Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Microwave-accelerated Eco-friendly Performance of the Knoevenagel Condensation Reaction with Various Active Methylene Derivat-ives evaluation of Electrochemical Properties

Author(s): Krishnappa B. Badiger and Kantharaju Kamanna*

Volume 10, Issue 2, 2023

Published on: 19 May, 2023

Page: [113 - 127] Pages: 15

DOI: 10.2174/2213337210666230228103824

Price: $65

Abstract

Background: The present work describes sustainable Knoevenagel condensation reaction of aryl/ heterocyclic aldehyde with various active methylene derivatives such as malononitrile, dimedone, ethyl cyanoacetate, ethyl acetoacetate, barbituric acid, and thiobarbituric acid is reported. The protocol was developed using water extract of mango peel ash (WEMPA), an agrowaste that emerged as a greener solvent media and in combination with microwave irradiation gave high-yield product isolation. The method noticed added advantages for the reaction faster reaction rate, inexpensive extract media, simple work-up, and not required chromatographic purification. The present method synthesized various Knoevenagel condensation derivatives benzylidinemalononitrile, ethyl benzylidenecyanoacetate, ethyl benzylideneacetoacetate, benzalbarbituric acid, benzylidene-2-thiobarbituric acid, and 5,5-dimethylcyclohexane-1,3-diones were characterized by FT-IR, 1H- & 13C-NMR, and mass spectrometry. Further, selected derivatives were investigated for their electrochemical studies using cyclic voltammetry, and showed comparable oxidation and reduction potential properties.

Objective: The objective of this work is to develop a green methodology synthesis of various active methylene derivatives via Knoevenagel condensation to give the product of benzylidinemalononitrile, ethyl benzylidenecyanoacetate, ethyl benzylideneacetoacetate, benzalbarbituric acid, benzylidene-2-thiobarbituric acid and 5,5-dimethylcyclohexane-1,3-diones.

Methods: We have demonstrated WEMPA as a greener homogenous agro-waste catalytic medium for the economic synthesis of Knoevenagel condensation products. The developed method was found robust, non-toxic and solvent-free with a simple work-up to give the target product. The selected derivatives were investigated for their electrochemical studies using the cyclic voltammetry method.

Results: The agro-waste-based catalyst developed avoids the use of the external organic or inorganic base for the Knoevenagel condensation reaction under microwave irradiation. The described method found faster, eco-friendly, simple filtration and recrystallization excellent yield, and purity of the Knoevenagel product. Further, the selected compounds (8a-8d, 9a- 9d, 10a-10d, 11a,-11c, 12a, 12b, and 13a-13c) were subjected to electrochemical behavior studies and showed good oxidation and reduction properties.

Conclusion: In summary, we have established an efficient, simple, inexpensive agro-waste based catalytic approach for the synthesis of benzylidinemalononitrile, ethyl benzylidenecyanoacetate, ethyl benzylideneacetoacetate, benzalbarbituric acid, benzylidene-2-thiobarbituric acid and 5,5- dimethylcyclohexane-1,3-diones derivatives under microwave irradiation described. The catalyst is agro-waste derived, which is abundant in nature and recyclable without loss of activity after the four-run of the reaction, thus making the present approach a greener one. The advantages of the approach are inexpensive, chemical base free, requiring no external metal catalyst, short reaction time, and simple work-up isolated excellent yields of the product. For the first time, herein, we reported the electrochemical behavior of the products prepared, and showed good oxidation and reduction properties, and these molecules will emerge as good antioxidant agents.

Next »
Graphical Abstract

[1]
Tietze, L.F.; Beifuss, U. The knoevenagel reaction. In: Comprehensive Organic Synthesis; Trost, B.M., Ed.; Pergamon Press: Oxford, UK, 1991; 2, p. 341.
[http://dx.doi.org/10.1016/B978-0-08-052349-1.00033-0]
[2]
Jones, G. The knoevenagel condensation. Org. React., 1967, 15, 204-599.
[http://dx.doi.org/10.1002/0471264180.or015.02]
[3]
Das, A.; Justin Thomas, K.R. Rose bengal photocatalyzed Knoevenagel condensation of aldehydes and ketones in aqueous medium. Green Chem., 2022, 24(12), 4952-4957.
[http://dx.doi.org/10.1039/D2GC01402E]
[4]
Kraus, G.A.; Krolski, M.E. Synthesis of a precursor to quassimarin. J. Org. Chem., 1986, 51(17), 3347-3350.
[http://dx.doi.org/10.1021/jo00367a017]
[5]
Tietze, L.F.; Rackelmann, N. Domino reactions in the synthesis of heterocyclic natural products and analogs. Pure Appl. Chem., 2004, 76(11), 1967-1983.
[http://dx.doi.org/10.1351/pac200476111967]
[6]
Liang, F.; Pu, Y.J.; Kurata, T.; Kido, J.; Nishide, H. Synthesis and electroluminescent property of poly(p-phenylenevinylene)s bearing triarylamine pendants. Polymer, 2005, 46(11), 3767-3775.
[http://dx.doi.org/10.1016/j.polymer.2005.03.036]
[7]
Zahouily, M.; Salah, M.; Bahlaouane, B.; Rayadh, A.; Houmam, A.; Hamed, E.A.; Sebti, S. Solid catalysts for the production of fine chemicals: The use of natural phosphate alone and doped base catalysts for the synthesis of unsaturated arylsulfones. Tetrahedron, 2004, 60(7), 1631-1635.
[http://dx.doi.org/10.1016/j.tet.2003.11.086]
[8]
Debache, A.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. One-pot synthesis of 1,4-dihydropyridines via a phenylboronic acid catalyzed hantzsch three-component reaction. Synlett, 2008, 2008(4), 509-512.
[http://dx.doi.org/10.1055/s-2008-1032093]
[9]
Calter, M.A.; Phillips, R.M.; Flaschenriem, C. Catalytic, asymmetric, “interrupted” Feist-Bénary reactions. J. Am. Chem. Soc., 2005, 127(42), 14566-14567.
[http://dx.doi.org/10.1021/ja055752d] [PMID: 16231897]
[10]
Ma, L.; Yuan, L.; Xu, C.; Li, G.; Tao, M.; Zhang, W. An efficient synthesis of 2-aminothiophenes via the gewald reaction catalyzed by an N-methylpiperazine-functionalized polyacrylonitrile fiber. Synthesis, 2013, 45, 45-52.
[http://dx.doi.org/10.1055/s-0032-1316821]
[11]
Volkova, M.S.; Jensen, K.C.; Lozinskaya, N.A.; Sosonyuk, S.E.; Proskurnina, M.V.; Mesecar, A.D.; Zefirov, N.S. Synthesis of novel MT3 receptor ligands via an unusual Knoevenagel condensation. Bioorg. Med. Chem. Lett., 2012, 22(24), 7578-7581.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.005] [PMID: 23131339]
[12]
Lee, B.; Moon, K.M.; Lim, J.S.; Park, Y.; Kim, D.H.; Son, S.; Jeong, H.O.; Kim, D.H.; Lee, E.K.; Chung, K.W.; An, H.J.; Chun, P.; Seo, A.Y.; Yang, J.H.; Lee, B.S.; Ma, J.Y.; Cho, W.K.; Moon, H.R.; Chung, H.Y. 2-(3, 4-dihydroxybenzylidene)malononitrile as a novel anti-melanogenic compound. Oncotarget, 2017, 8(53), 91481-91493.
[http://dx.doi.org/10.18632/oncotarget.20690] [PMID: 29207659]
[13]
Carter, M.K. The story of barbituric acid. J. Chem. Educ., 1951, 28(10), 524.
[http://dx.doi.org/10.1021/ed028p524]
[14]
Gulliya, K.S.U.S. Synthesis of new Azo dyes containing barbituric acid and studysolvatochromic behavior of these dyes. U.S. Patent 5,869,494, 1999.
[15]
Kirpal, S.G. Anti-cancer uses for barbituric acid analogs. U.S. Patent 5,674,870, 1997.
[16]
Knoevenagel, E. Ueber eine Darstellungsweise der Glutarsäure. Ber. Dtsch. Chem. Ges., 1894, 27, 2345-2346.
[17]
Gouveia, F.L.; de Oliveira, R.M.B.; de Oliveira, T.B.; da Silva, I.M.; do Nascimento, S.C.; de Sena, K.X.F.R.; de Albuquerque, J.F.C. Synthesis, antimicrobial and cytotoxic activities of some 5-arylidene-4-thioxo-thiazolidine-2-ones. Eur. J. Med. Chem., 2009, 44(5), 2038-2043.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.006] [PMID: 19027993]
[18]
Alagawadi, K.R.; Alegaon, S.G. Synthesis, characterization and antimicrobial activity evaluation of new 2,4-Thiazolidinediones bearing imidazo[2,1-b][1,3,4]thiadiazole moiety. Arab. J. Chem., 2011, 4(4), 465-472.
[http://dx.doi.org/10.1016/j.arabjc.2010.07.012]
[19]
Murugan, R.; Anbazhagan, S.; Sriman, N.S.; Sriman, N.S. Synthesis and in vivo antidiabetic activity of novel dispiropyrrolidines through [3+2] cycloaddition reactions with thiazolidinedione and rhodanine derivatives. Eur. J. Med. Chem., 2009, 44(8), 3272-3279.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.035] [PMID: 19395129]
[20]
Pattan, S.R.; Suresh, C.; Pujar, V.D.V.; Reddy, V.K.; Rasal, V.P.; Koti, B.C. Synthesis and antidiabetic activity of 2-amino[5(4-sulphonylbenzilydine)2,4-thiaziolidinedione]- 7-chloro-6-fluorobenzothiazole. IJC, 2005, 44B, 2404-2408.
[21]
Bhattarai, B.R.; Kafle, B.; Hwang, J.S.; Khadka, D.; Lee, S.M.; Kang, J.S.; Ham, S.W.; Han, I.O.; Park, H.; Cho, H. Thiazolidinedione derivatives as PTP1B inhibitors with antihyperglycemic and antiobesity effects. Bioorg. Med. Chem. Lett., 2009, 19(21), 6161-6165.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.020] [PMID: 19783142]
[22]
Sakai, K. International Patent, WO9950252A3, 2000.
[23]
Varma, R.S. Microwaves in organic synthesis; Wiley-VCH: New York, 2002.
[24]
Varma, R.S. Solvent-free organic syntheses. Green Chem., 1999, 1(1), 43-55.
[http://dx.doi.org/10.1039/a808223e]
[25]
Maleki, B.; Barat, N.C.S.; Sedigh Ashrafi, S.; Rezaee Seresht, E.; Moeinpour, F.; Khojastehnezhad, A.; Tayebee, R. Caesium carbonate supported on hydroxyapatite-encapsulated Ni 0.5 Zn 0.5 Fe2O4 nanocrystallites as a novel magnetically basic catalyst for the one-pot synthesis of pyrazolo[1,2-b]phthalazine-5,10-diones. Appl. Organomet. Chem., 2015, 29(5), 290-295.
[http://dx.doi.org/10.1002/aoc.3288]
[26]
Varma, R.S. Solvent-free accelerated organic syntheses using microwaves. Pure Appl. Chem., 2001, 73(1), 193-198.
[http://dx.doi.org/10.1351/pac200173010193]
[27]
Varma, R.S. Clay and clay-supported reagents in organic synthesis. Tetrahedron, 2002, 58(7), 1235-1255.
[http://dx.doi.org/10.1016/S0040-4020(01)01216-9]
[28]
Perreux, L.; Loupy, A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron, 2001, 57(45), 9199-9223.
[http://dx.doi.org/10.1016/S0040-4020(01)00905-X]
[29]
Dey, S.K.; de Sousa Amadeu, N.; Janiak, C. Microporous polyurethane material for size selective heterogeneous catalysis of the Knoevenagel reaction. Chem. Commun., 2016, 52(50), 7834-7837.
[http://dx.doi.org/10.1039/C6CC02578A] [PMID: 27240738]
[30]
Reddy, B.M.; Patil, M.K.; Rao, K.N.; Reddy, G.K. An easy-to-use heterogeneous promoted zirconia catalyst for Knoevenagel condensation in liquid phase under solvent-free conditions. J. Mol. Catal. Chem., 2006, 258(1-2), 302-307.
[http://dx.doi.org/10.1016/j.molcata.2006.05.065]
[31]
Li, J.T.; Xing, C.Y.; Li, T.S. An efficient and environmentally friendly method for synthesis of arylmethylenemalononitrile catalyzed by Montmorillonite K10-ZnCl2 under ultrasound irradiation. J. Chem. Technol. Biotechnol., 2004, 79(11), 1275-1278.
[http://dx.doi.org/10.1002/jctb.1123]
[32]
de la Cruz, P.; Díez-Barra, E.; Loupy, A.; Langa, F. Silica gel catalysed Knoevenagel condensation in dry media under microwave irradiation. Tetrahedron Lett., 1996, 37(7), 1113-1116.
[http://dx.doi.org/10.1016/0040-4039(95)02318-6]
[33]
Luan, Y.; Qi, Y.; Gao, H.; Andriamitantsoa, R.S.; Zheng, N.; Wang, G. A general post-synthetic modification approach of amino-tagged metal–organic frameworks to access efficient catalysts for the Knoevenagel condensation reaction. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(33), 17320-17331.
[http://dx.doi.org/10.1039/C5TA00816F]
[34]
Neeraj, P.; Jayshree, P.; Ram, V.P. Sodium bicarbonate an efficient inorgano-green catalyst for the synthesis of diverse Knoevenagel and Knoevenagel / Michael domino reaction in water. J. Chem. Sci., 2018, 8, 390-403.
[35]
Wang, S.; Ren, Z.; Cao, W.; Tong, W. The knoevenagel condensation of aromatic aldehydes with malononitrile or ethyl cyanoacetate in the presence of CTMAB in water. Synth. Commun., 2001, 31(5), 673-677.
[http://dx.doi.org/10.1081/SCC-100103255]
[36]
Dewan, S.K.; Singh, R. One pot synthesis of barbiturates on reaction of barbituric acid with aldehydes under microwave irradiation using a variety of catalysts. Synth. Commun., 2003, 33(17), 3081-3084.
[http://dx.doi.org/10.1081/SCC-120022485]
[37]
Maleki, B.; Taheri, F.; Tayebee, R.; Adibian, F. Dendrimer-functionalized magnetic graphene oxide for knoevenagel condensation. Org. Prep. Proced. Int., 2021, 53(3), 284-290.
[http://dx.doi.org/10.1080/00304948.2021.1875799]
[38]
He, F.; Li, P.; Gu, Y.; Li, G. Glycerol as a promoting medium for electrophilic activation of aldehydes: Catalyst-free synthesis of di(indolyl)methanes, xanthene-1,8(2H)-diones and 1-oxo-hexahydroxanthenes. Green Chem., 2009, 11(11), 1767.
[http://dx.doi.org/10.1039/b916015a]
[39]
Khashaei, M.; Kafi-Ahmadi, L.; Khademinia, S.; Poursattar Marjani, A.; Nozad, E. A facile hydrothermal synthesis of high-efficient NiO nanocatalyst for preparation of 3,4-dihydropyrimidin-2(1H)-ones. Sci. Rep., 2022, 12(1), 8585.
[http://dx.doi.org/10.1038/s41598-022-12589-4] [PMID: 35595795]
[40]
Kafi-Ahmadi, L.; Poursattar Marjani, A.; Nozad, E. Ultrasonic‐assisted preparation of Co3O4 and Eu‐doped Co3O4 nanocatalysts and their application for solvent‐free synthesis of 2‐amino‐4 H ‐benzochromenes under microwave irradiation. Appl. Organomet. Chem., 2021, 35(8)e6271
[http://dx.doi.org/10.1002/aoc.6271]
[41]
Dewan, A.; Sarmah, M.; Bora, U.; Thakur, A.J. A green protocol for ligand, copper and base free Sonogashira cross-coupling reaction. Tetrahedron Lett., 2016, 57(33), 3760-3763.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.021]
[42]
Chia, P.W.; Lim, B.S.; Yong, F.S.J.; Poh, S.C.; Kan, S.Y. An efficient synthesis of bisenols in water extract of waste onion peel ash. Environ. Chem. Lett., 2018, 16(4), 1493-1499.
[http://dx.doi.org/10.1007/s10311-018-0764-1]
[43]
Shinde, S.; Damate, S.; Morbale, S.; Patil, M.; Patil, S.S. Aegle marmelos in heterocyclization: Greener, highly efficient, one-pot three-component protocol for the synthesis of highly functionalized 4H-benzochromenes and 4H-chromenes. RSC Advances, 2017, 7(12), 7315-7328.
[http://dx.doi.org/10.1039/C6RA28779D]
[44]
Hiremath, P.B.; Kantharaju, K. An efficient and facile synthesis of 2-amino-4h-pyrans & tetrahydrobenzo[b]pyrans catalysed by WEMFSA at room temperature. ChemistrySelect, 2020, 5(6), 1896-1906.
[http://dx.doi.org/10.1002/slct.201904336]
[45]
Hiremath, P.B.; Kamanna, K. A microwave accelerated sustainable approach for the synthesis of 2-amino-4h-chromenes catalysed by WEPPA: A green strategy. Curr. Microw. Chem., 2019, 6(1), 30-43.
[http://dx.doi.org/10.2174/2213335606666190820091029]
[46]
Laskar, K.; Bhattacharjee, P.; Gohain, M.; Deka, D.; Bora, U. Application of bio-based green heterogeneous catalyst for the synthesis of arylidinemalononitriles. Sustain. Chem. Pharm., 2019, 14100181
[http://dx.doi.org/10.1016/j.scp.2019.100181]
[47]
Gohain, M.; Laskar, K.; Phukon, H.; Bora, U.; Kalita, D.; Deka, D. Towards sustainable biodiesel and chemical production: Multifunctional use of heterogeneous catalyst from littered Tectona grandis leaves. Waste Manag., 2020, 102, 212-221.
[http://dx.doi.org/10.1016/j.wasman.2019.10.049] [PMID: 31683077]
[48]
Gohain, M.; Laskar, K.; Paul, A.K.; Daimary, N.; Maharana, M.; Goswami, I.K.; Hazarika, A.; Bora, U.; Deka, D. Carica papaya stem: A source of versatile heterogeneous catalyst for biodiesel production and C–C bond formation. Renew. Energy, 2020, 147, 541-555.
[http://dx.doi.org/10.1016/j.renene.2019.09.016]
[49]
Hiremath, P.B.; Kantharaju, K.; Pattanashetty, H. Microwave-assisted synthesis of 4-benzylidene-2-(2-fluorophenyl) oxazol-5(4H)-one derivatives catalysed by egg shell powder and evaluation of their anti-microbial activity. Con. Drug Design Dis. Tech., 2019, 355, 125.
[50]
Kantharaju, K.; Hiremath, P.B. Application of novel, efficient and agro-waste sourced catalyst for Knoevenagel condensation reaction. Indian J. Chem., 2020, 59B, 258-270.
[51]
Kantharaju, K.; Hiremath, P.B. A green catalytic system for the Knoevenagel condensation using WEPBA. Int. J. Eng. Tech. Sci. Res, 2017, 4, 807-813.
[52]
Badiger, K.B.; Khatavi, S.Y.; Hiremath, P.B.; Kantharaju, K. Agro-waste sourced catalyst as an eco-friendly and sustainable approach for Knoevenagel condensation reaction. Curr. Organocatal., 2021, 9, 179-194.
[http://dx.doi.org/10.2174/2213337209666211222145453]
[53]
Fernando, P.R.; Devika, L.A.; Praththana, M.; Nanayakkara, H.M. Synthesis and characterization of clay brick using waste groundnut shell ash. J. Waste Res. Recycle., 2018, 1, 1.
[http://dx.doi.org/10.15744/2766-5887.1.101]
[54]
Badiger, K.B.; Khatavi, S.; Kamanna, K. Expedite greener method synthesis of pyrano[2,3-d]pyrimidine-2,4,7-triones accelerated by ultrasound irradiation. Polycycl. Aromat. Compd., 2022, 1-15.
[http://dx.doi.org/10.1080/10406638.2022.2027790]
[55]
Leitner, W. Green solvents–progress in science and application. Green Chem., 2009, 11(5), 603-609.
[http://dx.doi.org/10.1039/b907013n]
[56]
Saikia, E.; Bora, S.J.; Chetia, B. H2O2 in WERSA: An efficient green protocol for ipso-hydroxylation of aryl/heteroarylboronic acid. RSC Advances, 2015, 5(124), 102723-102726.
[http://dx.doi.org/10.1039/C5RA21354A]
[57]
Saikia, B.; Borah, P. A new avenue to the Dakin reaction in H2O2 –WERSA. RSC Advances, 2015, 5(128), 105583-105586.
[http://dx.doi.org/10.1039/C5RA20133K]
[58]
Badiger, K.B.; Kamanna, K. Knoevenagel condensation reaction catalysed by agro-waste extract as a greener solvent catalyst. Org. Commu., 2021, 14(1), 81-91.
[http://dx.doi.org/10.25135/acg.oc.99.21.01.1948]
[59]
Hiremath, P.B.; Kamanna, K. Microwave-accelerated facile synthesis of 1Hpyrazolo[1,2-b]phthalazine-5,10-dione derivatives catalyzed by WEMPA. Polycycl. Aromat. Compd., 2022, 42(5), 2162-2178.
[http://dx.doi.org/10.1080/10406638.2020.1830129]
[60]
Badiger, K.B. Giddaerappa; Hanumanthappa, R.; Sannegowda, L.K.; Kantharaju, K. An agro-waste based eco-friendly synthesis, electrochemical behavior and anti-oxidant properties evaluation of pyrano[2,3-c]pyrazole and pyrazolyl-4H chromenes derivatives. ChemistrySelect, 2022, 7(9)e202104033
[http://dx.doi.org/10.1002/slct.202104033]
[61]
Cabello, J.A.; Campelo, J.M.; Garcia, A.; Luna, D.; Marinas, J.M. Knoevenagel condensation in the heterogeneous phase using aluminum phosphate-aluminum oxide as a new catalyst. J. Org. Chem., 1984, 49(26), 5195-5197.
[http://dx.doi.org/10.1021/jo00200a036]
[62]
Wang, Q.L.; Ma, Y.; Zuo, B. Knoevenagel condensation catalyzed by usy zeolite. Synth. Commun., 1997, 27(23), 4107-4110.
[http://dx.doi.org/10.1080/00397919708005458]
[63]
Abaee, M.S.; Mojtahedi, M.M.; Zahedi, M.M.; Khanalizadeh, G. Efficient MgBr2.OEt2 - catalyzed Knoevenagel condensation. ARKIVOC, 2006, 2006(15), 48-52.
[http://dx.doi.org/10.3998/ark.5550190.0007.f06]
[64]
Oskooie, H.A.; Heravi, M.M.; Derikvand, F.; Khorasani, M.; Bamoharram, F.F. On water: An efficient knoevenagel condensation using 12‐tungstophosphoric acid as a reusable green catalyst. Synth. Commun., 2006, 36(19), 2819-2823.
[http://dx.doi.org/10.1080/00397910600770631]
[65]
Ren, Y.M.; Cai, C. Knoevenagel condensation of aromatic aldehydes with active methylene compounds using a catalytic amount of iodine and K2CO3 at room temperature. Synth. Commun., 2007, 37(13), 2209-2213.
[http://dx.doi.org/10.1080/00397910701397375]
[66]
Gupta, R.; Gupta, M.; Paul, S.; Rajive, G. Silica supported ammonium acetate: An efficient and recyclable heterogeneous catalyst for Knoevenagel condensation between aldehydes or ketones and active methylene group in liquid phase. Bull. Korean Chem. Soc., 2009, 30(10), 2419-2421.
[http://dx.doi.org/10.5012/bkcs.2009.30.10.2419]
[67]
Muralidhar, L.; Girija, C.R. Simple and practical procedure for Knoevenagel condensation under solvent-free conditions. J. Saudi Chem. Soc., 2014, 18(5), 541-544.
[http://dx.doi.org/10.1016/j.jscs.2011.10.024]
[68]
Reeve, A.M. Reaction of dimedone and benzaldehyde: A discovery-based lab for second-semester organic chemistry. J. Chem. Educ., 2015, 92(3), 582-585.
[http://dx.doi.org/10.1021/ed400457c]
[69]
Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ., 2018, 95(2), 197-206.
[http://dx.doi.org/10.1021/acs.jchemed.7b00361]
[70]
Joshi, P.S.; Sutrave, D.S. A brief study of cyclic voltammetry and electrochemical analysis. Int. J. Chemtech Res., 2018, 11, 77-88.
[http://dx.doi.org/10.20902/IJCTR.2018.110911]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy