Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Mini-Review Article

Drugs Designed for Degradation in the Environment Post Use

Author(s): Magne Olav Sydnes*

Volume 10, Issue 1, 2023

Published on: 15 March, 2023

Page: [92 - 97] Pages: 6

DOI: 10.2174/2213346110666230301102856

Price: $65

Abstract

Accumulation of pharmaceuticals in the environment due to slow mineralization in nature is a growing pollution problem affecting organisms and animals and humans in the long run. When pharmaceuticals are antibiotics, the problem is twofold since the buildup of such compounds in the environment also fuels the development of antibiotic resistance. Building weak structures of biologically active compounds is one way of facilitating the quicker degradation of the drug in the environment after the drug has been excreted from the patient subsequently performing its function. The emergence of the process of photodegradation post-excretion of the pharmaceutical from the patient is one method that is under development, which will facilitate a quicker breakdown of the drug. Another method to enable this is hydrolysis, which is pH-dependent and involves making up of compounds that hydrolyze quicker under certain pH conditions. To enable the ongoing efforts in making pharmaceuticals to be more benign, this focused review showcases examples from research on antimicrobial agents and anticancer agents.

« Previous
Graphical Abstract

[1]
Wilkinson, J.L.; Boxall, A.B.A.; Kolpin, D.W.; Leung, K.M.Y.; Lai, R.W.S.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; Bouzas-Monroy, A.; Cuni-Sanchez, A.; Coors, A.; Carriquiriborde, P.; Rojo, M.; Gordon, C.; Cara, M.; Moermond, M.; Luarte, T.; Petrosyan, V.; Perikhanyan, Y.; Mahon, C.S.; McGurk, C.J.; Hofmann, T.; Kormoker, T.; Iniguez, V.; Guzman-Otazo, J.; Tavares, J.L.; Gildasio De Figueiredo, F.; Razzolini, M.T.P.; Dougnon, V.; Gbaguidi, G.; Traoré, O.; Blais, J.M.; Kimpe, L.E.; Wong, M.; Wong, D.; Ntchantcho, R.; Pizarro, J.; Ying, G.G.; Chen, C.E.; Páez, M.; Martínez-Lara, J.; Otamonga, J.P.; Poté, J.; Ifo, S.A.; Wilson, P.; Echeverría-Sáenz, S.; Udikovic-Kolic, N.; Milakovic, M.; Fatta-Kassinos, D.; Ioannou-Ttofa, L.; Belušová, V.; Vymazal, J.; Cárdenas-Bustamante, M.; Kassa, B.A.; Garric, J.; Chaumot, A.; Gibba, P.; Kunchulia, I.; Seidensticker, S.; Lyberatos, G.; Halldórsson, H.P.; Melling, M.; Shashidhar, T.; Lamba, M.; Nastiti, A.; Supriatin, A.; Pourang, N.; Abedini, A.; Abdullah, O.; Gharbia, S.S.; Pilla, F.; Chefetz, B.; Topaz, T.; Yao, K.M.; Aubakirova, B.; Beisenova, R.; Olaka, L.; Mulu, J.K.; Chatanga, P.; Ntuli, V.; Blama, N.T.; Sherif, S.; Aris, A.Z.; Looi, L.J.; Niang, M.; Traore, S.T.; Oldenkamp, R.; Ogunbanwo, O.; Ashfaq, M.; Iqbal, M.; Abdeen, Z.; O’Dea, A.; Morales-Saldaña, J.M.; Custodio, M.; de la Cruz, H.; Navarrete, I.; Carvalho, F.; Gogra, A.B.; Koroma, B.M.; Cerkvenik-Flajs, V.; Gombač, M.; Thwala, M.; Choi, K.; Kang, H.; Ladu, J.L.C.; Rico, A.; Amerasinghe, P.; Sobek, A.; Horlitz, G.; Zenker, A.K.; King, A.C.; Jiang, J.J.; Kariuki, R.; Tumbo, M.; Tezel, U.; Onay, T.T.; Lejju, J.B.; Vystavna, Y.; Vergeles, Y.; Heinzen, H.; Pérez-Parada, A.; Sims, D.B.; Figy, M.; Good, D.; Teta, C. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA, 2022, 119(8), e2113947119.
[http://dx.doi.org/10.1073/pnas.2113947119] [PMID: 35165193]
[2]
Ouda, M.; Kadadou, D.; Swaidan, B.; Al-Othman, A.; Al-Asheh, S.; Banat, F.; Hasan, S.W. Emerging contaminants in the water bodies of the Middle East and North Africa (MENA): A critical review. Sci. Total Environ., 2021, 754, 142177.
[http://dx.doi.org/10.1016/j.scitotenv.2020.142177] [PMID: 33254914]
[3]
aus der Beek, T.; Weber, F.A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment-Global occurrences and perspectives. Environ. Toxicol. Chem., 2016, 35(4), 823-835.
[http://dx.doi.org/10.1002/etc.3339] [PMID: 26666847]
[4]
Khetan, S.K.; Collins, T.J. Human pharmaceuticals in the aquatic environment: A challenge to Green Chemistry. Chem. Rev., 2007, 107(6), 2319-2364.
[http://dx.doi.org/10.1021/cr020441w] [PMID: 17530905]
[5]
Kümmerer, K. Pharmaceuticals in the environment. Annu. Rev. Environ. Resour., 2010, 35(1), 57-75.
[http://dx.doi.org/10.1146/annurev-environ-052809-161223]
[6]
Zhang, R.; Du, J.; Dong, X.; Huang, Y.; Xie, H.; Chen, J.; Li, X.; Kadokami, K. Occurrence and ecological risks of 156 pharmaceuticals and 296 pesticides in seawater from mariculture areas of Northeast China. Sci. Total Environ., 2021, 792, 148375.
[http://dx.doi.org/10.1016/j.scitotenv.2021.148375] [PMID: 34157531]
[7]
Ojemaye, C.Y.; Petrik, L. Pharmaceuticals in the marine environment: A review. Environ. Rev., 2019, 27(2), 151-165.
[http://dx.doi.org/10.1139/er-2018-0054]
[8]
Bexfield, L.M.; Toccalino, P.L.; Belitz, K.; Foreman, W.T.; Furlong, E.T. Hormones and pharmaceuticals in groundwater used as a source of drinking water across the United States. Environ. Sci. Technol., 2019, 53(6), 2950-2960.
[http://dx.doi.org/10.1021/acs.est.8b05592] [PMID: 30834750]
[9]
Sui, Q.; Cao, X.; Lu, S.; Zhao, W.; Qiu, Z.; Yu, G. Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: A review. Emerg. Contam., 2015, 1(1), 14-24.
[http://dx.doi.org/10.1016/j.emcon.2015.07.001]
[10]
Mottaleb, M.A.; Stowe, C.; Johnson, D.R.; Meziani, M.J.; Mottaleb, M.A. Pharmaceuticals in grocery market fish fillets by gas chromatography–mass spectrometry. Food Chem., 2016, 190, 529-536.
[http://dx.doi.org/10.1016/j.foodchem.2015.06.003] [PMID: 26213006]
[11]
Ramirez, A.J.; Brain, R.A.; Usenko, S.; Mottaleb, M.A.; O’Donnell, J.G.; Stahl, L.L.; Wathen, J.B.; Snyder, B.D.; Pitt, J.L.; Perez-Hurtado, P.; Dobbins, L.L.; Brooks, B.W.; Chambliss, C.K. Occurrence of pharmaceuticals and personal care products in fish: results of a national pilot study in the United States. Environ. Toxicol. Chem., 2009, 28(12), 2587-2597.
[http://dx.doi.org/10.1897/08-561.1] [PMID: 19320536]
[12]
Bártíková, H.; Podlipná, R.; Skálová, L. Veterinary drugs in the environment and their toxicity to plants. Chemosphere, 2016, 144, 2290-2301.
[http://dx.doi.org/10.1016/j.chemosphere.2015.10.137] [PMID: 26606183]
[13]
Boxall, A.B.A.; Fogg, L.A.; Blackwell, P.A.; Kay, P.; Pemberton, E.J.; Croxford, A. Veterinary medicines in the environment. Rev. Environ. Contam. Toxicol., 2004, 180, 1-91.
[PMID: 14561076]
[14]
Frascaroli, G.; Reid, D.; Hunter, C.; Roberts, J.; Helwig, K.; Spencer, J.; Escudero, A. Pharmaceuticals in wastewater treatment plants: A systematic review on the substances of greatest concern responsible for the development of anitimicrobial resistance. Appl. Sci., 2021, 11(15), 6670.
[http://dx.doi.org/10.3390/app11156670]
[15]
Angeles, L.F.; Mullen, R.A.; Huang, I.J.; Wilson, C.; Khunjar, W.; Sirotkin, H.I.; McElroy, A.E.; Aga, D.S. Assessing pharmaceutical removal and reduction in toxicity provided by advanced wastewater treatment systems. Environ. Sci. Water Res. Technol., 2020, 6(1), 62-77.
[http://dx.doi.org/10.1039/C9EW00559E]
[16]
Larsson, D.G.J. Pollution from drug manufacturing: Review and perspectives. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1656), 20130571.
[http://dx.doi.org/10.1098/rstb.2013.0571] [PMID: 25405961]
[17]
Gadipelly, C.; Pérez-González, A.; Yadav, G.D.; Ortiz, I.; Ibáñez, R.; Rathod, V.K.; Marathe, K.V. Pharmaceutical industry wastewater: Review of the technologies for water treatment and reuse. Ind. Eng. Chem. Res., 2014, 53(29), 11571-11592.
[http://dx.doi.org/10.1021/ie501210j]
[18]
Fick, J.; Söderström, H.; Lindberg, R.H.; Phan, C.; Tysklind, M.; Larsson, D.G.J. Contamination of surface, ground, and drinking water from pharmaceutical production. Environ. Toxicol. Chem., 2009, 28(12), 2522-2527.
[http://dx.doi.org/10.1897/09-073.1] [PMID: 19449981]
[19]
Gartiser, S.; Urich, E.; Alexy, R.; Kümmerer, K. Ultimate biodegradation and elimination of antibiotics in inherent tests. Chemosphere, 2007, 67(3), 604-613.
[http://dx.doi.org/10.1016/j.chemosphere.2006.08.038] [PMID: 17166562]
[20]
Straub, J.O.; Le Roux, J.; Tedoldi, D. Are newer pharmaceuticals more recalcitrant to removal in wastewater treatment? Sustain. Chem. Pharm., 2022, 30, 100834.
[http://dx.doi.org/10.1016/j.scp.2022.100834]
[21]
Hua, S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract – influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol., 2020, 11, 524.
[http://dx.doi.org/10.3389/fphar.2020.00524] [PMID: 32425781]
[22]
Kümmerer, K. Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chem., 2007, 9(8), 899-907.
[http://dx.doi.org/10.1039/b618298b]
[23]
Moermond, C.T.A.; Puhlmann, N.; Brown, A.R.; Owen, S.F.; Ryan, J.; Snape, J.; Venhuis, B.J.; Kümmerer, K. Greener pharmaceuticals for more sustainable healthcare. Environ. Sci. Technol. Lett., 2022, 9(9), 699-705.
[http://dx.doi.org/10.1021/acs.estlett.2c00446] [PMID: 36118957]
[24]
Sydnes, M.O. On our way to fulfilling the twelve principles of green chemistry. Curr. Green Chem., 2021, 8(3), 175-178.
[http://dx.doi.org/10.2174/2213346108999211209111647]
[25]
Mah, T.F. Giving antibiotics an assist. Science, 2021, 372(6547), 1153-1153.
[http://dx.doi.org/10.1126/science.abj3062] [PMID: 34112683]
[26]
Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S.C.; Browne, A.J.; Chipeta, M.G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B.H.; Kumaran, E.A.P.; McManigal, B.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Cook, A.J.; Cooper, B.; Cressey, T.R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N.P.J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S.J.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.; Forrest, K.; Garrett, D.; Gastmeier, P.; Giref, A.Z.; Greer, R.C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S.I.; Holm, M.; Hopkins, S.; Iregbu, K.C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Khorana, M.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H.H.; Lim, C.; Limmathurotsakul, D.; Loftus, M.J.; Lunn, M.; Ma, J.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Mussi-Pinhata, M.M.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C.W.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Peleg, A.Y.; Perrone, C.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Riddell, A.; Roberts, T.; Robotham, J.V.; Roca, A.; Rudd, K.E.; Russell, N.; Schnall, J.; Scott, J.A.G.; Shivamallappa, M.; Sifuentes-Osornio, J.; Steenkeste, N.; Stewardson, A.J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Turner, C.; Turner, P.; van Doorn, H.R.; Velaphi, S.; Vongpradith, A.; Vu, H.; Walsh, T.; Waner, S.; Wangrangsimakul, T.; Wozniak, T.; Zheng, P.; Sartorius, B.; Lopez, A.D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 2022, 399(10325), 629-655.
[http://dx.doi.org/10.1016/S0140-6736(21)02724-0] [PMID: 35065702]
[27]
May, M. Tomorrow’s biggest microbial threats. Nat. Med., 2021, 27(3), 358-359.
[http://dx.doi.org/10.1038/s41591-021-01264-2] [PMID: 33723448]
[28]
Leder, C.; Suk, M.; Lorenz, S.; Rastogi, T.; Peifer, C.; Kietzmann, M.; Jonas, D.; Buck, M.; Pahl, A.; Kümmerer, K. Reducing environmental pollution by antibiotics through design for environmental degradation. ACS Sustain. Chem.& Eng., 2021, 9(28), 9358-9368.
[http://dx.doi.org/10.1021/acssuschemeng.1c02243]
[29]
Bengtsson-Palme, J.; Larsson, D.G.J. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int., 2016, 86, 140-149.
[http://dx.doi.org/10.1016/j.envint.2015.10.015] [PMID: 26590482]
[30]
Andersson, D.I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol., 2014, 12(7), 465-478.
[http://dx.doi.org/10.1038/nrmicro3270] [PMID: 24861036]
[31]
Tello, A.; Austin, B.; Telfer, T.C. Selective pressure of antibiotic pollution on bacteria of importance to public health. Environ. Health Perspect., 2012, 120(8), 1100-1106.
[http://dx.doi.org/10.1289/ehp.1104650] [PMID: 22571927]
[32]
Gullberg, E.; Cao, S.; Berg, O.G.; Ilbäck, C.; Sandegren, L.; Hughes, D.; Andersson, D.I. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog., 2011, 7(7), e1002158.
[http://dx.doi.org/10.1371/journal.ppat.1002158] [PMID: 21811410]
[33]
Lee, W.; Li, Z.H.; Vakulenko, S.; Mobashery, S. A light-inactivated antibiotic. J. Med. Chem., 2000, 43(1), 128-132.
[http://dx.doi.org/10.1021/jm980648a] [PMID: 10633044]
[34]
Hubick, S.; Jayaraman, A.; McKeen, A.; Reid, S.; Alcorn, J.; Stavrinides, J.; Sterenberg, B.T. A potent synthetic inorganic antibiotic with activity against drug-resistant pathogens. Sci. Rep., 2017, 7(1), 41999.
[http://dx.doi.org/10.1038/srep41999] [PMID: 28165020]
[35]
Feng, Y.; Zhang, Y.Y.; Li, K.; Tian, N.; Wang, W.B.; Zhou, Q.X.; Wang, X.S. Photocleavable antimicrobial peptide mimics for precluding antibiotic resistance. New J. Chem., 2018, 42(5), 3192-3195.
[http://dx.doi.org/10.1039/C8NJ00015H]
[36]
Wan, P.; Muralidharan, S. Structure and mechanism in the photo-retro-aldol type reactions of nitrobenzyl derivatives. Photochemical heterolytic cleavage of carbon-carbon bonds. J. Am. Chem. Soc., 1988, 110(13), 4336-4345.
[http://dx.doi.org/10.1021/ja00221a038]
[37]
Wan, P.; Muralidharan, S. Photochemical retro-aldol type reactions of nitrobenzyl derivatives. Mechanistic variations in the elimination of nitrobenzyl carbanions from nitrobenzyl derivatives on photolysis. Can. J. Chem., 1986, 64(9), 1949-1951.
[http://dx.doi.org/10.1139/v86-321]
[38]
Eikemo, V.; Holmelid, B.; Sydnes, L.K.; Sydnes, M.O. Photodegradable antimicrobial agents: Synthesis and mechanism of degradation. J. Org. Chem., 2022, 87(12), 8034-8047.
[http://dx.doi.org/10.1021/acs.joc.2c00681] [PMID: 35653169]
[39]
Eikemo, V.; Sydnes, L.K.; Sydnes, M.O. Photodegradable antimicrobial agents-synthesis, photodegradation, and biological evaluation. RSC Adv, 2021, 11(51), 32339-32345.
[http://dx.doi.org/10.1039/D1RA06324C] [PMID: 35495489]
[40]
Espinosa, A.; Nélieu, S.; Lieben, P.; Skarbek, C.; Labruère, R.; Benoit, P. Photodegradation of methotrexate in aqueous solution: Degradation kinetics and identification of transformation products. Environ. Sci. Pollut. Res. Int., 2022, 29(4), 6060-6071.
[http://dx.doi.org/10.1007/s11356-021-15820-3] [PMID: 34431057]
[41]
Espinosa, A.; Rascol, E.; Abellán Flos, M.; Skarbek, C.; Lieben, P.; Bannerman, E.; Martinez, A.D.; Pethe, S.; Benoit, P.; Nélieu, S.; Labruère, R. Re-designing environmentally persistent pharmaceutical pollutant through programmed inactivation: The case of methotrexate. Chemosphere, 2022, 306, 135616.
[http://dx.doi.org/10.1016/j.chemosphere.2022.135616] [PMID: 35810859]
[42]
Yuan, Y.; Lim, D.S.W.; Wu, H.; Lu, H.; Zheng, Y.; Wan, A.C.A.; Ying, J.Y.; Zhang, Y. pH-degradable imidazolium oligomers as antimicrobial materials with tuneable loss of activity. Biomater. Sci., 2019, 7(6), 2317-2325.
[http://dx.doi.org/10.1039/C8BM01683F] [PMID: 31065635]
[43]
Lorenz, S.; Amsel, A.K.; Puhlmann, N.; Reich, M.; Olsson, O.; Kümmerer, K. Toward application and implementation of in silico tools and workflows within benign by design approaches. ACS Sustain. Chem.& Eng., 2021, 9(37), 12461-12475.
[http://dx.doi.org/10.1021/acssuschemeng.1c03070]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy