Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Combination of Cefotaxime and Cisplatin Specifically and Selectively Enhances Anticancer Efficacy in Nasopharyngeal Carcinoma

Author(s): Xiaoqiong He*, Qian Yao, Dan Fan, Ling Duan, Yutong You, Wenjing Lian, Zhangping Zhou, Song Teng and Zhuoxuan Liang

Volume 23, Issue 7, 2023

Published on: 28 March, 2023

Page: [572 - 584] Pages: 13

DOI: 10.2174/1568009623666230227162532

Price: $65

conference banner
Abstract

Background: HMOX1 has a dual role in cancers, especially involving chemoresistance. We demonstrate that cephalosporin antibiotics exert strong anticancer activity in nasopharyngeal carcinoma mainly via drastic upregulation of HMOX1.

Objectives: Cephalosporin antibiotics are commonly used for the treatment or prophylaxis of bacterial infectious diseases in cancer patients. It is unknown whether they lead to chemoresistance in cancer patients, especially in nasopharyngeal carcinoma patients, who are being treated or required prophylaxis for an infectious syndrome with cephalosporin antibiotics.

Methods: MTT and clonogenic colony formation assays assessed the viability and proliferation of cultured cancer cells. Flow cytometry was used to detect apoptosis. Tumor growth was assessed using a xenograft model. Microarray and RT-qPCR expression analyses investigated differential gene expression.

Results: Cefotaxime enhanced anticancer efficacy of cisplatin in nasopharyngeal carcinoma without enhancing the toxic side effects both in vitro and in vivo. However, cefotaxime significantly reduced the cytotoxicity of cisplatin in other cancer cell lines. Cefotaxime and cisplatin co-regulated 5 differential genes in CNE2 cells in a direction supporting the enhancement of anticancer efficacy, of which, THBS1 and LAPTM5 were further upregulated, STAG1, NCOA5, and PPP3CB were further downregulated. Out of the 18 apoptotic pathways significantly enriched in the combination group, THBS1 and HMOX1 overlapped in 14 and 12 pathways, respectively. Extrinsic apoptotic signaling pathway (GO: 2001236) was the only apoptotic pathway commonly enriched in cefotaxime group, cisplatin group and combination group, and THBS1 and HMOX1 were the overlapped genes of this pathway. THBS1 also overlapped in P53 signaling pathway and ECM-receptor interaction signaling pathway enriched by KEGG.

Conclusion: Cephalosporin antibiotics are chemosensitizers of conventional chemotherapeutic drugs in the chemotherapy of nasopharyngeal carcinoma, but they may lead to chemoresistance by cytoprotection in other cancers. Cefotaxime and cisplatin co-regulate THBS1, LAPTM5, STAG1, NCOA5 and PPP3CB suggesting their involvement in the enhancement of anticancer efficacy in nasopharyngeal carcinoma. Targeting of P53 signaling pathway and ECM-receptor interaction signaling pathway was correlated to the enhancement. With additional benefit for treatment or prophylaxis of an infectious syndrome, cephalosporin antibiotics can benefit the therapy of nasopharyngeal carcinoma either as anticancer agents or as chemosensitizers of chemotherapeutic drugs in combination chemotherapy.

« Previous
Graphical Abstract

[1]
Cantwell, L.; Perkins, J. Infectious disease emergencies in oncology patients. Emerg. Med. Clin. North Am., 2018, 36(4), 795-810.
[http://dx.doi.org/10.1016/j.emc.2018.06.009] [PMID: 30297005]
[2]
Charshafian, S.; Liang, S.Y. Rapid Fire: Infectious disease emergencies in patients with cancer. Emerg. Med. Clin. North Am., 2018, 36(3), 493-516.
[http://dx.doi.org/10.1016/j.emc.2018.04.001] [PMID: 30037437]
[3]
He, X.; Yao, Q.; Fan, D.; Duan, L.; You, Y.; Liang, W.; Zhou, Z.; Teng, S.; Liang, Z.; Hall, D.D.; Song, L.S.; Chen, B. Cephalosporin antibiotics specifically and selectively target nasopharyngeal carcinoma through HMOX1-induced ferroptosis. Life Sci., 2021, 277, 119457.
[http://dx.doi.org/10.1016/j.lfs.2021.119457] [PMID: 33831425]
[4]
Han, L.; Jiang, J.; Ma, Q.; Wu, Z.; Wang, Z. The inhibition of heme oxygenase-1 enhances the chemosensitivity and suppresses the proliferation of pancreatic cancer cells through the SHH signaling pathway. Int. J. Oncol., 2018, 52(6), 2101-2109.
[http://dx.doi.org/10.3892/ijo.2018.4363] [PMID: 29620188]
[5]
Chang, L.C.; Chiang, S.K.; Chen, S.E.; Yu, Y.L.; Chou, R.H.; Chang, W.C. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer Lett., 2018, 416, 124-137.
[http://dx.doi.org/10.1016/j.canlet.2017.12.025] [PMID: 29274359]
[6]
Hassannia, B.; Vandenabeele, P.; Vanden, B.T. Targeting ferroptosis to iron out cancer. Cancer Cell, 2019, 35(6), 830-849.
[http://dx.doi.org/10.1016/j.ccell.2019.04.002] [PMID: 31105042]
[7]
Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell. Mol. Life Sci., 2016, 73(17), 3221-3247.
[http://dx.doi.org/10.1007/s00018-016-2223-0] [PMID: 27100828]
[8]
Nitti, M.; Piras, S.; Marinari, U.; Moretta, L.; Pronzato, M.; Furfaro, A. HO-1 Induction in cancer progression: A matter of cell adaptation. Antioxidants, 2017, 6(2), 29.
[http://dx.doi.org/10.3390/antiox6020029] [PMID: 28475131]
[9]
Salerno, L.; Romeo, G.; Modica, M.N.; Amata, E.; Sorrenti, V.; Barbagallo, I.; Pittalà, V. Heme oxygenase-1: A new druggable target in the management of chronic and acute myeloid leukemia. Eur. J. Med. Chem., 2017, 142, 163-178.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.031] [PMID: 28756878]
[10]
Chang, L.C.; Fan, C.W.; Tseng, W.K.; Chein, H.P.; Hsieh, T.Y.; Chen, J.R.; Hwang, C.C.; Hua, C.C. The ratio of Hmox1/Nrf2 mRNA level in the tumor tissue is a predictor of distant metastasis in colorectal cancer. Dis. Markers, 2016, 2016, 8143465.
[http://dx.doi.org/10.1155/2016/8143465] [PMID: 27999449]
[11]
Chau, L.Y. Heme oxygenase-1: emerging target of cancer therapy. J. Biomed. Sci., 2015, 22(1), 22.
[http://dx.doi.org/10.1186/s12929-015-0128-0] [PMID: 25885228]
[12]
Nemeth, Z.; Li, M.; Csizmadia, E.; Döme, B.; Johansson, M.; Persson, J.L.; Seth, P.; Otterbein, L.; Wegiel, B. Heme oxygenase-1 in macrophages controls prostate cancer progression. Oncotarget, 2015, 6(32), 33675-33688.
[http://dx.doi.org/10.18632/oncotarget.5284] [PMID: 26418896]
[13]
Banerjee, P.; Basu, A.; Wegiel, B.; Otterbein, L.E.; Mizumura, K.; Gasser, M.; Waaga-Gasser, A.M.; Choi, A.M.; Pal, S. Heme oxygenase-1 promotes survival of renal cancer cells through modulation of apoptosis- and autophagy-regulating molecules. J. Biol. Chem., 2012, 287(38), 32113-32123.
[http://dx.doi.org/10.1074/jbc.M112.393140] [PMID: 22843690]
[14]
Busserolles, J.; Megías, J.; Terencio, M.C.; Alcaraz, M.J. Heme oxygenase-1 inhibits apoptosis in Caco-2 cells via activation of Akt pathway. Int. J. Biochem. Cell Biol., 2006, 38(9), 1510-1517.
[http://dx.doi.org/10.1016/j.biocel.2006.03.013] [PMID: 16697692]
[15]
Zhu, X.F.; Li, W.; Ma, J.Y.; Shao, N.; Zhang, Y.J.; Liu, R.M.; Wu, W.B.; Lin, Y.; Wang, S.M. Knockdown of heme oxygenase-1 promotes apoptosis and autophagy and enhances the cytotoxicity of doxorubicin in breast cancer cells. Oncol. Lett., 2015, 10(5), 2974-2980.
[http://dx.doi.org/10.3892/ol.2015.3735] [PMID: 26722274]
[16]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[17]
Chiang, S.K.; Chen, S.E.; Chang, L.C. A dual role of heme oxygenase-1 in cancer cells. Int. J. Mol. Sci., 2018, 20(1), 39.
[http://dx.doi.org/10.3390/ijms20010039] [PMID: 30583467]
[18]
Kabir, M.F.; Mohd Ali, J.; Haji Hashim, O. Microarray gene expression profiling in colorectal (HCT116) and hepatocellular (HepG2) carcinoma cell lines treated with Melicope ptelefolia leaf extract reveals transcriptome profiles exhibiting anticancer activity. PeerJ, 2018, 6, e5203.
[http://dx.doi.org/10.7717/peerj.5203] [PMID: 30042885]
[19]
He, X.; Yao, Q.; Hall, D.D.; Song, Z.; Fan, D.; You, Y.; Lian, W.; Zhou, Z.; Duan, L.; Chen, B. Levofloxacin exerts broad-spectrum anti-cancer activity via regulation of THBS1, LAPTM5, SRD5A3, MFAP5 and P4HA1. Anticancer Drugs, 2022, 33(1), e235-e246.
[http://dx.doi.org/10.1097/CAD.0000000000001194] [PMID: 34419964]
[20]
He, X. Yao; Fan, D.; You, Y.; Lian, W.; Zhou, Z.; Duan, L. Combination of levofloxacin and cisplatin enhances anticancer efficacy via co-regulation of eight cancer-associated genes. Discover Oncol., 2022, 13(1), 76.
[http://dx.doi.org/10.1007/s12672-022-00541-x] [PMID: 35984577]
[21]
percie du Sert, N.; Amrita, A.; Sabina, A.; Marc, T.A.; Monya, B.; William, I.B.; Alejandra, C.; Innes, C.C.; Ulrich, D.; Michael, E. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol., 2020, 7, e3000411.
[http://dx.doi.org/10.1371/journal.pbio.3000411]
[22]
Huang, W.T.; Chong, I.W.; Chen, H.L.; Li, C.Y.; Hsieh, C.C.; Kuo, H.F.; Chang, C.Y.; Chen, Y.H.; Liu, Y.P.; Lu, C.Y.; Liu, Y.R.; Liu, P.L. Pigment epithelium-derived factor inhibits lung cancer migration and invasion by upregulating exosomal thrombospondin 1. Cancer Lett., 2019, 442, 287-298.
[http://dx.doi.org/10.1016/j.canlet.2018.10.031] [PMID: 30439539]
[23]
Weng, T.Y.; Wang, C.Y.; Hung, Y.H.; Chen, W.C.; Chen, Y.L.; Lai, M.D. Differential expression pattern of THBS1 and THBS2 in lung cancer: clinical outcome and a systematic-analysis of microarray databases. PLoS One, 2016, 11(8), e0161007.
[http://dx.doi.org/10.1371/journal.pone.0161007] [PMID: 27513329]
[24]
Zhao, J.; Shi, L.; Zeng, S.; Ma, C.; Xu, W.; Zhang, Z.; Liu, Q.; Zhang, P.; Sun, Y.; Xu, C. Importin-11 overexpression promotes the migration, invasion, and progression of bladder cancer associated with the deregulation of CDKN1A and THBS1. Urol. Oncol., 2018, 36(6), 311.e1-311.e13.
[http://dx.doi.org/10.1016/j.urolonc.2018.03.001] [PMID: 29602637]
[25]
Chan, Y.K.; Zhang, H.; Liu, P.; Tsao, S.W.; Lung, M.L.; Mak, N.K.; Ngok-Shun Wong, R.; Ying-Kit Yue, P. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins. Int. J. Cancer, 2015, 137(8), 1830-1841.
[http://dx.doi.org/10.1002/ijc.29562] [PMID: 25857718]
[26]
Zhao, H.Y.; Ooyama, A.; Yamamoto, M.; Ikeda, R.; Haraguchi, M.; Tabata, S.; Furukawa, T.; Che, X.F.; Zhang, S.; Oka, T.; Fukushima, M.; Nakagawa, M.; Ono, M.; Kuwano, M.; Akiyama, S. Molecular basis for the induction of an angiogenesis inhibitor, thrombospondin-1, by 5-fluorouracil. Cancer Res., 2008, 68(17), 7035-7041.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6496] [PMID: 18757417]
[27]
Bocci, G.; Francia, G.; Man, S.; Lawler, J.; Kerbel, R.S. Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc. Natl. Acad. Sci. USA, 2003, 100(22), 12917-12922.
[http://dx.doi.org/10.1073/pnas.2135406100] [PMID: 14561896]
[28]
Chen, L.; Wang, G.; Luo, Y.; Wang, Y.; Xie, C.; Jiang, W.; Xiao, Y.; Qian, G.; Wang, X. Downregulation of LAPTM5 suppresses cell proliferation and viability inducing cell cycle arrest at G0/G1 phase of bladder cancer cells. Int. J. Oncol., 2017, 50(1), 263-271.
[http://dx.doi.org/10.3892/ijo.2016.3788] [PMID: 27922670]
[29]
Inoue, J.; Misawa, A.; Tanaka, Y.; Ichinose, S.; Sugino, Y.; Hosoi, H.; Sugimoto, T.; Imoto, I.; Inazawa, J. Lysosomal-associated protein multispanning transmembrane 5 gene (LAPTM5) is associated with spontaneous regression of neuroblastomas. PLoS One, 2009, 4(9), e7099.
[http://dx.doi.org/10.1371/journal.pone.0007099] [PMID: 19787053]
[30]
Nuylan, M.; Kawano, T.; Inazawa, J.; Inoue, J. Down-regulation of LAPTM5 in human cancer cells. Oncotarget, 2016, 7(19), 28320-28328.
[http://dx.doi.org/10.18632/oncotarget.8614] [PMID: 27058622]
[31]
Yokota, T.; Bui, T.; Liu, Y.; Yi, M.; Hunt, K.K.; Keyomarsi, K. Differential regulation of elafin in normal and tumor-derived mammary epithelial cells is mediated by CCAAT/enhancer binding protein beta. Cancer Res., 2007, 67(23), 11272-11283.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2322] [PMID: 18056453]
[32]
Hunt, K.K.; Wingate, H.; Yokota, T.; Liu, Y.; Mills, G.B.; Zhang, F.; Fang, B.; Su, C.H.; Zhang, M.; Yi, M.; Keyomarsi, K. Elafin, an inhibitor of elastase, is a prognostic indicator in breast cancer. Breast Cancer Res., 2013, 15(1), R3.
[http://dx.doi.org/10.1186/bcr3374] [PMID: 23320734]
[33]
Caruso, J.A.; Hunt, K.K.; Keyomarsi, K. The neutrophil elastase inhibitor elafin triggers rb-mediated growth arrest and caspase-dependent apoptosis in breast cancer. Cancer Res., 2010, 70(18), 7125-7136.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1547] [PMID: 20823156]
[34]
Yu, K.S.; Lee, Y.; Kim, C.M.; Park, E.C.; Choi, J.; Lim, D.S.; Chung, Y.H.; Koh, S.S. The protease inhibitor, elafin, induces p53-dependent apoptosis in human melanoma cells. Int. J. Cancer, 2010, 127(6), 1308-1320.
[http://dx.doi.org/10.1002/ijc.25125] [PMID: 20020498]
[35]
Shakhova, I.; Li, Y.; Yu, F.; Kaneko, Y.; Nakamura, Y.; Ohira, M.; Izumi, H.; Mae, T.; Varfolomeeva, S.R.; Rumyantsev, A.G.; Nakagawara, A. PPP3CB contributes to poor prognosis through activating nuclear factor of activated T-cells signaling in neuroblastoma. Mol. Carcinog., 2018, 58(3), 426-435.
[http://dx.doi.org/10.1002/mc.22939] [PMID: 30457174]
[36]
Chen, L.; He, Q.; Liu, Y.; Wu, Y.; Ni, D.; Liu, J.; Hu, Y.; Gu, Y.; Xie, Y.; Zhou, Q.; Li, Q. PPP3CB Inhibits migration of G401 cells via regulating epithelial-to-mesenchymal transition and promotes G401 cells growth. Int. J. Mol. Sci., 2019, 20(2), 275.
[http://dx.doi.org/10.3390/ijms20020275] [PMID: 30641937]
[37]
van der Lelij, P.; Lieb, S.; Jude, J.; Wutz, G.; Santos, C.P.; Falkenberg, K.; Schlattl, A.; Ban, J.; Schwentner, R.; Hoffmann, T.; Kovar, H.; Real, F.X.; Waldman, T.; Pearson, M.A.; Kraut, N.; Peters, J.M.; Zuber, J.; Petronczki, M. Synthetic lethality between the cohesin subunits STAG1 and STAG2 in diverse cancer contexts. eLife, 2017, 6, e26980.
[http://dx.doi.org/10.7554/eLife.26980] [PMID: 28691904]
[38]
Benedetti, L.; Cereda, M.; Monteverde, L.; Desai, N.; Ciccarelli, F.D. Synthetic lethal interaction between the tumour suppressor STAG2 and its paralog STAG1. Oncotarget, 2017, 8(23), 37619-37632.
[http://dx.doi.org/10.18632/oncotarget.16838] [PMID: 28430577]
[39]
Ye, X.H.; Huang, D.P.; Luo, R.C. NCOA5 is correlated with progression and prognosis in luminal breast cancer. Biochem. Biophys. Res. Commun., 2017, 482(2), 253-256.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.051] [PMID: 27847318]
[40]
Sun, K.; Wang, S.; He, J.; Xie, Y.; He, Y.; Wang, Z.; Qin, L. NCOA5 promotes proliferation, migration and invasion of colorectal cancer cells via activation of PI3K/AKT pathway. Oncotarget, 2017, 8(64), 107932-107946.
[http://dx.doi.org/10.18632/oncotarget.22429] [PMID: 29296214]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy