, J. lncRNA xist regulates osteoblast differentiation by sponging mir-19a-3p in aging-induced osteoporosis. Aging Dis., 2020, 11(5), 1058-1068.
[http://dx.doi.org/10.14336/AD.2019.0724] [PMID: 33014522]
[62]
Mazurek, A.H.; Szeleszczuk, Ł.; Simonson, T.; Pisklak, D.M. Application of various molecular modelling methods in the study of estrogens and xenoestrogens. Int. J. Mol. Sci., 2020, 21(17), 6411.
[http://dx.doi.org/10.3390/ijms21176411] [PMID: 32899216]
[63]
Cao, B.; Chai, C.; Zhao, S. Protective effect of Edaravone against hypoxia-induced cytotoxicity in osteoblasts MC3T3-E1 cells. IUBMB Life, 2015, 67(12), 928-933.
[http://dx.doi.org/10.1002/iub.1436] [PMID: 26596678]
[64]
Beringer, A.; Gouriou, Y.; Lavocat, F.; Ovize, M.; Miossec, P. Blockade of store-operated calcium entry reduces il-17/tnf cytokine-induced inflammatory response in human myoblasts. Front. Immunol., 2019, 9, 3170.
[http://dx.doi.org/10.3389/fimmu.2018.03170] [PMID: 30693003]
[65]
Wu, L.; Luo, Z.; Liu, Y.; Jia, L.; Jiang, Y.; Du, J.; Guo, L.; Bai, Y.; Liu, Y. Aspirin inhibits RANKL-induced osteoclast differentiation in dendritic cells by suppressing NF-κB and NFATc1 activation. Stem Cell Res. Ther., 2019, 10(1), 375.
[http://dx.doi.org/10.1186/s13287-019-1500-x] [PMID: 31805984]
[66]
Al Mamun, M.A.; Asim, M.M.H.; Sahin, M.A.Z.; Al-Bari, M.A.A. Flavonoids compounds from Tridax procumbens inhibit osteoclast differentiation by down‐regulating c‐Fos activation. J. Cell. Mol. Med., 2020, 24(4), 2542-2551.
[http://dx.doi.org/10.1111/jcmm.14948] [PMID: 31919976]
[67]
Jeong, Y.H.; Hur, H.J.; Lee, A.S.; Lee, S.H.; Sung, M.J. Amaranthus mangostanus inhibits the differentiation of osteoclasts and prevents ovariectomy-induced bone loss. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/1927017] [PMID: 32089716]
[68]
Wu, D.; Zhang, X.; Liu, L.; Guo, Y. Key CMM combinations in prescriptions for treating mastitis and working mechanism analysis based on network pharmacology. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/8245071] [PMID: 30911319]
[69]
Zha, J.; Wang, X.; Di, J. MiR-920 promotes osteogenic differentiation of human bone mesenchymal stem cells by targeting HOXA7. J. Orthop. Surg. Res., 2020, 15(1), 254.
[http://dx.doi.org/10.1186/s13018-020-01775-7] [PMID: 32650806]
[70]
Wu, H.; Hu, B.; Zhou, X.; Zhou, C.; Meng, J.; Yang, Y.; Zhao, X.; Shi, Z.; Yan, S. Artemether attenuates LPS-induced inflammatory bone loss by inhibiting osteoclastogenesis and bone resorption via suppression of MAPK signaling pathway. Cell Death Dis., 2018, 9(5), 498.
[http://dx.doi.org/10.1038/s41419-018-0540-y] [PMID: 29703893]
[71]
Zantut-Wittmann, D.E.; Quintino-Moro, A.; dos Santos, P.N.S.; Melhado-Kimura, V.; Bahamondes, L.; Fernandes, A. Lack of influence of thyroid hormone on bone mineral density and body composition in healthy euthyroid women. Front. Endocrinol., 2020, 10, 890.
[http://dx.doi.org/10.3389/fendo.2019.00890] [PMID: 31998231]
[72]
Delitala, A.P.; Scuteri, A.; Doria, C. Thyroid hormone diseases and osteoporosis. J. Clin. Med., 2020, 9(4), 1034.
[http://dx.doi.org/10.3390/jcm9041034] [PMID: 32268542]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy