Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Targeting the LINC00324/miR-16-5p/SEPT2 Signaling Cascade is Effective to Reverse Malignant Phenotypes in Glioblastoma

Author(s): Bo Chen, Pengzhen Lin and Nan Li*

Volume 23, Issue 13, 2023

Published on: 07 April, 2023

Page: [1535 - 1544] Pages: 10

DOI: 10.2174/1871520623666230228122519

Price: $65

Abstract

Background: Long non-coding RNAs (LncRNAs) are identified as pivotal regulators and biomarkers for glioblastoma (GBM). However, the role of a novel LncRNA LINC00324 in regulating GBM progression has not been fully studied in the existing publications.

Objective: In this study, we evidenced LINC00324 to act as an oncogene to facilitate GBM development, and the underlying mechanisms have also been uncovered.

Methods: Clinicopathology and follow-up data of GBM patients were retrospectively studied, LINC00324 expression in clinical tissue or cell lines of GBM was measured by Real-time qPCR, and the role of LINC00324 in cell proliferation and migration was investigated by loss-of-function experiments in vitro and in vivo. The targeting genes of LINC00324 were predicted and verified by bioinformatic analysis and dual luciferase reporter gene system, respectively.

Results: LINC00324 was found to be significantly upregulated in GBM tissues and cells in contrast to normal counterparts, and the GBM patients with high-expressed LINC00324 tended to have a worse prognosis. Further, loss-offunction experiments showed that the silencing of LINC00324 suppressed cell proliferation, colony formation and migration, and promoted cell apoptosis in GBM cells in vitro. Consistently, the in vivo experiments supported that LINC00324 ablation also restrained tumorigenesis in nude mice models. The following mechanism studies showed that LINC00324 sponged miR-16-5p to upregulate SEPT2 in a competing endogenous RNA-dependent manner, and the inhibitory effects of LINC00324 downregulation on the malignant characteristics of GBM cells were abrogated by both miR-16-5p ablation and SEPT2 overexpression.

Conclusion: LINC00324 promotes the malignant phenotypes in GBM via targeting the miR-16-5p/SEPT2 axis, and the study provides novel biomarkers for GBM diagnosis and therapy.

Graphical Abstract

[1]
Ostrom, Q.T.; Bauchet, L.; Davis, F.G.; Deltour, I.; Fisher, J.L.; Langer, C.E.; Pekmezci, M.; Schwartzbaum, J.A.; Turner, M.C.; Walsh, K.M.; Wrensch, M.R.; Barnholtz-Sloan, J.S. The epidemiology of glioma in adults: A “state of the science” review. Neurooncol., 2014, 16(7), 896-913.
[http://dx.doi.org/10.1093/neuonc/nou087] [PMID: 24842956]
[2]
Chen, R.; Smith-Cohn, M.; Cohen, A.L.; Colman, H. Glioma subclassifications and their clinical significance. Neurotherapeutics, 2017, 14(2), 284-297.
[http://dx.doi.org/10.1007/s13311-017-0519-x] [PMID: 28281173]
[3]
Soomro, S.H.; Ting, L.R.; Qing, Y.Y.; Ren, M. Molecular biology of glioblastoma: Classification and mutational locations. J. Pak. Med. Assoc., 2017, 67(9), 1410-1414.
[PMID: 28924284]
[4]
Huang, T.; Xu, T.; Wang, Y.; Zhou, Y.; Yu, D.; Wang, Z.; He, L.; Chen, Z.; Zhang, Y.; Davidson, D.; Dai, Y.; Hang, C.; Liu, X.; Yan, C. Cannabidiol inhibits human glioma by induction of lethal mitophagy through activating TRPV4. Autophagy, 2021, 17(11), 3592-3606.
[http://dx.doi.org/10.1080/15548627.2021.1885203] [PMID: 33629929]
[5]
Li, D.; Patel, C.B.; Xu, G.; Iagaru, A.; Zhu, Z.; Zhang, L.; Cheng, Z. Visualization of diagnostic and therapeutic targets in glioma with molecular imaging. Front. Immunol., 2020, 11, 592389.
[http://dx.doi.org/10.3389/fimmu.2020.592389] [PMID: 33193439]
[6]
Xiao, Y.; Zhu, Z.; Li, J.; Yao, J.; Jiang, H.; Ran, R.; Li, X.; Li, Z. Expression and prognostic value of long non-coding RNA H19 in glioma via integrated bioinformatics analyses. Aging, 2020, 12(4), 3407-3430.
[http://dx.doi.org/10.18632/aging.102819] [PMID: 32081833]
[7]
Ohgaki, H.; Kleihues, P. Genetic pathways to primary and secondary glioblastoma. Am. J. Pathol., 2007, 170(5), 1445-1453.
[http://dx.doi.org/10.2353/ajpath.2007.070011] [PMID: 17456751]
[8]
Le Rhun, E.; Preusser, M.; Roth, P.; Reardon, D.A.; van den Bent, M.; Wen, P.; Reifenberger, G.; Weller, M. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev., 2019, 80, 101896.
[http://dx.doi.org/10.1016/j.ctrv.2019.101896] [PMID: 31541850]
[9]
Peng, W-X.; Koirala, P.; Mo, Y-Y. LncRNA-mediated regulation of cell signaling in cancer. Oncogene, 2017, 36(41), 5661-5667.
[http://dx.doi.org/10.1038/onc.2017.184] [PMID: 28604750]
[10]
Eptaminitaki, G.C.; Wolff, N.; Stellas, D.; Sifakis, K.; Baritaki, S. Long non-coding RNAs (lncRNAs) in response and resistance to cancer immunosurveillance and immunotherapy. Cells, 2021, 10(12), 3313.
[http://dx.doi.org/10.3390/cells10123313] [PMID: 34943820]
[11]
Luo, Y.; Zheng, S.; Wu, Q.; Wu, J.; Zhou, R.; Wang, C.; Wu, Z.; Rong, X.; Huang, N.; Sun, L.; Bin, J.; Liao, Y.; Shi, M.; Liao, W. Long noncoding RNA (lncRNA) EIF3J-DT induces chemoresistance of gastric cancer via autophagy activation. Autophagy, 2021, 17(12), 4083-4101.
[http://dx.doi.org/10.1080/15548627.2021.1901204] [PMID: 33764843]
[12]
Wu, Z.; Lu, Z.; Li, L.; Ma, M.; Long, F.; Wu, R.; Huang, L.; Chou, J.; Yang, K.; Zhang, Y.; Li, X.; Hu, G.; Zhang, Y.; Lin, C. Identification and validation of ferroptosis-related LncRNA signatures as a novel prognostic model for colon cancer. Front. Immunol., 2022, 12, 783362.
[http://dx.doi.org/10.3389/fimmu.2021.783362] [PMID: 35154072]
[13]
Zhang, M.; Lin, B.; Liu, Y.; Huang, T.; Chen, M.; Lian, D.; Deng, S.; Zhuang, C. LINC00324 affects non-small cell lung cancer cell proliferation and invasion through regulation of the miR-139-5p/IGF1R axis. Mol. Cell. Biochem., 2020, 473(1-2), 193-202.
[http://dx.doi.org/10.1007/s11010-020-03819-2] [PMID: 32734536]
[14]
Ni, X.; Xie, J.K.; Wang, H.; Song, H.R. Knockdown of long non-coding RNA LINC00324 inhibits proliferation, migration and invasion of colorectal cancer cell via targeting miR-214-3p. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(24), 10740-10750.
[PMID: 31858541]
[15]
Dong, Y.; Wan, G.; Yan, P.; Qian, C.; Li, F.; Peng, G. Long noncoding RNA LINC00324 promotes retinoblastoma progression by acting as a competing endogenous RNA for microRNA-769-5p, thereby increasing STAT3 expression. Aging, 2020, 12(9), 7729-7746.
[http://dx.doi.org/10.18632/aging.103075] [PMID: 32369777]
[16]
Meng, W.; Li, Y.; Chai, B.; Liu, X.; Ma, Z. miR-199a: A tumor suppressor with noncoding RNA network and therapeutic candidate in lung cancer. Int. J. Mol. Sci., 2022, 23(15), 8518.
[http://dx.doi.org/10.3390/ijms23158518] [PMID: 35955652]
[17]
Pirlog, R.; Drula, R.; Nutu, A.; Calin, G.A.; Berindan-Neagoe, I. The roles of the colon cancer associated transcript 2 (CCAT2) long non-coding RNA in cancer: A comprehensive characterization of the tumorigenic and molecular functions. Int. J. Mol. Sci., 2021, 22(22), 12491.
[http://dx.doi.org/10.3390/ijms222212491] [PMID: 34830370]
[18]
Yin, J.; Zeng, A.; Zhang, Z.; Shi, Z.; Yan, W.; You, Y. Exosomal transfer of miR-1238 contributes to temozolomide-resistance in glioblastoma. EBio. Med., 2019, 42, 238-251.
[http://dx.doi.org/10.1016/j.ebiom.2019.03.016] [PMID: 30917935]
[19]
Li, H.; Chen, L.; Li, J.; Zhou, Q.; Huang, A.; Liu, W.; Wang, K.; Gao, L.; Qi, S.; Lu, Y. miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. J. Hematol. Oncol., 2018, 11(1), 70.
[http://dx.doi.org/10.1186/s13045-018-0618-0] [PMID: 29843746]
[20]
Wang, R.; Zhang, S.; Chen, X.; Li, N.; Li, J.; Jia, R.; Pan, Y.; Liang, H. EIF4A3-induced circular RNA MMP9 (circMMP9) acts as a sponge of miR-124 and promotes glioblastoma multiforme cell tumorigenesis. Mol. Cancer, 2018, 17(1), 166.
[http://dx.doi.org/10.1186/s12943-018-0911-0] [PMID: 30470262]
[21]
Wei, J.; Jia, A.; Ma, L.; Wang, Y.; Qiu, L.; Xiao, B. MicroRNA-16 inhibits the proliferation and metastasis of human lung cancer cells by modulating the expression of YAP1. J. BUON, 2020, 25(2), 862-868.
[22]
Tang, X.; Jin, L.; Cao, P.; Cao, K.; Huang, C.; Luo, Y.; Ma, J.; Shen, S.; Tan, M.; Li, X.; Zhou, M. MicroRNA-16 sensitizes breast cancer cells to paclitaxel through suppression of IKBKB expression. Oncotarget, 2016, 7(17), 23668-23683.
[http://dx.doi.org/10.18632/oncotarget.8056] [PMID: 26993770]
[23]
Jiang, Q.Q.; Liu, B.; Yuan, T. MicroRNA-16 inhibits bladder cancer proliferation by targeting Cyclin D1. APJCP, 2013, 14(7), 4127-4130.
[PMID: 23991964]
[24]
Wang, H.; Pan, J.; Yu, L.; Meng, L.; Liu, Y.; Chen, X. MicroRNA-16 inhibits glioblastoma growth in orthotopic model by targeting Cyclin D1 and WIP1. OncoTargets Ther., 2020, 13, 10807-10816.
[http://dx.doi.org/10.2147/OTT.S250369] [PMID: 33122919]
[25]
Wang, F.; Yang, L.; Sun, J.; Zheng, J.; Shi, L.; Zhang, G.; Cui, N. Tumor suppressors microRNA-302d and microRNA-16 inhibit human glioblastoma multiforme by targeting NF-κB and FGF2. Mol. Biosyst., 2017, 13(7), 1345-1354.
[http://dx.doi.org/10.1039/C7MB00139H] [PMID: 28497156]
[26]
Krell, A.; Wolter, M.; Stojcheva, N.; Hertler, C.; Liesenberg, F.; Zapatka, M.; Weller, M.; Malzkorn, B.; Reifenberger, G. MiR-16-5p is frequently down-regulated in astrocytic gliomas and modulates glioma cell proliferation, apoptosis and response to cytotoxic therapy. Neuropathol. Appl. Neurobiol., 2019, 45(5), 441-458.
[PMID: 30548945]
[27]
Chen, F.; Chen, L.; He, H.; Huang, W.; Zhang, R.; Li, P.; Meng, Y.; Jiang, X. Up-regulation of microRNA-16 in glioblastoma inhibits the function of endothelial cells and tumor angiogenesis by targeting Bmi-1. Anticancer. Agents Med. Chem., 2016, 16(5), 609-620.
[http://dx.doi.org/10.2174/1871520615666150916092251] [PMID: 26373393]
[28]
Yang, T.Q.; Lu, X.J.; Wu, T.F.; Ding, D.D.; Zhao, Z.H.; Chen, G.L.; Xie, X.S.; Li, B.; Wei, Y.X.; Guo, L.C.; Zhang, Y.; Huang, Y.L.; Zhou, Y.X.; Du, Z.W. Micro RNA ‐16 inhibits glioma cell growth and invasion through suppression of BCL 2 and the nuclear factor‐κB1/MMP 9 signaling pathway. Cancer Sci., 2014, 105(3), 265-271.
[http://dx.doi.org/10.1111/cas.12351] [PMID: 24418124]
[29]
Braga, E.A.; Fridman, M.V.; Burdennyy, A.M.; Filippova, E.A.; Loginov, V.I.; Pronina, I.V.; Dmitriev, A.A.; Kushlinskii, N.E. Regulation of the key epithelial cancer suppressor miR-124 function by competing endogenous RNAs. Int. J. Mol. Sci., 2022, 23(21), 13620.
[http://dx.doi.org/10.3390/ijms232113620] [PMID: 36362406]
[30]
Liu, Z.Q.; Cheng, M.; Fu, F.; Li, R.; Han, J.; Yang, X.; Deng, Q.; Li, L.S.; Lei, T.Y.; Li, D.Z.; Liao, C. Identification of differential microRNAs and messenger RNAs resulting from ASXL transcriptional regulator 3 knockdown during during heart development. Bioengineered, 2022, 13(4), 9948-9961.
[http://dx.doi.org/10.1080/21655979.2022.2062525] [PMID: 35435106]
[31]
Su, L.; Li, R.; Zhang, Z.; Liu, J.; Du, J.; Wei, H. Identification of altered exosomal microRNAs and mRNAs in Alzheimer’s disease. Ageing Res. Rev., 2022, 73, 101497.
[http://dx.doi.org/10.1016/j.arr.2021.101497] [PMID: 34710587]
[32]
Zhang, W.; Liao, K.; Liu, D. MicroRNA 744 5p is downregulated in colorectal cancer and targets SEPT2 to suppress the malignant phenotype. Mol. Med. Rep., 2020, 23(1), 54.
[http://dx.doi.org/10.3892/mmr.2020.11692] [PMID: 33200802]
[33]
Tian, Q.; Yan, X.; Yang, L.; Liu, Z.; Yuan, Z.; Shen, Z.; Zhang, Y. lncRNA NORAD promotes hepatocellular carcinoma progression via regulating miR-144-3p/SEPT2. Am. J. Transl. Res., 2020, 12(5), 2257-2266.
[PMID: 32509217]
[34]
Cao, L.; Shao, Z.; Liang, H.; Zhang, D.; Yang, X.; Jiang, X.; Xue, P. Activation of peroxisome proliferator-activated receptor-γ (PPARγ) inhibits hepatoma cell growth via downregulation of SEPT2 expression. Cancer Lett., 2015, 359(1), 127-135.
[http://dx.doi.org/10.1016/j.canlet.2015.01.004] [PMID: 25592041]
[35]
He, H.; Li, J.; Xu, M.; Kan, Z.; Gao, Y.; Yuan, C. Expression of septin 2 and association with clinicopathological parameters in colorectal cancer. Oncol. Lett., 2019, 18(3), 2376-2383.
[http://dx.doi.org/10.3892/ol.2019.10528] [PMID: 31402940]
[36]
Xu, D.; Liu, A.; Wang, X.; Chen, Y.; Shen, Y.; Tan, Z.; Qiu, M. Repression of Septin9 and Septin2 suppresses tumor growth of human glioblastoma cells. Cell Death Dis., 2018, 9(5), 514.
[http://dx.doi.org/10.1038/s41419-018-0547-4] [PMID: 29724999]
[37]
de Lara, J.C.F.; Arzate-Mejía, R.G.; Recillas-Targa, F. Enhancer RNAs: Insights into their biological role. Epigenet. Insights, 2019, 12.
[http://dx.doi.org/10.1177/2516865719846093] [PMID: 31106290]
[38]
Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med., 2015, 21(11), 1253-1261.
[http://dx.doi.org/10.1038/nm.3981] [PMID: 26540387]
[39]
Adnane, S.; Marino, A.; Leucci, E. LncRNAs in human cancers: Signal from noise. Trends Cell Biol., 2022, 32(7), 565-573.
[http://dx.doi.org/10.1016/j.tcb.2022.01.006] [PMID: 35168846]
[40]
Beylerli, O.; Gareev, I.; Sufianov, A.; Ilyasova, T.; Guang, Y. Long noncoding RNAs as promising biomarkers in cancer. Noncoding RNA Res., 2022, 7(2), 66-70.
[http://dx.doi.org/10.1016/j.ncrna.2022.02.004] [PMID: 35310927]
[41]
Kan, R.L.; Chen, J.; Sallam, T. Crosstalk between epitranscriptomic and epigenetic mechanisms in gene regulation. Trends Genet., 2022, 38(2), 182-193.
[http://dx.doi.org/10.1016/j.tig.2021.06.014] [PMID: 34294427]
[42]
Ouyang, J.; Zhong, Y.; Zhang, Y.; Yang, L.; Wu, P.; Hou, X.; Xiong, F.; Li, X.; Zhang, S.; Gong, Z.; He, Y.; Tang, Y.; Zhang, W.; Xiang, B.; Zhou, M.; Ma, J.; Li, Y.; Li, G.; Zeng, Z.; Guo, C.; Xiong, W. Long non-coding RNAs are involved in alternative splicing and promote cancer progression. Br. J. Cancer, 2022, 126(8), 1113-1124.
[http://dx.doi.org/10.1038/s41416-021-01600-w] [PMID: 34750493]
[43]
Xie, W.; Chu, M.; Song, G.; Zuo, Z.; Han, Z.; Chen, C.; Li, Y.; Wang, Z. Emerging roles of long noncoding RNAs in chemoresistance of pancreatic cancer. Semin. Cancer Biol., 2022, 83, 303-318.
[http://dx.doi.org/10.1016/j.semcancer.2020.11.004] [PMID: 33207266]
[44]
Xie, Z.; Zhong, C.; Shen, J.; Jia, Y.; Duan, S. LINC00963: A potential cancer diagnostic and therapeutic target. Biomed. Pharmacother., 2022, 150, 113019.
[http://dx.doi.org/10.1016/j.biopha.2022.113019]
[45]
Zhong, C.; Xie, Z.; Shen, J.; Jia, Y.; Duan, S. LINC00665: An emerging biomarker for cancer diagnostics and therapeutics. Cells, 2022, 11(9), 1540.
[http://dx.doi.org/10.3390/cells11091540] [PMID: 35563845]
[46]
Zhong, C.; Xie, Z.; Zeng, L.; Yuan, C.; Duan, S. MIR4435-2HG is a potential pan-cancer biomarker for diagnosis and prognosis. Front. Immunol., 2022, 13, 855078.
[http://dx.doi.org/10.3389/fimmu.2022.855078] [PMID: 35784328]
[47]
Wu, S.; Gu, Z.; Wu, Y.; Wu, W.; Mao, B.; Zhao, S. LINC00324 accelerates the proliferation and migration of osteosarcoma through regulating WDR66. J. Cell. Physiol., 2020, 235(1), 339-348.
[http://dx.doi.org/10.1002/jcp.28973] [PMID: 31225659]
[48]
Liu, Y.; Zhang, Y.; Xie, J.; Bao, W.; Xie, B.; Zhou, J. Correlation analysis between LINC00324 and immunophenotype in peripheral blood leukocytes in patients with acute myeloid leukemia. Xi bao yu fen zi mian yi xue za zhi, 2019, 35(9), 832-837.
[49]
Li, N.; Zhan, X. Identification of clinical trait-related lncRNA and mRNA biomarkers with weighted gene co-expression network analysis as useful tool for personalized medicine in ovarian cancer. EPMA J., 2019, 10(3), 273-290.
[http://dx.doi.org/10.1007/s13167-019-00175-0] [PMID: 31462944]
[50]
Li, H.; An, X.; Li, Q.; Yu, H.; Li, Z. Construction and analysis of competing endogenous RNA network of MCF 7 breast cancer cells based on the inhibitory effect of 6 thioguanine on cell proliferation. Oncol. Lett., 2020, 21(2), 104.
[http://dx.doi.org/10.3892/ol.2020.12365] [PMID: 33376537]
[51]
Chen, M.; Zhang, M.; Xie, L.; Wu, S.; Zhong, Y. LINC00324 facilitates cell proliferation through competing for miR 214 5p in immature ovarian teratocarcinoma. Int. J. Mol. Med., 2020, 47(1), 397-407.
[http://dx.doi.org/10.3892/ijmm.2020.4800] [PMID: 33416104]
[52]
Akhbari, M.H.; Zafari, Z.; Sheykhhasan, M. Competing endogenous RNAs (ceRNAs) in colorectal cancer: A review. Expert Rev. Mol. Med., 2022, 24, e27.
[http://dx.doi.org/10.1017/erm.2022.21] [PMID: 35748050]
[53]
Basera, A.; Hull, R.; Demetriou, D.; Bates, D.O.; Kaufmann, A.M.; Dlamini, Z.; Marima, R. Competing endogenous RNA (ceRNA) networks and splicing switches in cervical cancer: HPV oncogenesis, clinical significance and therapeutic opportunities. Microorganisms, 2022, 10(9), 1852.
[http://dx.doi.org/10.3390/microorganisms10091852] [PMID: 36144454]
[54]
Liu, Y.; Khan, S.; Li, L.; Ten Hagen, T.L.M.; Falahati, M. Molecular mechanisms of thyroid cancer: A competing endogenous RNA (ceRNA) point of view. Biomedic. pharmacother., 2022, 146, 112251.
[55]
Qi, X.; Chen, X.; Zhao, Y.; Chen, J.; Niu, B.; Shen, B. Prognostic roles of ceRNA network-based signatures in gastrointestinal cancers. Front. Oncol., 2022, 12.
[http://dx.doi.org/10.3389/fonc.2022.921194] [PMID: 35924172]
[56]
Shen, J.; Liang, C.; Su, X.; Wang, Q.; Ke, Y.; Fang, J.; Zhang, D.; Duan, S. Dysfunction and ceRNA network of the tumor suppressor miR-637 in cancer development and prognosis. Biomark. Res., 2022, 10(1), 72.
[http://dx.doi.org/10.1186/s40364-022-00419-8] [PMID: 36175921]
[57]
Ergun, S.; Güney, S.; Temiz, E.; Petrovic, N.; Gunes, S. Significance of miR-15a-5p and CNKSR3 as novel prognostic biomarkers in non-small cell lung cancer. Anticancer. Agents Med. Chem., 2019, 18(12), 1695-1701.
[http://dx.doi.org/10.2174/1871520618666180718100656] [PMID: 30019650]
[58]
Wang, J.Y.; Yang, Y.; Ma, Y.; Wang, F.; Xue, A.; Zhu, J. Potential regulatory role of lncRNA-miRNA-mRNA axis in osteosarcoma. Biomedic. pharmacother., 2020, 121, 109627.
[http://dx.doi.org/10.1016/j.biopha.2019.109627]
[59]
Wang, L.; Cho, K.B.; Li, Y.; Tao, G.; Xie, Z.; Guo, B. Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int. J. Mol. Sci., 2019, 20(22), 5758.
[http://dx.doi.org/10.3390/ijms20225758] [PMID: 31744051]
[60]
Zhou, R.S.; Zhang, E.X.; Sun, Q.F.; Ye, Z.J.; Liu, J.W.; Zhou, D.H.; Tang, Y. Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue. BMC Cancer, 2019, 19(1), 779.
[http://dx.doi.org/10.1186/s12885-019-5983-8] [PMID: 31391008]
[61]
Zhu, P.; He, F.; Hou, Y.; Tu, G.; Li, Q.; Jin, T.; Zeng, H.; Qin, Y.; Wan, X.; Qiao, Y.; Qiu, Y.; Teng, Y.; Liu, M. A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability. Oncogene, 2021, 40(9), 1609-1627.
[http://dx.doi.org/10.1038/s41388-020-01638-9] [PMID: 33469161]
[62]
Zeng, X.; Xiao, J.; Bai, X.; Liu, Y.; Zhang, M.; Liu, J.; Lin, Z.; Zhang, Z. Research progress on the circRNA/lncRNA-miRNA-mRNA axis in gastric cancer. Pathol. Res. Pract., 2022, 238, 154030.
[http://dx.doi.org/10.1016/j.prp.2022.154030] [PMID: 36116329]
[63]
Zhang, M.; Guo, J.; Liu, L.; Huang, M.; Li, Y.; Bennett, S.; Xu, J.; Zou, J. The role of long non-coding RNA, nuclear enriched abundant transcript 1 (NEAT1) in cancer and other pathologies. Biochem. Genet., 2022, 60(3), 843-867.
[http://dx.doi.org/10.1007/s10528-021-10138-8] [PMID: 34689290]
[64]
Zhang, Q.; Kang, L.; Li, X.; Li, Z.; Wen, S.; Fu, X. Bioinformatics analysis predicts hsa_circ_0026337/miR-197-3p as a potential oncogenic ceRNA network for non-small cell lung cancers. Anticancer. Agents Med. Chem., 2022, 22(5), 874-886.
[http://dx.doi.org/10.2174/1871520621666210712090721] [PMID: 34254931]
[65]
Cai, G.; Sun, M.; Li, X.; Zhu, J. Construction and characterization of rectal cancer‐related lncRNA‐mRNA ceRNA network reveals prognostic biomarkers in rectal cancer. IET Syst. Biol., 2021, 15(6), 192-204.
[http://dx.doi.org/10.1049/syb2.12035] [PMID: 34613665]
[66]
Hu, B.; Ma, X.; Fu, P.; Sun, Q.; Tang, W.; Sun, H.; Yang, Z.; Yu, M.; Zhou, J.; Fan, J.; Xu, Y. The mRNA-miRNA-lncRNA regulatory network and factors associated with prognosis prediction of hepatocellular carcinoma. Genomics Proteomics Bioinformatics, 2021, 19(6), 913-925.
[http://dx.doi.org/10.1016/j.gpb.2021.03.001] [PMID: 33741523]
[67]
Huang, Y.; Wang, X.; Zheng, Y.; Chen, W.; Zheng, Y.; Li, G.; Lou, W.; Wang, X. Construction of an mRNA-miRNA-lncRNA network prognostic for triple-negative breast cancer. Aging, 2021, 13(1), 1153-1175.
[http://dx.doi.org/10.18632/aging.202254] [PMID: 33428596]
[68]
Li, S.; Li, Y.; Chen, B.; Zhao, J.; Yu, S.; Tang, Y.; Zheng, Q.; Li, Y.; Wang, P.; He, X.; Huang, S. exoRBase: A database of circRNA, lncRNA and mRNA in human blood exosomes. Nucleic Acids Res., 2018, 46(D1), D106-D112.
[http://dx.doi.org/10.1093/nar/gkx891] [PMID: 30053265]
[69]
Liu, H.; Zhang, Q.; Lou, Q.; Zhang, X.; Cui, Y.; Wang, P.; Yang, F.; Wu, F.; Wang, J.; Fan, T.; Li, S. Differential analysis of lncRNA, miRNA and mRNA expression profiles and the prognostic value of lncRNA in esophageal cancer. Pathol. Oncol. Res., 2020, 26(2), 1029-1039.
[http://dx.doi.org/10.1007/s12253-019-00655-8] [PMID: 30972633]
[70]
Wang, J.D.; Zhou, H.S.; Tu, X.X.; He, Y.; Liu, Q.F.; Liu, Q.; Long, Z.J. Prediction of competing endogenous RNA coexpression network as prognostic markers in AML. Aging, 2019, 11(10), 3333-3347.
[http://dx.doi.org/10.18632/aging.101985] [PMID: 31164492]
[71]
Pan, Z.H.; Guo, X.Q.; Shan, J.; Luo, S.X. LINC00324 exerts tumor-promoting functions in lung adenocarcinoma via targeting miR-615-5p/AKT1 axis. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(23), 8333-8342.
[PMID: 30556874]
[72]
Wang, B.; Zhang, Y.; Zhang, H.; Lin, F.; Tan, Q.; Qin, Q.; Bao, W.; Liu, Y.; Xie, J.; Zeng, Q. Long intergenic non-protein coding RNA 324 prevents breast cancer progression by modulating miR-10b-5p. Aging, 2020, 12(8), 6680-6699.
[http://dx.doi.org/10.18632/aging.103021] [PMID: 32305959]
[73]
Xu, J.; Li, Z.; Su, Q.; Zhao, J.; Ma, J. Suppression of long noncoding RNA LINC00324 restricts cell proliferation and invasion of papillary thyroid carcinoma through downregulation of TRIM29 via upregulating microRNA-195-5p. Aging, 2020, 12(24), 26000-26011.
[http://dx.doi.org/10.18632/aging.202219] [PMID: 33318312]
[74]
Song, K.; Yu, P.; Zhang, C.; Yuan, Z.; Zhang, H. The LncRNA FGD5‐AS1/miR‐497‐5p axis regulates septin 2 (SEPT2) to accelerate cancer progression and increase cisplatin‐resistance in laryngeal squamous cell carcinoma. Mol. Carcinog., 2021, 60(7), 469-480.
[http://dx.doi.org/10.1002/mc.23305] [PMID: 34003510]
[75]
Cerveira, N.; Santos, J.; Bizarro, S.; Costa, V.; Ribeiro, F.R.; Lisboa, S.; Correia, C.; Torres, L.; Vieira, J.; Snijder, S.; Mariz, J.M.; Norton, L.; Mellink, C.H.; Buijs, A.; Teixeira, M.R. Both SEPT2 and MLL are down-regulated in MLL-SEPT2therapy-related myeloid neoplasia. BMC Cancer, 2009, 9(1), 147.
[http://dx.doi.org/10.1186/1471-2407-9-147] [PMID: 19445675]
[76]
Kim, D.S.; Hubbard, S.L.; Peraud, A.; Salhia, B.; Sakai, K.; Rutka, J.T. Analysis of mammalian septin expression in human malignant brain tumors. Neoplasia, 2004, 6(2), 168-178.
[http://dx.doi.org/10.1593/neo.03310] [PMID: 15140406]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy