Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design, Synthesis and In vitro Screening of Novel 2-Mercaptobenzothiazole- Clubbed Phenylacetamides as Potential Antibacterial Agents

Author(s): Swarupa Rani Gurram, Mohammed Afzal Azam* and Nagarjuna Palathoti

Volume 21, Issue 7, 2024

Published on: 31 March, 2023

Page: [1185 - 1194] Pages: 10

DOI: 10.2174/1570180820666230301124314

Price: $65

Abstract

Background: The frightening rise of bacterial resistance is occurring worldwide and endangering the efficacy of antibiotics. Hence, the development of novel and potent antibacterial is a need of the day.

Objective: In this study, we designed and synthesized compounds C1-C11. These compounds are characterized by their FT-IR, NMR and MS spectral data and examined in vitro for their antibacterial activity.

Methods: Compounds C1-C11 were synthesized by reacting 2-mercaptobenzothiazole with appropriate chloroacetamide in the presence of anhydrous potassium carbonate and dry acetone at room temperature. To assess the antibacterial activity, minimum inhibitory and minimum bactericidal concentrations were examined by broth microdilution method against the selected strains of both Gram-positive and Gramnegative bacteria. Time-kill kinetics study was also performed as per CLSI guidelines.

Results: Compounds C6 and C7 displayed promising activity against Staphylococcus aureus ATCC 43300 with MICs of 9.43 and 7.73 μM, respectively. These two compounds also displayed promising antibacterial activity against S. aureus 5021 with MIC values of 7.53 and 9.68 μM, respectively. In MBC determination, these two compounds (tested in the concentration range of 7.53 to 262.3 μM) displayed bactericidal activity against methicillin resistant S. aureus ATCC 43300, S. aureus NCIM 5021 and S. aureus NCIM 5022. In time-kill kinetics study, compounds C6 and C7 also exhibited bactericidal activity against S. aureus NCIM 5021 and S. aureus ATCC 43300 after 12 h of exposure. In general, all tested compounds exhibited poor activity against Mycobacterium sp. NCIM 2984 and also against tested Gramnegative bacteria Klebsiella pneumoniae NCIM 2706, Escherichia coli NCIM 2065 and Pseudomonas aeruginosa NCIM 2036. Further, computed ADMET properties of C1-C11 showed a favourable pharmacokinetic profile with zero violation of Lipinski’s rule of five.

Conclusion: The result showed that in phenylacetamides C6 and C7 presence of phenyl ring substituted with -CF3 group is responsible for their high antibacterial activity against S. aureus ATCC 43300 (MICs, 9.43 and 7.73 μM, respectively). These two compounds also exhibited bactericidal activity respectively against S. aureus NCIM 5021 in time kill kinetics study.

Graphical Abstract

[1]
Cohen, M.L. Changing patterns of infectious disease. Nature, 2000, 406(6797), 762-767.
[http://dx.doi.org/10.1038/35021206] [PMID: 10963605]
[2]
Coleman, K. Recent advances in the treatment of Gram-positive infections. Drug Discov. Today Ther. Strateg., 2004, 1(4), 455-460.
[http://dx.doi.org/10.1016/j.ddstr.2004.08.015]
[3]
Abbanat, D.; Macielag, M.; Bush, K. Novel antibacterial agents for the treatment of serious gram-positive infections. Expert Opin. Investig. Drugs, 2003, 12(3), 379-399.
[http://dx.doi.org/10.1517/13543784.12.3.379] [PMID: 12605562]
[4]
Thompson, L.A.; Ellman, J.A. Synthesis and applications of small molecule libraries. Chem. Rev., 1996, 96(1), 555-600.
[http://dx.doi.org/10.1021/cr9402081] [PMID: 11848765]
[5]
Axford, L.C.; Agarwal, P.K.; Anderson, K.H.; Andrau, L.N.; Atherall, J.; Barker, S.; Bennett, J.M.; Blair, M.; Collins, I.; Czaplewski, L.G.; Davies, D.T.; Gannon, C.T.; Kumar, D.; Lancett, P.; Logan, A.; Lunniss, C.J.; Mitchell, D.R.; Offermann, D.A.; Palmer, J.T.; Palmer, N.; Pitt, G.R.W.; Pommier, S.; Price, D.; Narasinga Rao, B.; Saxena, R.; Shukla, T.; Singh, A.K.; Singh, M.; Srivastava, A.; Steele, C.; Stokes, N.R.; Thomaides-Brears, H.B.; Tyndall, E.M.; Watson, D.; Haydon, D.J. Design, synthesis and biological evaluation of α-substituted isonipecotic acid benzothiazole analogues as potent bacterial type II topoisomerase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(24), 6598-6603.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.058] [PMID: 24239017]
[6]
Kitagawa, H.; Ozawa, T.; Takahata, S.; Iida, M. Phenylimidazole derivatives as new inhibitors of bacterial enoyl-ACP reductase FabK. Bioorg. Med. Chem. Lett., 2007, 17(17), 4982-4986.
[http://dx.doi.org/10.1016/j.bmcl.2007.06.040] [PMID: 17600706]
[7]
Telvekar, V.N.; Bairwa, V.K.; Satardekar, K.; Bellubi, A. Novel 2-(2-(4-aryloxybenzylidene) hydrazinyl)benzothiazole derivatives as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2012, 22(1), 649-652.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.064] [PMID: 22079026]
[8]
Cho, Y.; Ioerger, T.R.; Sacchettini, J.C. Discovery of novel nitrobenzothiazole inhibitors for Mycobacterium tuberculosis ATP phosphoribosyl transferase (HisG) through virtual screening. J. Med. Chem., 2008, 51(19), 5984-5992.
[http://dx.doi.org/10.1021/jm800328v] [PMID: 18778048]
[9]
Manjula, S.N.; Malleshappa Noolvi, N.; Vipan Parihar, K.; Manohara Reddy, S.A.; Ramani, V.; Gadad, A.K.; Singh, G.; Gopalan Kutty, N.; Mallikarjuna Rao, C. Synthesis and antitumor activity of optically active thiourea and their 2-aminobenzothiazole derivatives: A novel class of anticancer agents. Eur. J. Med. Chem., 2009, 44(7), 2923-2929.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.002] [PMID: 19128861]
[10]
Doğruer, D.S.; Ünlü, S.; Şahin, M.F.; Yqilada, E. Anti-nociceptive and anti-inflammatory activity of some (2-benzoxazolone-3-yl and 2-benzothiazolone-3-yl) acetic acid derivatives. Farmaco, 1998, 53(1), 80-84.
[http://dx.doi.org/10.1016/S0014-827X(97)00017-7] [PMID: 9543729]
[11]
Heck, R.W.; Tanhauser, S.M.; Manda, R.; Tu, C.; Laipis, P.J.; Silverman, D.N. Catalytic properties of mouse carbonic anhydrase V. J. Biol. Chem., 1994, 269(40), 24742-24746.
[http://dx.doi.org/10.1016/S0021-9258(17)31454-0] [PMID: 7929150]
[12]
Zoccolella, S.; Beghi, E.; Palagano, G.; Fraddosio, A.; Guerra, V.; Samarelli, V.; Lepore, V.; Simone, I.L.; Lamberti, P.; Serlenga, L.; Logroscino, G. Riluzole and amyotrophic lateral sclerosis survival: A population-based study in southern Italy. Eur. J. Neurol., 2007, 14(3), 262-268.
[http://dx.doi.org/10.1111/j.1468-1331.2006.01575.x] [PMID: 17355545]
[13]
Mierau, J.; Schneider, F.J.; Ensinger, H.A.; Chio, C.L.; Lajiness, M.E.; Huff, R.M. Pramipexole binding and activation of cloned and expressed dopamine D2, D3 and D4 receptors. Eur. J. Pharmacol., 1995, 290(1), 29-36.
[http://dx.doi.org/10.1016/0922-4106(95)90013-6] [PMID: 7664822]
[14]
Xie, Y.; Deng, S.; Chen, Z.; Yan, S.; Landry, D.W. Identification of small-molecule inhibitors of the Aβ–ABAD interaction. Bioorg. Med. Chem. Lett., 2006, 16(17), 4657-4660.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.099] [PMID: 16781151]
[15]
Berkin, K.E.; Kerr, J.W. Tiaramide-a new oral drug for the treatment of asthma. Br. J. Clin. Pharmacol., 1982, 14(4), 505-508.
[http://dx.doi.org/10.1111/j.1365-2125.1982.tb02020.x] [PMID: 7138736]
[16]
Laursen, L.C.; Lindqvist, A.; Hepburn, T.; Lloyd, J.; Perrett, J.; Sanders, N.; Rocchiccioli, K. The role of the novel D2/β2-agonist, Viozan™ (sibenadet HCl), in the treatment of symptoms of chronic obstructive pulmonary disease: Results of a large-scale clinical investigation. Respir. Med., 2003, 97(Suppl. A), S23-S33.
[http://dx.doi.org/10.1016/S0954-6111(03)80012-4] [PMID: 12564608]
[17]
Bradshaw, T.; Westwell, A. The development of the antitumour benzothiazole prodrug, Phortress, as a clinical candidate. Curr. Med. Chem., 2004, 11(8), 1009-1021.
[http://dx.doi.org/10.2174/0929867043455530] [PMID: 15078163]
[18]
Sutton, J.C.; Wiesmann, M.; Wang, W.; Lindvall, M.; Lan, J.; Ramurthy, S.; Sharma, A.; Mieuli, E.J.; Klivansky, L.M.; Lenahan, W.P.; Kaufman, S.; Yang, H.; Ng, S.C.; Pfister, K.; Wagman, A.; Sung, V. 6-O-substituted benzoxazole and benzothiazole compounds and methods of inhibiting CSF-1R signalling., US Patent WO2007121484A3, 2009.
[19]
Klunk, W.E.; Mathis, C.A.; Wang, Y. Benzothiazole derivative compounds, compositions and uses., US Patent US9134328B2, 2014.
[20]
Dahl, R.; Lee, A.Y.; Kho, C.; Hajjar, R.J. Benzothiazole or benzoxazole compounds as sumo activators., Patent WO2014036242 A3, 2015.
[21]
Svendsen, J.S.; Stensen, W.; Porter, R.A. Benzothiazole derivatives as DYRK1 inhibitors., US Patent 16/341630, 2021.
[22]
Pragathi, Y.J.; Sreenivasulu, R.; Veronica, D.; Madhavi, S.; Raju, R.R. Design, Synthesis, and Biological Evaluation of Novel 2-(4-Arylsubstituted-1H,2,3-triazol-1-yl)-N-4-[2-(thiazol-2-yl)benzo[d]thiazol-6-yl]phenylacetamide derivatives as potent anticancer Agents. Russ. J. Gen. Chem., 2019, 89(5), 1009-1014.
[http://dx.doi.org/10.1134/S1070363219050220]
[23]
Lu, H.; Zhou, X.; Wang, L.; Jin, L. Synthesis and antibacterial evaluation of n-phenylacetamide derivatives containing 4-arylthiazole moieties. Molecules, 2020, 25(8), 1772.
[http://dx.doi.org/10.3390/molecules25081772] [PMID: 32290634]
[24]
Ertan, T.; Yildiz, I.; Ozkan, S.; Temiz-Arpaci, O.; Kaynak, F.; Yalcin, I.; Aki-Sener, E.; Abbasoglu, U. Synthesis and biological evaluation of new N-(2-hydroxy-4(or 5)-nitro/aminophenyl)benzamides and phenylacetamides as antimicrobial agents. Bioorg. Med. Chem., 2007, 15(5), 2032-2044.
[http://dx.doi.org/10.1016/j.bmc.2006.12.035] [PMID: 17223562]
[25]
Muluk, M.B.; Dhumal, S.T.; Phatak, P.S.; Rehman, N.N.M.A.; Dixit, P.P.; Choudhari, P.B.; Mane, R.A.; Haval, K.P. Synthesis, antimicrobial activity, and molecular docking study of formylnaphthalenyloxymethyl‐triazolyl‐ N ‐phenylacetamides. J. Heterocycl. Chem., 2019, 56(9), 2411-2418.
[http://dx.doi.org/10.1002/jhet.3628]
[26]
Gul, S. Aziz-ur-Rehman,; Abbasi, M.A.; Khan, K.M.; Nafeesa, K.; Siddiqa, A.; Akhtar, M.N.; Shahid, M.; Subhani, Z. Synthesis, antimicrobial evaluation and hemolytic activity of 2-[[5-alkyl/aralkyl substituted-1,3,4-oxadiazol-2-yl]thio]-N-[4-(4-morpholinyl)phenyl] acetamide derivatives. J. Saudi Chem. Soc., 2017, 21, S425-S433.
[http://dx.doi.org/10.1016/j.jscs.2014.04.005]
[27]
Mir, F.; Shafi, S.; Zaman, M.S.; Kalia, N.P.; Rajput, V.S.; Mulakayala, C.; Mulakayala, N.; Khan, I.A.; Alam, M.S. Sulfur rich 2-mercaptobenzothiazole and 1,2,3-triazole conjugates as novel antitubercular agents. Eur. J. Med. Chem., 2014, 76, 274-283.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.017] [PMID: 24589483]
[28]
Yele, V.; Mohammed, A.A.; Wadhwani, A.D. Synthesis and evaluation of aryl/heteroaryl benzohydrazide and phenylacetamide derivatives as broad‐spectrum antibacterial agents. Chemist. Select, 2020, 5(34), 10581-10587.
[http://dx.doi.org/10.1002/slct.202002178]
[29]
Mahdi, M.F.; Al-Smaism, R.F.; Ibrahim, N.W. Synthesis, characterization and antibacterial evaluation of novel 2-mercaptobenzothiazole derivatives bearing 2-aminonicotinonitrile moiety. Eur. J. Chem., 2016, 7(1), 8-13.
[http://dx.doi.org/10.5155/eurjchem.7.1.8-13.1333]
[30]
Borazjani, N.; Jarrahpour, A.; Rad, J.A.; Mohkam, M.; Behzadi, M.; Ghasemi, Y.; Mirzaeinia, S.; Karbalaei-Heidari, H.R.; Ghanbari, M.M.; Batta, G.; Turos, E. Design, synthesis and biological evaluation of some novel diastereoselective β-lactams bearing 2-mercaptobenzothiazole and benzoquinoline. Med. Chem. Res., 2019, 28(3), 329-339.
[http://dx.doi.org/10.1007/s00044-018-02287-0]
[31]
Bhat, R.; Kumbhar, P.; Helavi, V. Synthesis, characterization and evaluation of antibacterial and antifungal activity of 2-mercapto-benzothiazole and 2-mercaptobenzoxazole derivatives. J. Chem. Biol., 2019, 9, 38-58.
[32]
Kaushik, C.P.; Chahal, M. Synthesis and antibacterial activity of benzothiazole and benzoxazole-appended substituted 1,2,3-triazoles. J. Chem. Sci., 2020, 132(1), 142.
[http://dx.doi.org/10.1007/s12039-020-01844-8]
[33]
Pattanashetty, S.H.; Hosamani, K.M.; Shettar, A.K.; Mohammed Shafeeulla, R. Design, synthesis and computational studies of novel carbazole N-phenylacetamide hybrids as potent antibacterial, anti-inflammatory, and antioxidant agents. J. Heterocycl. Chem., 2018, 55(7), 1765-1774.
[http://dx.doi.org/10.1002/jhet.3214]
[34]
Yadav, S.; Lim, S.M.; Ramasamy, K.; Vasudevan, M.; Shah, S.A.A.; Mathur, A.; Narasimhan, B. Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of 2-(1-benzoyl-1H-benzo[d]imidazol-2-ylthio)-N-substituted acetamides. Chem. Cent. J., 2018, 12(1), 66.
[http://dx.doi.org/10.1186/s13065-018-0432-3] [PMID: 29804151]
[35]
Nafeesa, K.; Abbasi, M. A.; Siddiqui, S. Z.; Rasool, S.; Shah, S. A. Synthesis, characterization and pharmacological evaluation of different 1, 3, 4-oxadiazole and acetamide derivatives of ethyl nipecotate. Bull. Fac. Pharm. Cairo Univ., 2017, 55, 333-343.
[http://dx.doi.org/10.1016/j.bfopcu.2017.06.001]
[36]
Makhaeva, G.F.; Kovaleva, N.V.; Rudakova, E.V.; Boltneva, N.P.; Lushchekina, S.V.; Faingold, I.I.; Poletaeva, D.A.; Soldatova, Y.V.; Kotelnikova, R.A.; Serkov, I.V.; Ustinov, A.K.; Proshin, A.N.; Radchenko, E.V.; Palyulin, V.A.; Richardson, R.J. New multifunctional agents based on conjugates of 4-amino-2,3-polymethylenequinoline and butylated hydroxytoluene for alzheimer’s disease treatment. Molecules, 2020, 25(24), 5891.
[http://dx.doi.org/10.3390/molecules25245891] [PMID: 33322783]
[37]
Gontijo, V.S.; Viegas, F.P.D.; Ortiz, C.J.C.; de Freitas Silva, M.; Damasio, C.M.; Rosa, M.C.; Campos, T.G.; Couto, D.S.; Tranches Dias, K.S.; Viegas, C. Molecular hybridization as a tool in the design of multi-target directed drug candidates for neurodegenerative diseases. Curr. Neuropharmacol., 2020, 18(5), 348-407.
[http://dx.doi.org/10.2174/1385272823666191021124443] [PMID: 31631821]
[38]
Clinical and Laboratory Standard Institute (CLSI) Methods for dilution antibacterial susceptibility test for bacteria that grow aerobically.13. Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2007, 27, pp. 13.
[39]
Giver, L.; Gershenson, A.; Freskgard, P.; Arnold, F. Directed evolution of a thermostable esterase. Proc. Natl. Acad. Sci., 1995, 95, 12809-12813.
[http://dx.doi.org/10.1073/pnas.95.22.12809]
[40]
Osipov, S.; Burger, K. A radical pathway to α-difluoromethylene containing prolines and α-aminoadipic acids. Tetrahedron Lett., 1995, 41, 5659-5662.
[http://dx.doi.org/10.1016/S0040-4039(00)00739-5]

© 2024 Bentham Science Publishers | Privacy Policy