Abstract
The patent describes novel useful compounds, such as PI3K protein kinase inhibitors, in particular as PI3K delta (δ) and/or gamma (γ) protein kinase modulators. The present disclosure also provides methods for preparing PI3K protein kinase inhibitors, pharmaceutical compositions containing them, and methods of treatment, prevention, and amelioration of PI3K kinase-mediated diseases, and disorders.
[1]
(a) Barile E, De SK, Carlson CB, et al. Design, synthesis, and structure-activity relationships of 3-ethynyl-1H-indazoles as inhibitors of the phosphatidylinositol 3-kinase signaling pathway. J Med Chem 2010; 53(23): 8368-75.;
(b) Bhavar PK, Vakkalanka SKVS, Babu G. PI3K protein kinase inhibitors. US11352359B2, 2022.
[http://dx.doi.org/10.1021/jm100825h] [PMID: 21062009]
(b) Bhavar PK, Vakkalanka SKVS, Babu G. PI3K protein kinase inhibitors. US11352359B2, 2022.
[http://dx.doi.org/10.1021/jm100825h] [PMID: 21062009]
[2]
Whitman M, Downes CP, Keeler M, Keller T, Cantley L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 1988; 332(6165): 644-6.
[http://dx.doi.org/10.1038/332644a0] [PMID: 2833705]
[http://dx.doi.org/10.1038/332644a0] [PMID: 2833705]
[3]
Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase-AKT pathway in human cancer. Nat Rev Cancer 2002; 2(7): 489-501.
[http://dx.doi.org/10.1038/nrc839] [PMID: 12094235]
[http://dx.doi.org/10.1038/nrc839] [PMID: 12094235]
[4]
Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006; 7(8): 606-19.
[http://dx.doi.org/10.1038/nrg1879] [PMID: 16847462]
[http://dx.doi.org/10.1038/nrg1879] [PMID: 16847462]
[5]
Williams O, Houseman BT, Kunkel EJ, et al. Discovery of dual inhibitors of the immune cell PI3Ks p110delta and p110gamma: A prototype for new anti-inflammatory drugs. Chem Biol 2010; 17(2): 123-34.
[http://dx.doi.org/10.1016/j.chembiol.2010.01.010] [PMID: 20189103]
[http://dx.doi.org/10.1016/j.chembiol.2010.01.010] [PMID: 20189103]
[6]
Karami fath M, Ebrahimi M, Nourbakhsh E, et al. PI3K/Akt/mTOR signaling pathway in cancer stem cells. Pathol Res Pract 2022; 237: 154010.
[http://dx.doi.org/10.1016/j.prp.2022.154010] [PMID: 35843034]
[http://dx.doi.org/10.1016/j.prp.2022.154010] [PMID: 35843034]
[7]
Mortazavi M, Moosavi F, Martini M, Giovannetti E, Firuzi O. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit Rev Oncol Hematol 2022; 176: 103749.
[http://dx.doi.org/10.1016/j.critrevonc.2022.103749] [PMID: 35728737]
[http://dx.doi.org/10.1016/j.critrevonc.2022.103749] [PMID: 35728737]
[8]
Nelson WG, De Marzo AM, Isaacs WB. Prostate cancer. N Engl J Med 2003; 349(4): 366-81.
[http://dx.doi.org/10.1056/NEJMra021562] [PMID: 12878745]
[http://dx.doi.org/10.1056/NEJMra021562] [PMID: 12878745]
[9]
Winkler DG, Faia KL, DiNitto JP, et al. PI3K-δ and PI3K-γ inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem Biol 2013; 20(11): 1364-74.
[http://dx.doi.org/10.1016/j.chembiol.2013.09.017] [PMID: 24211136]
[http://dx.doi.org/10.1016/j.chembiol.2013.09.017] [PMID: 24211136]
[10]
Scortegagna M, Lau E, Zhang T, et al. PDK1 and SGK3 contribute to the growth of BRAF-mutant melanomas and are potential therapeutic targets. Cancer Res 2015; 75(7): 1399-412.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2785] [PMID: 25712345]
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2785] [PMID: 25712345]
[11]
Park S, Kim YS, Kim DY, So I, Jeon JH. PI3K pathway in prostate cancer: All resistant roads lead to PI3K. Biochim Biophys Acta Rev Cancer 2018; 1870(2): 198-206.
[http://dx.doi.org/10.1016/j.bbcan.2018.09.001] [PMID: 30300679]
[http://dx.doi.org/10.1016/j.bbcan.2018.09.001] [PMID: 30300679]
[12]
Carver BS, Chapinski C, Wongvipat J, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 2011; 19(5): 575-86.
[http://dx.doi.org/10.1016/j.ccr.2011.04.008] [PMID: 21575859]
[http://dx.doi.org/10.1016/j.ccr.2011.04.008] [PMID: 21575859]
[13]
Yin M, Wang Y. The role of PIP5K1A in cancer development and progression. Med Oncol 2022; 39(10): 151.
[http://dx.doi.org/10.1007/s12032-022-01753-5] [PMID: 35852640]
[http://dx.doi.org/10.1007/s12032-022-01753-5] [PMID: 35852640]
[14]
Choudhury AD. PTEN‐PI3K pathway alterations in advanced prostate cancer and clinical implications. Prostate 2022; 82(S1): S60-72.
[http://dx.doi.org/10.1002/pros.24372] [PMID: 35657152]
[http://dx.doi.org/10.1002/pros.24372] [PMID: 35657152]
[15]
Ameriks M, Venable J. Small molecule inhibitors of phosphoinositide 3-kinase (PI3K) delta and gamma. Curr Top Med Chem 2009; 9(8): 738-53.
[http://dx.doi.org/10.2174/156802609789044434] [PMID: 19689378]
[http://dx.doi.org/10.2174/156802609789044434] [PMID: 19689378]
[16]
Mishra R, Patel H, Alanazi S, Kilroy MK, Garrett JT. PI3K Inhibitors in Cancer: Clinical implications and adverse effects. Int J Mol Sci 2021; 22(7): 3464.
[http://dx.doi.org/10.3390/ijms22073464] [PMID: 33801659]
[http://dx.doi.org/10.3390/ijms22073464] [PMID: 33801659]