Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Practical Synthesis of 1,4-Dihydropyridines on Heterogeneous Sulfonicmodified Silica (SBA-15-SO3H) Catalyst Under Mild Condition

Author(s): Tran Quang Hung, Ban Van Phuc, Pham Thị Thanh Loan, Do Thi Lan Nhi, Hien Nguyen, Hoan Xuan Vu, Dang Van Do* and Tuan Thanh Dang*

Volume 20, Issue 8, 2023

Published on: 10 May, 2023

Page: [880 - 889] Pages: 10

DOI: 10.2174/1570179420666230301143027

Price: $65

Abstract

Aims: Synthesis of 1,4-Dihydropyridines (1,4-DHP) using heterogeneous catalyst under mild condition.

Objective: Our objective is to explore new applications of non-metal heterogeneous catalysts in the synthesis of 1,4-DHP derivatives in a greener and more efficient approach.

Methods: A greener and more efficient method for the synthesis of 1,4-DHPs and an asymmetric 1,4-DHP (Felodipine drug) was successfully developed in high yields using a heterogeneous SBA- 15-SO3H catalyst.

Results: A series of symmetric 1,4-DHP and an asymmetric 1,4-DHP (Felodipine drug) were successfully prepared in high yields using a heterogeneous SBA-15-SO3H catalyst.

Conclusion: The catalyst, SBA-15-SO3H, exhibited an efficient catalyst activity for the synthesis of 1,4-DHP derivatives in high yields from the aldehyde, β-ketoester, and NH4OAc as a nitrogen source under mild conditions and short reaction time. Bronsted acid sites of this solid catalyst were figured out to play a key role in this transformation. Interestingly, our catalyst is air-stable and can be recycled at least 5 times without losing catalytic activity.

Graphical Abstract

[1]
Triggle, D.J. Calcium channel antagonists: Clinical uses—Past, present and future. Biochem. Pharmacol., 2007, 74(1), 1-9.
[http://dx.doi.org/10.1016/j.bcp.2007.01.016] [PMID: 17276408]
[2]
Takenaka, T.; Usuda, S.; Nomura, T.; Maeno, H.; Sado, T. Vasodilator profile of a new 1,4-dihydropyridine derivative, 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-[2-(N-benzyl-N-methylamino)]-ethyl ester 5-methyl ester hydrochloride (YC-93). Arzneimittelforschung, 1976, 26(12), 2172-2178.
[PMID: 1037267]
[3]
Bossert, F.; Meyer, H.; Wehinger, E. 4-aryldihydropyridines, a new class of highly active calcium antagonists. Angew. Chem. Int. Ed. Engl., 1981, 20(9), 762-769.
[http://dx.doi.org/10.1002/anie.198107621]
[4]
Loev, B.; Goodman, M.M.; Snader, K.M.; Tedeschi, R.; Macko, E. Hantzsch-type dihydropyridine hypotensive agents. J. Med. Chem., 1974, 17(9), 956-965.
[http://dx.doi.org/10.1021/jm00255a010] [PMID: 4859592]
[5]
Tarasenko, L.M.; Neporada, K.S.; Klusha, V. Stress-protective effect of glutapyrone belonging to a new type of amino acid-containing 1,4-dihydropyridines on periodontal tissues and stomach in rats with different resistance to stress. Bull. Exp. Biol. Med., 2002, 133(4), 369-371.
[http://dx.doi.org/10.1023/A:1016250121896] [PMID: 12124648]
[6]
Budriesi, R.; Ioan, P.; Locatelli, A.; Cosconati, S.; Leoni, A.; Ugenti, M.P.; Andreani, A.; Di Toro, R.; Bedini, A.; Spampinato, S.; Marinelli, L.; Novellino, E.; Chiarini, A. Imidazo[2,1-b]thiazole system: A scaffold endowing dihydropyridines with selective cardiodepressant activity. J. Med. Chem., 2008, 51(6), 1592-1600.
[http://dx.doi.org/10.1021/jm070681+] [PMID: 18303827]
[7]
Abdul Nasser, A.J.; Indumathy, S.; Kumar, R.S.; Idhayadhulla, A.; Kavimani, S. Synthesis and anticonvulsant activity of a new series of 1,4-dihydropyridine derivatives. Indian J. Pharm. Sci., 2010, 72(6), 719-725.
[http://dx.doi.org/10.4103/0250-474X.84580] [PMID: 21969743]
[8]
Idhayadhulla, A.; Kumar, R.S.; Nasser, A.J.A.; Kavimani, S.; Indhumathy, S. Anti-inflammatory activity of new series of 1,4-dihydropyridine derivatives. Pharm. Chem. J., 2015, 49(7), 463-466.
[http://dx.doi.org/10.1007/s11094-015-1305-x]
[9]
Gadotti, V.M. Bladen, C.; Zhang, F.X.; Chen, L.; Gündüz, M.G.; Şimşek, R.; Şafak, C.; Zamponi, G.W. Analgesic effect of a broadspectrum dihydropyridine inhibitor of voltage-gated calcium channels. Pflugers Arch., 2015, 467(12), 2485-2493.
[http://dx.doi.org/10.1007/s00424-015-1725-1] [PMID: 26286466]
[10]
Viradiya, D.; Mirza, S.; Shaikh, F.; Kakadiya, R.; Rathod, A.; Jain, N.; Rawal, R.; Shah, A. Design and synthesis of 1,4-dihydropyridine derivatives as anti-cancer agent. Anticancer. Agents Med. Chem., 2017, 17(7), 1003-1013.
[http://dx.doi.org/10.2174/1871520616666161206143251] [PMID: 27924733]
[11]
Hantzsch, A. On the synthesis of pyridine-like compounds from acetoacetic ether and aldehyde ammonia. Justus Liebigs Ann. Chem., 1882, 215(1), 1-82.
[http://dx.doi.org/10.1002/jlac.18822150102]
[12]
Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem., 2013, 9, 2265-2319.
[http://dx.doi.org/10.3762/bjoc.9.265] [PMID: 24204439]
[13]
De Luca, M.; Ioele, G.; Ragno, G. 1,4-dihydropyridine antihypertensive drugs: Recent advances in photostabilization strategies. Pharmaceutics, 2019, 11(2), 85-91.
[http://dx.doi.org/10.3390/pharmaceutics11020085] [PMID: 30781584]
[14]
Sabitha, G.; Reddy, G.S.K.K.; Reddy, C.S.; Yadav, J.S. A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Tetrahedron Lett., 2003, 44(21), 4129-4131.
[http://dx.doi.org/10.1016/S0040-4039(03)00813-X]
[15]
Tewari, N.; Dwivedi, N.; Tripathi, R.P. Tetrabutylammonium hydrogen sulfate catalyzed eco-friendly and efficient synthesis of glycosyl 1,4-dihydropyridines. Tetrahedron Lett., 2004, 45(49), 9011-9014.
[http://dx.doi.org/10.1016/j.tetlet.2004.10.057]
[16]
Sharma, G.V.; Reddy, K.L.; Lakshmi, P.S.; Krishna, P.R. In situ generated ‘HCl’ - An efficient catalyst for solvent-free hantzsch reaction at room temperature: synthesis of new dihydropyridine glycoconjugates. Synthesis, 2006, 2006(1), 55-58.
[http://dx.doi.org/10.1055/s-2005-921744]
[17]
Wang, L.M.; Sheng, J.; Zhang, L.; Han, J.W.; Fan, Z.Y.; Tian, H.; Qian, C.T. Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron, 2005, 61(6), 1539-1543.
[http://dx.doi.org/10.1016/j.tet.2004.11.079]
[18]
Lee, J.H. Synthesis of Hantsch 1,4-dihydropyridines by fermenting bakers’ yeast. Tetrahedron Lett., 2005, 46(43), 7329-7330.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.137]
[19]
Ko, S.; Sastry, M.N.V.; Lin, C.; Yao, C.F. Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction. Tetrahedron Lett., 2005, 46(34), 5771-5774.
[http://dx.doi.org/10.1016/j.tetlet.2005.05.148]
[20]
Ko, S.; Yao, C.F. Ceric Ammonium Nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction. Tetrahedron, 2006, 62(31), 7293-7299.
[http://dx.doi.org/10.1016/j.tet.2006.05.037]
[21]
Debache, A.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. One-pot synthesis of 1,4-dihydropyridines via a phenylboronic acid catalyzed Hantzsch three-component reaction. Synlett, 2008, 2008(4), 509-512.
[http://dx.doi.org/10.1055/s-2008-1032093]
[22]
Cherkupally, S.R.; Mekala, R. P-TSA catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through hantzsch multi-component condensation. Chem. Pharm. Bull. (Tokyo), 2008, 56(7), 1002-1004.
[http://dx.doi.org/10.1248/cpb.56.1002] [PMID: 18591819]
[23]
Debache, A.; Ghalem, W.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. An efficient one-step synthesis of 1,4-dihydropyridines via a triphenylphosphine-catalyzed three-component Hantzsch reaction under mild conditions. Tetrahedron Lett., 2009, 50(37), 5248-5250.
[http://dx.doi.org/10.1016/j.tetlet.2009.07.018]
[24]
Tamaddon, F.; Razmi, Z.; Jafari, A.A. Synthesis of 3,4-dihydropyrimidin-2(1H)-ones and 1,4-dihydropyridines using ammonium carbonate in water. Tetrahedron Lett., 2010, 51(8), 1187-1189.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.098]
[25]
Wu, X.Y. Facile and green synthesis of 1,4-dihydropyridine derivatives in n -butyl pyridinium tetrafluoroborate. Synth. Commun., 2012, 42(3), 454-459.
[http://dx.doi.org/10.1080/00397911.2010.525773]
[26]
Patil, D.R.; Dalal, D.S. One-pot, solvent free synthesis of hantzsch 1, 4-dihydropyridines using β- cyclodextrin as a supramolecular catalyst. Lett. Org. Chem., 2011, 8, 477-483.
[http://dx.doi.org/10.2174/157017811796504891]
[27]
Adibi, H.; Samimi, H.A.; Beygzadeh, M. Iron(III) trifluoroacetate and trifluoromethanesulfonate: Recyclable Lewis acid catalysts for one-pot synthesis of 3,4-dihydropyrimidinones or their sulfur analogues and 1,4-dihydropyridines via solvent-free Biginelli and Hantzsch condensation protocols. Catal. Commun., 2007, 8(12), 2119-2124.
[http://dx.doi.org/10.1016/j.catcom.2007.04.022]
[28]
Wang, S.X.; Li, Z.Y.; Zhang, J.C.; Li, J.T. The solvent-free synthesis of 1,4-dihydropyridines under ultrasound irradiation without catalyst. Ultrason. Sonochem., 2008, 15(5), 677-680.
[http://dx.doi.org/10.1016/j.ultsonch.2008.02.009] [PMID: 18394947]
[29]
Lei, M.; Ma, L.; Hu, L. Thiamine Hydrochloride–Catalyzed One-Pot Synthesis of 1,4-Dihydropyridine Derivatives Under Solvent-Free Conditions. Synth. Commun., 2011, 41(13), 1969-1976.
[http://dx.doi.org/10.1080/00397911.2010.494814]
[30]
Maheswara, M.; Siddaiah, V.; Rao, Y.K.; Tzeng, Y.M.; Sridhar, C. A simple and efficient one-pot synthesis of 1,4-dihydropyridines using heterogeneous catalyst under solvent-free conditions. J. Mol. Catal. Chem., 2006, 260(1-2), 179-180.
[http://dx.doi.org/10.1016/j.molcata.2006.07.024]
[31]
Paul, S.; Gupta, R.; Gupta, R.; Loupy, A. Covalently anchored sulfonic acid on silica gel as an efficient and reusable heterogeneous catalyst for the one-pot synthesis of hantzsch 1,4-dihydropyridines under solvent-free conditions. Synthesis, 2007, 2007(18), 2835-2838.
[http://dx.doi.org/10.1055/s-2007-983839]
[32]
Zonouz, A.M.; Hosseini, S.B. Montmorillonite K10 clay: An efficient catalyst for hantzsch synthesis of 1,4-dihydropyridine derivatives. Synth. Commun., 2008, 38(2), 290-296.
[http://dx.doi.org/10.1080/00397910701750003]
[33]
Rafiee, E.; Eavani, S.; Rashidzadeh, S.; Joshaghani, M. Silica supported 12-tungstophosphoric acid catalysts for synthesis of 1,4-dihydropyridines under solvent-free conditions. Inorg. Chim. Acta, 2009, 362(10), 3555-3562.
[http://dx.doi.org/10.1016/j.ica.2009.03.049]
[34]
Mohammadi, B.; Jamkarani, S.M.H.; Kamali, T.A.; Nasrollahzadeh, M.; Mohajeri, A. Sulfonic acid-functionalized silica: a remarkably efficient heterogeneous reusable catalyst for the one-pot synthesis of 1,4-dihydropyridines. Turk. J. Chem., 2010, 34, 613-619.
[http://dx.doi.org/10.3906/kim-0906-28]
[35]
Jafari-Chermahini, M.T.; Tavakol, H. One-pot synthesis of hantzsch 1,4-dihydropyridines by a series of iron oxide nanoparticles: Putative synthetic TRPV6 calcium channel blockers. ChemistrySelect, 2021, 6(9), 2360-2365.
[http://dx.doi.org/10.1002/slct.202004390]
[36]
Wu, K.; Bai, Y.; Chen, D.; Chen, L.; Huang, Y.; Bai, S.; Li, Y. Green synthesis of 1,4-dihydropyridines using cobalt carbon nanotubes as recyclable catalysts. Environ. Chem. Lett., 2021, 19(2), 1903-1910.
[http://dx.doi.org/10.1007/s10311-020-01145-z]
[37]
Ghamari Kargar, P.; Noorian, M.; Chamani, E.; Bagherzade, G.; Kiani, Z. Synthesis, characterization and cytotoxicity evaluation of a novel magnetic nanocomposite with iron oxide deposited on cellulose nanofibers with nickel (Fe3O4 @NFC@ONSM-Ni). RSC Advances, 2021, 11(28), 17413-17430.
[http://dx.doi.org/10.1039/D1RA01256H] [PMID: 35479678]
[38]
Ghosh, A.; Kavitha, C.S.; Keri, R.S. Fe3O4@cysteine nanocomposite: An efficient and reusable catalyst for the facile, green, one-pot synthesis of 1,4-dihydropyridine via Hantzsch reaction. Chem. Data Collect., 2021, 33100688
[http://dx.doi.org/10.1016/j.cdc.2021.100688]
[39]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350), 548-552.
[http://dx.doi.org/10.1126/science.279.5350.548] [PMID: 9438845]
[40]
Martínez-Edo, G.; Balmori, A.; Pontón, I.; Martí del Rio, A.; Sánchez-García, D. Functionalized ordered mesoporous silicas (MCM-41): Synthesis and applications in catalysis. Catalysts, 2018, 8(12), 617.
[http://dx.doi.org/10.3390/catal8120617]
[41]
Singh, B.; Na, J.; Konarova, M.; Wakihara, T.; Yamauchi, Y.; Salomon, C.; Gawande, M.B. Functional mesoporous silica nanomaterials for catalysis and environmental application. Bull. Chem. Soc. Jpn., 2020, 93(12), 1459-1496.
[http://dx.doi.org/10.1246/bcsj.20200136]
[42]
Cheng, X.; Feng, Q.; Ma, D.; Chen, H.; Zeng, X.; Xing, F.; Teng, J. Efficient catalytic production of levulinic acid over hydrothermally stable propyl sulfonic acid functionalized SBA-15 in γ-valerolactone-water system. J. Environ. Chem. Eng., 2021, 9(4)105747
[http://dx.doi.org/10.1016/j.jece.2021.105747]
[43]
Horiuchi, Y.; Do Van, D.; Yonezawa, Y.; Saito, M.; Dohshi, S.; Kim, T.H.; Matsuoka, M. Synthesis and bifunctional catalysis of metal nanoparticle-loaded periodic mesoporous organosilicas modified with amino groups. RSC Advances, 2015, 5(89), 72653-72658.
[http://dx.doi.org/10.1039/C5RA13090E]
[44]
Rucins, M.; Plotniece, A.; Bernotiene, E.; Tsai, W.B.; Sobolev, A. Recent approaches to chiral 1,4-dihydropyridines and their fused analogues. Catalysts, 2020, 10(9), 1019.
[http://dx.doi.org/10.3390/catal10091019]
[45]
Elhamifar, D.; Khanmohammadi, H.; Elhamifar, D. Nickel containing ionic liquid based ordered nanoporous organosilica: a powerful and recoverable catalyst for synthesis of polyhydroquinolines. RSC Advances, 2017, 7(86), 54789-54796.
[http://dx.doi.org/10.1039/C7RA10758G]
[46]
Siril, P.F.; Cross, H.E.; Brown, D.R. New polystyrene sulfonic acid resin catalysts with enhanced acidic and catalytic properties. J. Mol. Catal. Chem., 2008, 279(1), 63-68.
[http://dx.doi.org/10.1016/j.molcata.2007.10.001]
[47]
Ekinci, E.K.; Gündüz, G.; Oktar, N. Activity comparison of acidic resins in the production of valuable glycerol acetates. Int. J. Chem. React. Eng., 2016, 14(1), 309-314.
[http://dx.doi.org/10.1515/ijcre-2015-0012]
[48]
Hantzsch, A. Condensation products of aldehyde ammonia and ketone-like compounds. Ber. Dtsch. Chem. Ges., 1881, 14(2), 1637-1638.
[http://dx.doi.org/10.1002/cber.18810140214]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy