Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Mini-Review Article

A Review: Drug Excipient Iincompatiblity by Ftir Spectroscopy

Author(s): Chander Singh, Komal Rao, Nikita Yadav, Nidhi Bansal, Yogesh Vashist, Shalini Kumari* and Palak Chugh

Volume 19, Issue 5, 2023

Published on: 17 April, 2023

Page: [371 - 378] Pages: 8

DOI: 10.2174/1573412919666230228102158

Price: $65

conference banner
Abstract

For the development of various formulations, it is necessary to check out the drug excipient incompatibility. Whether the drug is compatible with the excipient or not. Because the drug excipient interaction study provides stability data of the drug and shelf life of the drug. Fourier transform infrared spectroscopy is the best method to evaluate the drug excipient incompatibility study. The FTIR spectroscopy theory is based on the idea that molecules have a tendency to absorb particular light frequencies that are unique to the corresponding structure of the molecules. The energies depend on the atomic masses, the related vibronic coupling, and the geometry of the molecular surfaces. For instance, the molecule may be able to absorb the energy present in the incident light, which will cause it to rotate more quickly or vibrate more loudly. In this article, a list of various drugs with different excipients was discussed. This review emphasizes on various examples of drug interaction with a number of excipients on the basis of Fourier Transform infrared spectroscopy data which is based on last 10-12 year research paper, and the principle ,working, applications of infrared spectroscopy were also discussed.

Graphical Abstract

[1]
Anastasopoulou, J.; Theophanides, T. Chemistry and Symmetry. Greek National Technical University of Athens, NTUA , 1997; p. 94.
[2]
van der Maas, J.J. Basic infrared spectroscopy, 2nd ed; Heyden and Son Ltd.: UK, 1972.
[3]
Woernley, D.L. Infrared absorption curves for normal and neoplastic tissues and related biological substances. Cancer Res., 1952, 12(7), 516-523.
[PMID: 14936025]
[4]
Ismail, AA.; van de Voort, FR.; Sedman, J Fourier transform infrared spectroscopy: principles and applications. In: Techniques and instrumentation in analytical chemistry;; Elsevier: Amsterdam, 1997; 18, pp. 93-139.
[http://dx.doi.org/10.1016/S0167-9244(97)80013-3]
[5]
Colthup, N. Introduction to infrared and Raman spectroscopy; Elsevier: Amsterdam, 2012.
[6]
Berthomieu, C.; Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res., 2009, 101(2-3), 157-170.
[http://dx.doi.org/10.1007/s11120-009-9439-x] [PMID: 19513810]
[7]
Luypaert, J.; Massart, D.L.; Vander Heyden, Y. Near-infrared spectroscopy applications in pharmaceutical analysis. Talanta, 2007, 72(3), 865-883.
[http://dx.doi.org/10.1016/j.talanta.2006.12.023] [PMID: 19071701]
[8]
Anastassopoulou, J.; Boukaki, E.; Conti, C.; Ferraris, P.; Giorgini, E.; Rubini, C.; Sabbatini, S.; Theophanides, T.; Tosi, G. Microimaging FT-IR spectroscopy on pathological breast tissues. Vib. Spectrosc., 2009, 51(2), 270-275.
[http://dx.doi.org/10.1016/j.vibspec.2009.07.005]
[9]
Murphy, W.F. Modern spectroscopy: J. Michael Hollas, 2nd ed; Wiley: Chichester, 1992.
[10]
Chadha, R.; Bhandari, S. Drug–excipient compatibility screening—Role of thermoanalytical and spectroscopic techniques. J. Pharm. Biomed. Anal., 2014, 87, 82-97.
[http://dx.doi.org/10.1016/j.jpba.2013.06.016] [PMID: 23845418]
[11]
Smith, B.C. Fundamentals of fourier transform infrared spectroscopy; CRC press: Boca Raton, 2011.
[http://dx.doi.org/10.1201/b10777]
[12]
Johnston, S.F. Fourier transform infrared: A constantly evolving technology; Ellis Horwood: New York, 1991.
[13]
Qiu, F.; Norwood, D.L. Identification of pharmaceutical impurities. J. Liq. Chromatogr. Relat. Technol., 2007, 30(5-7), 877-935.
[http://dx.doi.org/10.1080/10826070701191151]
[14]
Ambhore, J.P.; Adhao, V.S.; Cheke, R.S.; Popat, R.R.; Gandhi, S.J. Futuristic review on progress in force degradation studies and stability indicating assay method for some antiviral drugs. GSC Biol. Pharmaceut. Sci., 2021, 16(1), 133-149.
[http://dx.doi.org/10.30574/gscbps.2021.16.1.0172]
[15]
Quinteiro Rodríguez, M.P. Fourier transform infrared (FTIR) technology for the identification of organisms. Clin. Microbiol. Newsl., 2000, 22(8), 57-61.
[http://dx.doi.org/10.1016/S0196-4399(00)88850-9]
[16]
Jackson, M.; Sowa, M.G.; Mantsch, H.H. Infrared spectroscopy: a new frontier in medicine. Biophys. Chem., 1997, 68(1-3), 109-125.
[http://dx.doi.org/10.1016/S0301-4622(97)80555-8] [PMID: 9468614]
[17]
Rohman, A.; Ghazali, M.A.I.B.; Windarsih, A.; Irnawati, I.; Riyanto, S.; Yusof, F.M.; Mustafa, S. Comprehensive review on application of FTIR spectroscopy coupled with chemometrics for authentication analysis of fats and oils in the food products. Molecules, 2020, 25(22), 5485.
[http://dx.doi.org/10.3390/molecules25225485] [PMID: 33238638]
[18]
Tiernan, H.; Byrne, B.; Kazarian, S.G. ATR-FTIR spectroscopy and spectroscopic imaging for the analysis of biopharmaceuticals. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 241, 118636.
[http://dx.doi.org/10.1016/j.saa.2020.118636] [PMID: 32610215]
[19]
Nurrulhidayah, A.F.; Man, Y.B.C.; Al-Kahtani, H.A.; Rohman, A. Application of FTIR spectroscopy coupled with chemometrics for authentication of Nigella sativa seed oil. Spectroscopy (Springf.), 2011, 25(5), 243-250.
[http://dx.doi.org/10.1155/2011/470986]
[20]
Fahelelbom, K.M.; Saleh, A.; Al-Tabakha, M.M.A.; Ashames, A.A. Recent applications of quantitative analytical FTIR spectroscopy in pharmaceutical, biomedical, and clinical fields: A brief review. Rev. Anal. Chem., 2022, 41(1), 21-33.
[http://dx.doi.org/10.1515/revac-2022-0030]
[21]
Griffiths, P.R. Introduction to the theory and instrumentation for vibrational spectroscopy. Appl. Vibrat. Spectroscopy Food Sci., 2010, 1, 31-46.
[22]
Jaiswal, A.K.; Giri, N.G.; Kumar Jaiswal, A.; Samal, N.; Sharma, P.; Millo, T. Forensic applications of IR/FTIR. J. Forensic Chem. Toxicol., 2017, 3(1), 39-68.
[23]
Yano, K.; Sakamoto, Y.; Hirosawa, N.; Tonooka, S.; Katayama, H.; Kumaido, K.; Satomi, A. Applications of Fourier transform infrared spectroscopy, Fourier transform infrared microscopy and near-infrared spectroscopy to cancer research. Spectroscopy (Springf.), 2003, 17(2-3), 315-321.
[http://dx.doi.org/10.1155/2003/329478]
[24]
Fanelli, S.; Zimmermann, A.; Totóli, E.G.; Salgado, H.R.N. FTIR spectrophotometry as a green tool for quantitative analysis of drugs: practical application to amoxicillin. J. Chem., 2018, 2018, 3920810.
[http://dx.doi.org/10.1155/2018/3920810]
[25]
Pandey, S.; Pandey, P.; Tiwari, G.; Tiwari, R.; Rai, A.K. FTIR spectroscopy: A tool for quantitative analysis of ciprofloxacin in tablets. Indian J. Pharm. Sci., 2012, 74(1), 86-90.
[http://dx.doi.org/10.4103/0250-474X.102551] [PMID: 23204630]
[26]
Dole, M.N.; Patel, P.A.; Sawant, S.D.; Shedpure, P.S. Advance applications of Fourier transform infrared spectroscopy. Int. J. Pharm. Sci. Rev. Res., 2011, 7(2), 159-166.
[27]
Schmitt, J.; Flemming, H.C. FTIR-spectroscopy in microbial and material analysis. Int. Biodeterior. Biodegradation, 1998, 41(1), 1-11.
[http://dx.doi.org/10.1016/S0964-8305(98)80002-4]
[28]
Stuart, B.H. Infrared spectroscopy: fundamentals and applications; John Wiley & Sons: NY, USA, 2004.
[http://dx.doi.org/10.1002/0470011149]
[29]
Gupta, K.R.; Pounikar, A.R.; Umekar, M.J. Drug excipient compatibility testing protocols and charaterization: A review. Asian J. Chem. Sci., 2019, 6(3), 1-22.
[http://dx.doi.org/10.9734/ajocs/2019/v6i319000]
[30]
Narang, A.S.; Boddu, S.H. Excipient applications in formulation design and drug delivery; Springer: Cham, 2015, pp. 1-10.
[http://dx.doi.org/10.1007/978-3-319-20206-8]
[31]
Katdare, A.; Chaubal, M. Excipient development for pharmaceutical, biotechnology, and drug delivery systems; CRC Press: USA, 2006.
[http://dx.doi.org/10.1201/9781420004137]
[32]
Jinnawar, K.S.; Gupta, K.R. Drug excipient compatibility study using thermal and non-thermal methods of analysis. Int. J. Chem. Tech. Applicat., 2012, 2(2), 23-49.
[33]
Gupta, KR.; Pounikar, AR.; Umekar M, J. Drug excipient compatibility testing protocols and charaterization: a review. Asian J Chem Sci, 2019, 6(3), 1.
[34]
Bharate, S.S.; Bharate, S.B.; Bajaj, A.N. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: a comprehensive review. J. Excip. Food Chem., 2016, 1(3), 1131.
[35]
Kumar, B.P.; Sahu, R.K.; Ramamurthy, K.V.; Rao, S.; Ramu, B. A review on mechanism, importance and methods of compatibility testing in the formulation of dosage forms. J. Chem. Pharm. Sci., 2011, 4(4), 141-151.
[36]
Fathima, N.; Mamatha, T.; Qureshi, H.K.; Anitha, N.; Rao, J.V. Drug-excipient interaction and its importance in dosage form development. J. Appl. Pharmaceut. Sci., 2011, 30, 66-71.
[37]
Gorain, B; Choudhury, H; Pandey, M; Madheswaran, T; Kesharwani, P; Tekade, RK Drug–excipient interaction and incompatibilities. In: Dosage form Design Parameters; Academic Press: USA, 2018; pp. 363-402.
[http://dx.doi.org/10.1016/B978-0-12-814421-3.00011-7]
[38]
Kimaro, E.; Tibalinda, P.; Shedafa, R.; Temu, M.; Kaale, E. Formulation development of chewable albendazole tablets with improved dissolution rate. Heliyon, 2019, 5(12), e02911.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02911] [PMID: 31890938]
[39]
Sipos, E.; Kósa, N.; Kazsoki, A.; Szabó, Z.I.; Zelkó, R. Formulation and characterization of aceclofenac-loaded nanofiber based orally dissolving webs. Pharmaceutics, 2019, 11(8), 417.
[http://dx.doi.org/10.3390/pharmaceutics11080417] [PMID: 31426548]
[40]
AnjiReddy, K.; Karpagam, S.; Karpagam, S In vitro and in vivo evaluation of oral disintegrating nanofiber and thin-film contains hyperbranched chitosan/donepezil for active drug delivery. J. Polym. Environ., 2021, 29(3), 922-936.
[http://dx.doi.org/10.1007/s10924-020-01937-y]
[41]
Kasabe, A.J.; Kulkarni, A.S.; Gaikwad, V.L. Compatibility testing of nateglinide with different grades of cellulose ethers and excipients used in sustained release formulations. Int. J. Drug Deliv. Technol., 2018, 8(4), 197-211.
[42]
Sbârcea, L.; Tănase, IM; Ledeți, A; Cîrcioban, D; Vlase, G; Barvinschi, P; Miclău, M; Văruţ, RM; Suciu, O; Ledeți, I Risperidone/randomly methylated β-cyclodextrin inclusion complex-compatibility study with pharmaceutical excipients. Molecules, 2021 Mar 17;26(6), 1690.
[PMID: 33802960]
[43]
Payghan, S.A.; Kate, V.K. Physicochemical evaluation of mannitol based mucoadhesive fast disintegrating tablet for rapid absorption of piroxicam. Inventi Rapid Pharm Tech., 2013, 3, 1-5.
[44]
Verma, R.K.; Garg, S. Selection of excipients for extended release formulations of glipizide through drug–excipient compatibility testing. J. Pharm. Biomed. Anal., 2005, 38(4), 633-644.
[http://dx.doi.org/10.1016/j.jpba.2005.02.026] [PMID: 15967291]
[45]
Chandrasekaran, B; Abed, SN; Al-Attraqchi, O; Kuche, K; Tekade, RK Computer-aided prediction of pharmacokinetic (ADMET) properties. In: Dosage form design parameters; Academic Press, 2018; pp. 731-755.
[46]
Tekade, R.K. Dosage Form Design Parameters; Academic Press: USA, 2018, p. 2.
[47]
Polaka, S.; Koppisetti, H.P.; Tekade, M.; Sharma, M.C.; Sengupta, P.; Tekade, R.K. Drug–drug interactions and their implications on the pharmacokinetics of the drugs. In: Pharmacokinetics and Toxicokinetic Considerations; Academic Press: USA, 2022; pp. 291-322.
[http://dx.doi.org/10.1016/B978-0-323-98367-9.00007-X]
[48]
Photonics Media. Infrared Chemical Imaging: The Future of Fourier Transform IR Spectroscopy. Available from: https://www.photonics.com/Articles/Infrared_Chemical_Imaging_The_Future_of/a20586
[49]
Basu, P.; Joglekar, G.; Rai, S.; Suresh, P.; Vernon, J. Analysis of manufacturing costs in pharmaceutical companies. J. Pharm. Innov., 2008, 3(1), 30-40.
[http://dx.doi.org/10.1007/s12247-008-9024-4]
[50]
Großhans, S.; Rüdt, M.; Sanden, A.; Brestrich, N.; Morgenstern, J.; Heissler, S.; Hubbuch, J. In-line Fourier-transform infrared spectroscopy as a versatile process analytical technology for preparative protein chromatography. J. Chromatogr. A, 2018, 1547, 37-44.
[http://dx.doi.org/10.1016/j.chroma.2018.03.005] [PMID: 29530404]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy