Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Effect of Natural Plant Products on Alzheimer’s Disease

Author(s): Himanshi Varshney and Yasir Hasan Siddique*

Volume 23, Issue 2, 2024

Published on: 11 April, 2023

Page: [246 - 261] Pages: 16

DOI: 10.2174/1871527322666230228102223

Price: $65

Abstract

Background: Plants and their extracts like ginger, garlic, Curcuma, Salvia, and Ginkgo are best known for their anti-oxidative and anti-inflammatory responses. These plants have shown their anti-Alzheimer’s properties in various in vivo and in vitro studies. Their diverse phytochemicals play a protective role against amyloid-beta-induced neurotoxicity and improve cognitive and learning impairments. These plants have a wide range of bioactive compounds, including alkaloids, flavonoids, phenols, glycosides, terpenoids, coumarins, and saponins. These chemicals scavenge the free radicals, lower the amyloid burden, improve memory dysfunction, and inhibit acetylcholinesterase activity. Some of the clinical trials and animal-based studies suggested the protective role of these plants and their extract mentioned in the literature.

Methods: The articles for this review were majorly searched from popular search engines, viz, Google Scholar, PubMed, and Scopus.

Results: Medicinal plants improve cognitive and memory impairments by inhibiting acetylcholinesterase activity and scavenging free oxygen species by activating superoxide dismutase, catalase, and GSH activity. The plant extracts reduce amyloid insult by inactivating the beta-site amyloid precursor protein cleaving enzyme (BACE). The inactivation of Caspase 3 and 9 reduces apoptosis. Furthermore, the stimulation of microglial cells and astrocyte reduce inflammation by lowering chemokines and interleukins.

Discussion: The medicinal plants help to reduce AD pathogenesis by controlling different pathways and could be used as a therapeutic agent against the symptoms.

Graphical Abstract

[1]
Rao RV, Descamps O, John V, Bredesen DE. Ayurvedic medicinal plants for Alzheimer’s disease: a review. Alzheimers Res Ther 2012; 4(3): 22.
[http://dx.doi.org/10.1186/alzrt125] [PMID: 22747839]
[2]
Parachikova A, Green KN, Hendrix C, LaFerla FM. Formulation of a medical food cocktail for Alzheimer’s disease: beneficial effects on cognition and neuropathology in a mouse model of the disease. PLoS One 2010; 5(11): e14015.
[http://dx.doi.org/10.1371/journal.pone.0014015] [PMID: 21103342]
[3]
Shi C, Liu J, Wu F, Yew D. Ginkgo biloba extract in Alzheimer’s disease: from action mechanisms to medical practice. Int J Mol Sci 2010; 11(1): 107-23.
[http://dx.doi.org/10.3390/ijms11010107] [PMID: 20162004]
[4]
Xie L, Zhu Q, Lu J. Can we use ginkgo biloba extract to treat alzheimer’s disease? Lessons from preclinical and clinical studies. Cells 2022; 11(3): 479.
[http://dx.doi.org/10.3390/cells11030479]
[6]
Ballard C, Khan Z, Clack H, Corbett A. Nonpharmacological treatment of Alzheimer disease. Can J Psychiatry 2011; 56(10): 589-95.
[http://dx.doi.org/10.1177/070674371105601004] [PMID: 22014691]
[7]
Akram M, Nawaz A. Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regen Res 2017; 12(4): 660-70.
[http://dx.doi.org/10.4103/1673-5374.205108] [PMID: 28553349]
[8]
Varshney H, Siddique YH. Role of natural plant products against Alzheimer’s disease. CNS Neurol Disord Drug Targets 2021; 20(10): 904-41.
[http://dx.doi.org/10.2174/1871527320666210420135437] [PMID: 33881973]
[9]
Sevindik M, Akgul H, Selamoglu Z, Braidy N. Antioxidant, antimicrobial and neuroprotective effects of Octaviania asterosperma in vitro. Mycology 2021; 12(2): 128-38.
[http://dx.doi.org/10.1080/21501203.2020.1816584] [PMID: 34035978]
[10]
Hamedi A, Zengin G, Aktumsek A, Selamoglu Z, Pasdaran A. In vitro and in silico approach to determine neuroprotective properties of iridoid glycosides from aerial parts of Scrophularia amplexicaulis by investigating their cholinesterase inhibition and anti-oxidant activities. Biointerface Res Appl Chem 2020; 10(3): 5429-54.
[http://dx.doi.org/10.33263/BRIAC103.429454]
[11]
Daglia M, Lorenzo A, Nabavi S, Talas Z, Nabavi S. Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat! Curr Pharm Biotechnol 2014; 15(4): 362-72.
[http://dx.doi.org/10.2174/138920101504140825120737] [PMID: 24938889]
[12]
Ali F. Therapeutic potential of luteolin in transgenic Drosophila model of Alzheimer’s disease. Neurosci Lett 2019; 692: 90-9.
[http://dx.doi.org/10.1016/j.neulet.2018.10.053] [PMID: 30420334]
[13]
Beg T, Jyoti S, Naz F, et al. Protective effect of kaempferol on the transgenic Drosophila model of Alzheimer’s disease. CNS Neurol Disord Drug Targets 2018; 17: 421-9.
[http://dx.doi.org/10.2174/1871527317666180508123050]
[14]
Siddique YH, Ali F. Protective effect of nordihydroguaiaretic acid (NDGA) on the transgenic Drosophila model of Alzheimer’s disease. Chem Biol Interact 2017; 269: 59-66.
[http://dx.doi.org/10.1016/j.cbi.2017.04.005] [PMID: 28392391]
[15]
Ali F, Siddique YH. Bioavailability and pharmaco-therapeutic potential of luteolin in overcoming Alzheimer’s disease. CNS Neurol Disord Drug Targets 2019; 18: 352-65.
[http://dx.doi.org/10.2174/1871527318666190319141835]
[16]
Siddique YH. Beneficial effects of apigenin on the transgenic Drosophila model of Alzheimer’s disease. Chem Biol Interact 2022; 366: 110120.
[http://dx.doi.org/10.1016/j.cbi.2022.110120] [PMID: 36027948]
[17]
Talebi M. Zingiber officinale ameliorates Alzheimer’s disease and Cognitive Impairments: Lessons from preclinical studies. Biomed Pharmacother 2021; 133: 111088.
[http://dx.doi.org/10.1016/j.biopha.2020.111088] [PMID: 33378982]
[18]
Halawany AME, Sayed NSEL, Abdallah HM, Dine RSE. Protective effects of gingerol on streptozotocin-induced sporadic Alzheimer’s disease: emphasis on inhibition of β-amyloid, COX-2, alpha-, beta - secretases and APH1a. Sci Rep 2017; 7(1): 2902.
[http://dx.doi.org/10.1038/s41598-017-02961-0] [PMID: 28588301]
[19]
Kiyama R. Nutritional implications of ginger: chemistry, biological activities and signaling pathways. J Nutr Biochem 2020; 86: 108486.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108486] [PMID: 32827666]
[20]
Zeng G, Zhang Z, Lu L, Xiao D, Zong S, He J. Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats. Rejuvenation Res 2013; 16(2): 124-33.
[http://dx.doi.org/10.1089/rej.2012.1389] [PMID: 23374025]
[21]
Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 2001; 21(21): 8370-7.
[http://dx.doi.org/10.1523/JNEUROSCI.21-21-08370.2001] [PMID: 11606625]
[22]
Grzanna R, Phan P, Polotsky A, Lindmark L, Frondoza CG. Ginger extract inhibits β-amyloid peptide-induced cytokine and chemokine expression in cultured THP-1 monocytes. J Altern Complement Med 2004; 10(6): 1009-13.
[http://dx.doi.org/10.1089/acm.2004.10.1009] [PMID: 15673995]
[23]
Karam A, Nadia A, Abd EF, Nemat A, Siham M. Protective effect of ginger (Zingiberofficinale) on Alzheimer’s disease induced in rats. J Neuroinfect Dis 2014; 5(159): 2.
[24]
Oboh G, Akinyemi AJ, Ademiluyi AO. Antioxidant and inhibitory effect of red ginger (Zingiber officinale var. Rubra) and white ginger (Zingiber officinale Roscoe) on Fe2+ induced lipid peroxidation in rat brain in vitro. Exp Toxicol Pathol 2012; 64(1-2): 31-6.
[http://dx.doi.org/10.1016/j.etp.2010.06.002] [PMID: 20598871]
[25]
Hamidpour M, Hamidpour R, Hamidpour S, Shahlari M. Chemistry, pharmacology, and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer. J Tradit Complement Med 2014; 4(2): 82-8.
[http://dx.doi.org/10.4103/2225-4110.130373] [PMID: 24860730]
[26]
Kennedy DO, Pace S, Haskell C, Okello EJ, Milne A, Scholey AB. Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery. Neuropsychopharmacology 2006; 31(4): 845-52.
[http://dx.doi.org/10.1038/sj.npp.1300907] [PMID: 16205785]
[27]
Eidi M, Eidi A, Bahar M. Effects of Salvia officinalis L. (sage) leaves on memory retention and its interaction with the cholinergic system in rats. Nutrition 2006; 22(3): 321-6.
[http://dx.doi.org/10.1016/j.nut.2005.06.010] [PMID: 16500558]
[28]
Perry NSL, Houghton PJ, Sampson J, et al. In-vitro activity of S. lavandulaefolia (Spanish sage) relevant to treatment of Alzheimer’s disease. J Pharm Pharmacol 2010; 53(10): 1347-56.
[http://dx.doi.org/10.1211/0022357011777846] [PMID: 11697542]
[29]
Shen L, Han B, Geng Y, Wang J, Wang Z, Wang M. Amelioration of cognitive impairments in APPswe/PS1dE9 mice is associated with metabolites alteration induced by total salvianolic acid. PLoS One 2017; 12(3): e0174763.
[http://dx.doi.org/10.1371/journal.pone.0174763] [PMID: 28358909]
[30]
Lopresti AL. Salvia (sage): a review of its potential cognitive-enhancing and protective effects. Drugs R D 2017; 17(1): 53-64.
[http://dx.doi.org/10.1007/s40268-016-0157-5] [PMID: 27888449]
[31]
Ghorbani A, Esmaeilizadeh M. Pharmacological properties of Salvia officinalis and its components. J Tradit Complement Med 2017; 7(4): 433-40.
[http://dx.doi.org/10.1016/j.jtcme.2016.12.014] [PMID: 29034191]
[32]
El-Sawi SA, Ezzat SM, Aly HF, Merghany RM, Meselhy MR. Neuroprotective effect of Salvia splendens extract and its constituents against AlCl3-induced Alzheimer’s disease in rats. Advances in Traditional Medicine 2020; 20(3): 381-93.
[http://dx.doi.org/10.1007/s13596-019-00421-w]
[33]
Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi AH, Khani M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther 2003; 28(1): 53-9.
[http://dx.doi.org/10.1046/j.1365-2710.2003.00463.x] [PMID: 12605619]
[34]
Iuvone T, De Filippis D, Esposito G, D’Amico A, Izzo AA. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-β peptide-induced neurotoxicity. J Pharmacol Exp Ther 2006; 317(3): 1143-9.
[http://dx.doi.org/10.1124/jpet.105.099317] [PMID: 16495207]
[35]
Cao YY, Wang L, Ge H, et al. Salvianolic acid A, a polyphenolic derivative from Salvia miltiorrhiza bunge, as a multifunctional agent for the treatment of Alzheimer’s disease. Mol Divers 2013; 17(3): 515-24.
[http://dx.doi.org/10.1007/s11030-013-9452-z] [PMID: 23703159]
[36]
Loizzo MR, Menichini F, Tundis R, et al. In vitro biological activity of Salvia leriifolia benth essential oil relevant to the treatment of Alzheimer’s disease. J Oleo Sci 2009; 58(8): 443-6.
[http://dx.doi.org/10.5650/jos.58.443] [PMID: 19584571]
[37]
Zuo W, Yan F, Zhang B, Li J, Mei D. Advances in the studies of Ginkgo biloba leaves extract on aging-related diseases. Aging Dis 2017; 8(6): 812-26.
[http://dx.doi.org/10.14336/AD.2017.0615] [PMID: 29344418]
[38]
Zheng Y, Xie Y, Qi M, et al. Ginkgo biloba extract is comparable with donepezil in improving functional recovery in alzheimer’s disease: results from a multilevel characterized study based on clinical features and resting-state functional magnetic resonance imaging. Front Pharmacol 2021; 12: 721216.
[http://dx.doi.org/10.3389/fphar.2021.721216] [PMID: 34413779]
[39]
Xin W, Wei T, Chen C, Ni Y, Zhao B, Hou J. Mechanisms of apoptosis in rat cerebellar granule cells induced by hydroxyl radicals and the effects of EGb761 and its constituents. Toxicology 2000; 148(2-3): 103-10.
[http://dx.doi.org/10.1016/S0300-483X(00)00200-6] [PMID: 10962128]
[40]
Smith JV, Luo Y. Elevation of oxidative free radicals in Alzheimer’s disease models can be attenuated by Ginkgo biloba extract EGb 761. J Alzheimers Dis 2003; 5(4): 287-300.
[http://dx.doi.org/10.3233/JAD-2003-5404] [PMID: 14624024]
[41]
Scholtyssek H, Damerau W, Wessel R, Schimke I. Antioxidative activity of ginkgolides against superoxide in an aprotic environment. Chem Biol Interact 1997; 106(3): 183-90.
[http://dx.doi.org/10.1016/S0009-2797(97)00067-7] [PMID: 9413545]
[42]
Rapin JR, Zaibi M, Drieu K. In vitro and in vivo effects of an extract of Ginkgo biloba (EGb 761), ginkgolide B, and bilobalide on apoptosis in primary cultures of rat hippocampal neurons. Drug Dev Res 1998; 45(1): 23-9.
[http://dx.doi.org/10.1002/(SICI)1098-2299(199809)45:1<23:AID-DDR4>3.0.CO;2-0]
[43]
Bastianetto S, Ramassamy C, Doré S, Christen Y, Poirier J, Quirion R. The Ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by β-amyloid. Eur J Neurosci 2000; 12(6): 1882-90.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00069.x] [PMID: 10886329]
[44]
Colciaghi F, Borroni B, Zimmermann M, et al. Amyloid precursor protein metabolism is regulated toward alpha-secretase pathway by Ginkgo biloba extracts. Neurobiol Dis 2004; 16(2): 454-60.
[http://dx.doi.org/10.1016/j.nbd.2004.03.011] [PMID: 15193301]
[45]
Yao ZX, Han Z, Drieu K, Papadopoulos V. Ginkgo biloba extract (Egb 761) inhibits β-amyloid production by lowering free cholesterol levels. J Nutr Biochem 2004; 15(12): 749-56.
[http://dx.doi.org/10.1016/j.jnutbio.2004.06.008] [PMID: 15607648]
[46]
Luo Y. Alzheimer’s disease, the nematode Caenorhabditis elegans, and ginkgo biloba leaf extract. Life Sci 2006; 78(18): 2066-72.
[http://dx.doi.org/10.1016/j.lfs.2005.12.004] [PMID: 16507312]
[47]
Tchantchou F, Xu Y, Wu Y, Christen Y, Luo Y. EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer’s disease. FASEB J 2007; 21(10): 2400-8.
[http://dx.doi.org/10.1096/fj.06-7649com] [PMID: 17356006]
[48]
Yancheva S, Ihl R, Nikolova G, Panayotov P, Schlaefke S, Hoerr R. Ginkgo biloba extract EGb 761®, donepezil or both combined in the treatment of Alzheimer’s disease with neuropsychiatric features: A randomised, double-blind, exploratory trial. Aging Ment Health 2009; 13(2): 183-90.
[http://dx.doi.org/10.1080/13607860902749057] [PMID: 19347685]
[49]
Ghareeb D, Newarry A, El-Rashidy F, Hussein H, Ali A. Efficacy of natural extracts of Ginkgo biloba and berberry and a synthetic derivative of genistein (ipriflavone), as acetylcholinesterase inhibitors, comparative study with Aricept effect. J BiochemBiotechnol 2010; 1: 5-11.
[50]
Rivlin RS. Historical perspective on the use of garlic. J Nutr 2001; 131(3): 951S-4S.
[http://dx.doi.org/10.1093/jn/131.3.951S] [PMID: 11238795]
[51]
Farooqui T, Farooqui AA. Neuroprotective effects of garlic in model systems of neurodegenerative diseases InRole of the Mediterranean diet in the brain and neurodegenerative diseases. Academic Press 2018; pp. 253-69.
[52]
Peng Q, Buz’Zard AR, Lau BH. Neuroprotective effect of garlic compounds in amyloid-β peptide-induced apoptosis in vitro. Med Sci Monit 2002; 8(8): BR328-37.
[PMID: 12165737]
[53]
Yun HM, Ban JO, Park KR, et al. Potential therapeutic effects of functionally active compounds isolated from garlic. Pharmacol Ther 2014; 142(2): 183-95.
[http://dx.doi.org/10.1016/j.pharmthera.2013.12.005] [PMID: 24333688]
[54]
Shang A, Cao SY, Xu XY, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019; 8(7): 246.
[http://dx.doi.org/10.3390/foods8070246] [PMID: 31284512]
[55]
Griffin B, Selassie M, Gwebu ET. Effect of aged garlic extract on the cytotoxicity of Alzheimer β-amyloid peptide in neuronal PC12 cells. Nutr Neurosci 2000; 3(2): 139-42.
[http://dx.doi.org/10.1080/1028415X.2000.11747310] [PMID: 27416371]
[56]
Nillert N, Pannangrong W, Welbat J, Chaijaroonkhanarak W, Sripanidkulchai K, Sripanidkulchai B. Neuroprotective effects of aged garlic extract on cognitive dysfunction and neuroinflammation induced by β-amyloid in rats. Nutrients 2017; 9(1): 24.
[http://dx.doi.org/10.3390/nu9010024] [PMID: 28054940]
[57]
Ray B. B Chauhan N, K Lahiri D. The “Aged Garlic Extract”(AGE) and one of its active Ingredients S-Allyl-LCysteine (SAC) as potential preventive and therapeutic agents for Alzheimer’s Disease (AD). Curr Med Chem 2011; 18: 3306-13.
[http://dx.doi.org/10.2174/092986711796504664] [PMID: 21728972]
[58]
Chauhan NB. Effect of aged garlic extract on APP processing and tau phosphorylation in Alzheimer’s transgenic model Tg2576. J Ethnopharmacol 2006; 108(3): 385-94.
[http://dx.doi.org/10.1016/j.jep.2006.05.030] [PMID: 16842945]
[59]
Javed H, Khan MM, Khan A, et al. S-allyl cysteine attenuates oxidative stress associated cognitive impairment and neurodegeneration in mouse model of streptozotocin-induced experimental dementia of Alzheimer’s type. Brain Res 2011; 1389: 133-42.
[http://dx.doi.org/10.1016/j.brainres.2011.02.072] [PMID: 21376020]
[60]
Araújo CAC, Leon LL. Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz 2001; 96(5): 723-8.
[http://dx.doi.org/10.1590/S0074-02762001000500026] [PMID: 11500779]
[61]
Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 2003; 9(1): 161-8.
[http://dx.doi.org/10.1089/107555303321223035] [PMID: 12676044]
[62]
Niranjan A, Prakash D. Chemical constituents and biological activities of turmeric (Curcuma longa l.)-a review. J Food Sci Technol 2008; 45: 109.
[63]
Nam SM, Choi JH, Yoo DY, et al. Effects of curcumin (Curcuma longa) on learning and spatial memory as well as cell proliferation and neuroblast differentiation in adult and aged mice by upregulating brain-derived neurotrophic factor and CREB signaling. J Med Food 2014; 17(6): 641-9.
[http://dx.doi.org/10.1089/jmf.2013.2965] [PMID: 24712702]
[64]
Ahmed T, Gilani AH. Inhibitory effect of curcuminoids on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia may explain medicinal use of turmeric in Alzheimer’s disease. Pharmacol Biochem Behav 2009; 91(4): 554-9.
[http://dx.doi.org/10.1016/j.pbb.2008.09.010] [PMID: 18930076]
[65]
Kim MJ, Park SY, Kim Y, et al. Beneficial effects of a combination of Curcuma longa L. and Citrus junos against beta-amyloid peptide-induced neurodegeneration in mice. J Med Food 2022; 25(1): 33-9.
[http://dx.doi.org/10.1089/jmf.2021.K.0104] [PMID: 35029510]
[66]
Zhang L, Fiala M, Cashman J, et al. Curcuminoids enhance amyloid-β uptake by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 2006; 10(1): 1-7.
[http://dx.doi.org/10.3233/JAD-2006-10101] [PMID: 16988474]
[67]
Giri RK, Rajagopal V, Kalra VK. Curcumin, the active constituent of turmeric, inhibits amyloid peptide-induced cytochemokine gene expression and CCR5-mediated chemotaxis of THP-1 monocytes by modulating early growth response-1 transcription factor. J Neurochem 2004; 91(5): 1199-210.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02800.x] [PMID: 15569263]
[68]
Yang F, Lim GP, Begum AN, et al. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 2005; 280(7): 5892-901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[69]
Siddique YH, Naz F, Jyoti S. Effect of curcumin on lifespan, activity pattern, oxidative stress, and apoptosis in the brains of transgenic Drosophila model of Parkinson’s disease. BioMed Res Int 2014; 2014: 1-6.
[70]
Siddique YH, Naz F, Jyoti S, et al. Protective effect of geraniol on the transgenic drosophila model of parkinson’s disease. Environ Toxicol Pharmacol 2016; 43: 225-31.
[http://dx.doi.org/10.1016/j.etap.2016.03.018] [PMID: 27026137]
[71]
Siddique YH, Jyoti S, Naz F. Effect of epicatechin gallate dietary supplementation on transgenic Drosophila model of Parkinson’s disease. J Diet Suppl 2014; 11(2): 121-30.
[http://dx.doi.org/10.3109/19390211.2013.859207] [PMID: 24670116]
[72]
Siddique YH, Mujtaba SF, Jyoti S, Naz F. GC-MS analysis of Eucalyptus citriodora leaf extract and its role on the dietary supplementation in transgenic Drosophila model of Parkinson’s disease. Food Chem Toxicol 2013; 55: 29-35.
[http://dx.doi.org/10.1016/j.fct.2012.12.028] [PMID: 23318758]
[73]
Siddique YH, Naz F, Jyoti S, et al. Effect of Centella asiatica leaf extract on the dietary supplementation in transgenic Drosophila model of Parkinson’s disease. Parkinsons Dis 2014; 2014: 1-11.
[http://dx.doi.org/10.1155/2014/262058] [PMID: 25538856]
[74]
Siddique YH, Ara G, Jyoti S, Afzal M. Protective effect of curcumin in transgenic Drosophila melanogaster model of Parkinson’s disease. Alter Med Stud 2012; 2(1): 3.
[http://dx.doi.org/10.4081/ams.2012.e3]
[75]
Siddique YH, Mujtaba SF, Faisal M, Jyoti S, Naz F. The effect of Bacopa monnieri leaf extract on dietary supplementation in transgenic Drosophila model of Parkinson’s disease. Eur J Integr Med 2014; 6(5): 571-80.
[http://dx.doi.org/10.1016/j.eujim.2014.05.007]
[76]
Siddique YH, Faisal M, Naz F, Jyoti S. Rahul. Role of Ocimum sanctum leaf extract on dietary supplementation in the transgenic Drosophila model of Parkinson’s disease. Chin J Nat Med 2014; 12(10): 777-81.
[http://dx.doi.org/10.1016/S1875-5364(14)60118-7] [PMID: 25443371]
[77]
Ara G, Afzal M, Jyoti S, Naz F. Rahul, Siddique YH. Effect of Myricetin on the loss of dopaminergic neurons in the transgenic Drosophila model of Parkinson’s disease. Curr Drug Ther 2019; 14(1): 58-64.
[http://dx.doi.org/10.2174/1574885513666180529114546]
[78]
Siddique YH. Neurodegenerative diseases and flavonoids: special reference to kaempferol. CNS Neurol Disord Drug Targets 2021; 20: 327-42.
[79]
Bilgic Y, Demir EA, Bilgic N, Dogan H, Tutuk O, Tumer C. Detrimental effects of chia (Salvia hispanica L.) seeds on learning and memory in aluminum chloride-induced experimental Alzheimer’s disease. Acta Neurobiol Exp (Warsz) 2018; 78(4): 322-31.
[http://dx.doi.org/10.21307/ane-2018-031] [PMID: 30624431]
[80]
Hasanein P, Felehgari Z, Emamjomeh A. Preventive effects of Salvia officinalis L. against learning and memory deficit induced by diabetes in rats: Possible hypoglycaemic and antioxidant mechanisms. Neurosci Lett 2016; 622: 72-7.
[http://dx.doi.org/10.1016/j.neulet.2016.04.045] [PMID: 27113201]
[81]
Ahmed HH, Salem AM, Sabry GM, Husein AA, Kotob SE. Possible therapeutic uses of Salvia triloba and Piper nigrum in Alzheimer’s disease-induced rats. J Med Food 2013; 16(5): 437-46.
[http://dx.doi.org/10.1089/jmf.2012.0165] [PMID: 23631499]
[82]
Mahdy K, Shaker O, Wafay H, Nassar Y, Hassan H, Hussein A. Effect of some medicinal plant extracts on the oxidative stress status in Alzheimer’s disease induced in rats. Eur Rev Med Pharmacol Sci 2012; 16(S3): 31-42.
[PMID: 22957416]
[83]
Zhou Y, Li W, Xu L, Chen L. In Salvia miltiorrhiza, phenolic acids possess protective properties against amyloid β-induced cytotoxicity, and tanshinones act as acetylcholinesterase inhibitors. Environ Toxicol Pharmacol 2011; 31(3): 443-52.
[http://dx.doi.org/10.1016/j.etap.2011.02.006] [PMID: 21787715]
[84]
Jeon S, Bose S, Hur J, et al. A modified formulation of Chinese traditional medicine improves memory impairment and reduces Aβ level in the Tg-APPswe/PS1dE9 mouse model of Alzheimer’s disease. J Ethnopharmacol 2011; 137(1): 783-9.
[http://dx.doi.org/10.1016/j.jep.2011.06.046] [PMID: 21762767]
[85]
Ahmed H, Salem A, Shouckry M, Sabry GM, Husein A, Kotob S. New insights in the horizon for the treatment of Alzheimer’s Disease: A proposal based on experimental study. Der Pharmacia Lett. 2015.
[86]
Kim DSHL, Park SY, Kim JY. Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from βA(1-42) insult. Neurosci Lett 2001; 303(1): 57-61.
[http://dx.doi.org/10.1016/S0304-3940(01)01677-9] [PMID: 11297823]
[87]
Kim DSHL, Kim JY, Han YS. Alzheimer’s disease drug discovery from herbs: neuroprotectivity from β-amyloid (1-42) insult. J Altern Complement Med 2007; 13(3): 333-40.
[http://dx.doi.org/10.1089/acm.2006.6107] [PMID: 17480132]
[88]
Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem 2007; 102(4): 1095-104.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04613.x] [PMID: 17472706]
[89]
Mishra S, Palanivelu K. The effect of curcumin (turmeric) on Alzheimer′s disease: An overview. Ann Indian Acad Neurol 2008; 11(1): 13-9.
[http://dx.doi.org/10.4103/0972-2327.40220] [PMID: 19966973]
[90]
Hamaguchi T, Ono K, Murase A, Yamada M. Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-β aggregation pathway. Am J Pathol 2009; 175(6): 2557-65.
[http://dx.doi.org/10.2353/ajpath.2009.090417] [PMID: 19893028]
[91]
Tehranipou M, Javaheri R. Neuroprotective effect of Curcuma longa alcoholic extract on peripheral nerves degeneration after sciatic nerve compression in rats. J Biol Sci (Faisalabad, Pak) 2009; 9(8): 889-93.
[http://dx.doi.org/10.3923/jbs.2009.889.893]
[92]
Kumar A, Dogra S, Prakash A. Protective effect of curcumin (Curcuma longa), against aluminium toxicity: Possible behavioral and biochemical alterations in rats. Behav Brain Res 2009; 205(2): 384-90.
[http://dx.doi.org/10.1016/j.bbr.2009.07.012] [PMID: 19616038]
[93]
Hamaguchi T, Ono K, Yamada M. REVIEW: Curcumin and Alzheimer’s disease. CNS Neurosci Ther 2010; 16(5): 285-97.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00147.x] [PMID: 20406252]
[94]
Kumar A, Dora J, Singh A. A review on spice of life curcuma longa (turmeric). Int J Appl Biol Pharm Technol 2011; 2: 371-9.
[95]
Mancuso C, Siciliano R, Barone E, Preziosi P. Natural substances and Alzheimer’s disease: From preclinical studies to evidence based medicine. Biochim Biophys Acta Mol Basis Dis 2012; 1822(5): 616-24.
[http://dx.doi.org/10.1016/j.bbadis.2011.09.004] [PMID: 21939756]
[96]
Douichene S, Djebli N, Zerrouki K. Neuroprotective effect of curcumin with a fixator of absorption against both aluminium neurotoxicity and alzheimer’s disease (experimental studies in mice). Int J Pharm Sci Res 2012; 3: 3837.
[97]
Villaflores OB, Chen YJ, Chen CP, Yeh JM, Wu TY. Effects of curcumin and demethoxycurcumin on amyloid-β precursor and tau proteins through the internal ribosome entry sites: A potential therapeutic for Alzheimer’s disease. Taiwan J Obstet Gynecol 2012; 51(4): 554-64.
[http://dx.doi.org/10.1016/j.tjog.2012.09.010] [PMID: 23276558]
[98]
Ikeda A, Nemoto K, Yoshida C, et al. Suppressive effect of nobiletin, a citrus polymethoxyflavonoid that downregulates thioredoxin-interacting protein expression, on tunicamycin-induced apoptosis in SK-N-SH human neuroblastoma cells. Neurosci Lett 2013; 549: 135-9.
[http://dx.doi.org/10.1016/j.neulet.2013.06.004] [PMID: 23774476]
[99]
Wang X, Kim JR, Lee SB, et al. Effects of curcuminoids identified in rhizomes of Curcuma longa on BACE-1 inhibitory and behavioral activity and lifespan of Alzheimer’s disease Drosophila models. BMC Complement Altern Med 2014; 14(1): 88.
[http://dx.doi.org/10.1186/1472-6882-14-88] [PMID: 24597901]
[100]
Münch G, Venigalla M, Sonego S, Gyengesi E. Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer′s disease. Neural Regen Res 2015; 10(8): 1181-5.
[http://dx.doi.org/10.4103/1673-5374.162686] [PMID: 26487830]
[101]
Reddy PH, Manczak M, Yin X, et al. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer’s disease. J Investig Med 2016; 64(8): 1220-34.
[http://dx.doi.org/10.1136/jim-2016-000240] [PMID: 27521081]
[102]
Meamar R, Mirmosayyeb O, Tanhaei A, et al. Possible role of common spices as a preventive and therapeutic agent for Alzheimer′s disease. Int J Prev Med 2017; 8(1): 5.
[http://dx.doi.org/10.4103/2008-7802.199640] [PMID: 28250905]
[103]
Mezeiova E, Spilovska K, Nepovimova E, et al. Profiling donepezil template into multipotent hybrids with antioxidant properties. J Enzyme Inhib Med Chem 2018; 33(1): 583-606.
[http://dx.doi.org/10.1080/14756366.2018.1443326] [PMID: 29529892]
[104]
Zhang K, Chen M, Du Z-Y, Zheng X, Li D-L, Zhou R-P. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen Res 2018; 13(4): 742-52.
[http://dx.doi.org/10.4103/1673-5374.230303] [PMID: 29722330]
[105]
Naqvi F, Haider S, Naqvi F, Saleem S, Perveen T, Batool Z. A comparative study showing greater effects of curcumin compared to donepezil on memory function in rats. Pak J Pharm Sci 2019; 32(1): 53-60.
[PMID: 30772790]
[106]
Maurer K, Ihl R, Dierks T, Frölich L. Clinical efficacy of Ginkgo biloba special extract EGb 761 in dementia of the Alzheimer type. J Psychiatr Res 1997; 31(6): 645-55.
[http://dx.doi.org/10.1016/S0022-3956(97)00022-8] [PMID: 9447569]
[107]
Mazza M, Capuano A, Bria P, Mazza S. Ginkgo biloba and donepezil: a comparison in the treatment of Alzheimer’s dementia in a randomized placebo-controlled double-blind study. Eur J Neurol 2006; 13(9): 981-5.
[http://dx.doi.org/10.1111/j.1468-1331.2006.01409.x] [PMID: 16930364]
[108]
Le Bars PL, Velasco FM, Ferguson JM, Dessain EC, Kieser M, Hoerr R. Influence of the severity of cognitive impairment on the effect of the Ginkgo biloba extract EGb 761 in Alzheimer’s disease. Neuropsychobiology 2002; 45(1): 19-26.
[http://dx.doi.org/10.1159/000048668] [PMID: 11803237]
[109]
Bridi R, Crossetti FP, Steffen VM, Henriques AT. The antioxidant activity of standardized extract of Ginkgo biloba (EGb 761) in rats. Phytother Res 2001; 15(5): 449-51.
[http://dx.doi.org/10.1002/ptr.814] [PMID: 11507743]
[110]
Yasui-Furukori N, Furukori H, Kaneda A, Kaneko S, Tateishi T. The effects of Ginkgo biloba extracts on the pharmacokinetics and pharmacodynamics of donepezil. J Clin Pharmacol 2004; 44(5): 538-42.
[http://dx.doi.org/10.1177/0091270004264161] [PMID: 15102875]
[111]
Brunetti L, Orlando G, Menghini L, Ferrante C, Chiavaroli A, Vacca M. Ginkgo biloba leaf extract reverses amyloid beta-peptide-induced isoprostane production in rat brain in vitro. Planta Med 2006; 72(14): 1296-9.
[http://dx.doi.org/10.1055/s-2006-951688] [PMID: 17022004]
[112]
Stackman RW, Eckenstein F, Frei B, Kulhanek D, Nowlin J, Quinn JF. Prevention of age-related spatial memory deficits in a transgenic mouse model of Alzheimer’s disease by chronic Ginkgo biloba treatment. Exp Neurol 2003; 184(1): 510-20.
[http://dx.doi.org/10.1016/S0014-4886(03)00399-6] [PMID: 14637120]
[113]
Shi R, Wang Y, An X, et al. Efficacy of co-administration of liuweidihuang pills and ginkgo biloba tablets on albuminuria in type 2 diabetes: a 24-month, multicenter, double-blind, placebo-controlled, randomized clinical trial. Front Endocrinol 2019; 10: 100.
[http://dx.doi.org/10.3389/fendo.2019.00100] [PMID: 30873118]
[114]
Zhao B, Zhao B. Natural antioxidants in prevention and management of Alzheimer s disease. Front Biosci 2012; E4(3): 794-808.
[http://dx.doi.org/10.2741/e419] [PMID: 22201914]
[115]
Chen F, Li L, Xu F, et al. Systemic and cerebral exposure to and pharmacokinetics of flavonols and terpene lactones after dosing standardized Ginkgo biloba leaf extracts to rats via different routes of administration. Br J Pharmacol 2013; 170(2): 440-57.
[http://dx.doi.org/10.1111/bph.12285] [PMID: 23808355]
[116]
Borek C. Antioxidant health effects of aged garlic extract. J Nutr 2001; 131(3): 1010S-5S.
[http://dx.doi.org/10.1093/jn/131.3.1010S] [PMID: 11238807]
[117]
Pérez-Severiano F, Salvatierra-Sánchez R, Rodríguez-Pérez M, et al. S-Allylcysteine prevents amyloid-β peptide-induced oxidative stress in rat hippocampus and ameliorates learning deficits. Eur J Pharmacol 2004; 489(3): 197-202.
[http://dx.doi.org/10.1016/j.ejphar.2004.03.001] [PMID: 15087243]
[118]
Borek C. Garlic reduces dementia and heart-disease risk. J Nutr 2006; 136(3) (Suppl.): 810S-2S.
[http://dx.doi.org/10.1093/jn/136.3.810S] [PMID: 16484570]
[119]
Chauhan NB, Sandoval J. Amelioration of early cognitive deficits by aged garlic extract in Alzheimer’s transgenic mice. Phytother Res 2007; 21(7): 629-40.
[http://dx.doi.org/10.1002/ptr.2122] [PMID: 17380553]
[120]
Colín-González AL, Santana RA, Silva-Islas CA, Chánez-Cárdenas ME, Santamaría A, Maldonado PD. The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. Oxid Med Cell Longev 2012; 2012: 1-16.
[http://dx.doi.org/10.1155/2012/907162] [PMID: 22685624]
[121]
Mukherjee D, Banerjee S. Learning and memory promoting effects of crude garlic extract. Indian J Exp Biol 2013; 51(12): 1094-100.
[PMID: 24579375]
[122]
Sarkaki A, Valipour Chehardacheric S, Farbood Y, Mansouri SM, Naghizadeh B, Basirian E. Effects of fresh, aged and cooked garlic extracts on short- and long-term memory in diabetic rats. Avicenna J Phytomed 2013; 3(1): 45-55.
[PMID: 25050258]
[123]
Jeong JH, Jeong HR, Jo YN, Kim HJ, Shin JH, Heo HJ. Ameliorating effects of aged garlic extracts against Aβ-induced neurotoxicity and cognitive impairment. BMC Complement Altern Med 2013; 13(1): 268.
[http://dx.doi.org/10.1186/1472-6882-13-268] [PMID: 24134394]
[124]
Thorajak P, Pannangrong W, Welbat JU, Chaijaroonkhanarak W, Sripanidkulchai K, Sripanidkulchai B. Effects of aged garlic extract on cholinergic, glutamatergic and GABAergic systems with regard to cognitive impairment in Aβ-induced rats. Nutrients 2017; 9(7): 686.
[http://dx.doi.org/10.3390/nu9070686] [PMID: 28671572]
[125]
Okasha EF. Dentate gyrus changes in an Alzheimer-induced model in adult male albino rats and the possible protection by ginger. Egypt J Histol 2012; 35(4): 711-20.
[http://dx.doi.org/10.1097/01.EHX.0000420212.59034.49]
[126]
Oboh G, Ademiluyi AO, Akinyemi AJ. Inhibition of acetylcholinesterase activities and some pro-oxidant induced lipid peroxidation in rat brain by two varieties of ginger (Zingiber officinale). Exp Toxicol Pathol 2012; 64(4): 315-9.
[http://dx.doi.org/10.1016/j.etp.2010.09.004] [PMID: 20952170]
[127]
Mathew M, Subramanian S. In vitro evaluation of anti-Alzheimer effects of dry ginger (Zingiber officinale Roscoe) extract. Indian J Exp Biol 2014; 52(6): 606-12.
[PMID: 24956891]
[128]
Lim S, Moon M, Oh H, Kim HG, Kim SY, Oh MS. Ginger improves cognitive function via NGF-induced ERK/CREB activation in the hippocampus of the mouse. J Nutr Biochem 2014; 25(10): 1058-65.
[http://dx.doi.org/10.1016/j.jnutbio.2014.05.009] [PMID: 25049196]
[129]
Arafa N, Ali E. Protective role of either ginger or lipoic acid on senile female rats. Neurosci 2014; 3: 22-8.
[130]
Ahmeda HH, Zaazaa AM. Zingiberofficinale and Alzheimer’s disease: evidences and mechanisms. Int J Pharm Sci Rev Res 2014.
[131]
Gomar A, Hosseini A, Mirazi N, Gomar M. Effect of ZingiberOfficinale (ginger rhizomes) hydroethanolic extract on hyoscine-induced memory impairment in adult male rats. Int Clinical Neurosci J 2015; 2: 105-10.
[132]
Huh Eugen, Lim Soonmin, Kim Hyo Geun, et al. Ginger fermented with Schizosaccharomycespombe alleviates memory impairment via protecting hippocampal neuronal cells in amyloid beta 1-42 plaque injected mice. Food Funct 2018; 9: 171-8.
[http://dx.doi.org/10.1039/C7FO01149K] [PMID: 29171599]
[133]
Zhou Y, Xue L, Gao L, Qin X, Du G. Ginger extract extends the lifespan of Drosophila melanogaster through antioxidation and ameliorating metabolic dysfunction. J Funct Foods 2018; 49: 295-305.
[http://dx.doi.org/10.1016/j.jff.2018.08.040]
[134]
Reddy PH, Manczak M, Yin X, et al. Protective effects of Indian spice curcumin against amyloid-β in Alzheimer’s disease. J Alzheimers Dis 2018; 61(3): 843-66.
[http://dx.doi.org/10.3233/JAD-170512] [PMID: 29332042]
[135]
Ibrahim BM. Experimental study of the effects of Boswellia Serrata and Ginger (Zingiber officinale) on Alzheimer’s Disease Induced in Rats 2012. Ph.D. Theses, Calcutta University, Calcutta, India.
[136]
Moon M, Kim HG, Choi JG, et al. 6-Shogaol, an active constituent of ginger, attenuates neuroinflammation and cognitive deficits in animal models of dementia. Biochem Biophys Res Commun 2014; 449(1): 8-13.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.121] [PMID: 24796668]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy