Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

A Short Review of Antimalarial Compounds with Sulfonamide Moiety

Author(s): Leonardo C. Dantas, Vinicius R. Campos, Julio C. Borges and Luiz C.S. Pinheiro*

Volume 23, Issue 21, 2023

Published on: 31 March, 2023

Page: [2073 - 2088] Pages: 16

DOI: 10.2174/1389557523666230227113231

Price: $65

Abstract

Malaria is a public health problem that causes thousands of deaths, primarily in children in African regions. Artemisinin-based combination therapies (ACTs) have helped to save thousands of lives; however, due to Plasmodium's resistance to available treatments, there is a need to search for new low-cost drugs that act through different mechanisms of action to contain this disease. This review shows that compounds with sulfonamide moiety, possibly, act as inhibitors of P. falciparum carbonic anhydrases, moreover, when linked to a variety of heterocycles potentiate the activities of these compounds and may be used in the design of new antimalarial drugs.

« Previous
Graphical Abstract

[1]
World malaria report. Licence: CC BY-NC-SA 3.0 IGO., 2021, Available from: https://www.who.int/publications/i/item/9789240040496 [Accessed 14 April 2022].
[2]
World Health Organization. Available from: https://app.magicapp.org/#/guideline/LwRMXj/section/LkgQZL [Accessed 14 April 2022].
[3]
Medicines for Malaria Venture. Available from: https://www.mmv.org/malaria-medicines/five-species [Accessed 14 April 2022].
[4]
Guidelines for the Treatment of Malaria. 2015, Available from: http://www.who.int/malaria/publications/atoz/9789241549127/en/ [Accessed 14 April 2022].
[5]
Pinheiro, L.C.S.; Feitosa, L.M.; Silveira, F.F.D.; Boechat, N. Current antimalarial therapies and advances in the development of semi-synthetic artemisinin derivatives. An Acad. Bras. Cienc., 2018, 90(S1), 1251-1271.
[http://dx.doi.org/10.1590/0001-3765201820170830] [PMID: 29873667]
[6]
Mathenge, P.G.; Low, S.K.; Vuong, N.L.; Mohamed, M.Y.F.; Faraj, H.A.; Alieldin, G.I. Al khudari, R.; Yahia, N.A.; Khan, A.; Diab, O.M.; Mohamed, Y.M.; Zayan, A.H.; Tawfik, G.M.; Huy, N.T.; Hirayama, K. Efficacy and resistance of different artemisinin-based combination therapies: A systematic review and network meta-analysis. Parasitol. Int., 2020, 74, 101919.
[http://dx.doi.org/10.1016/j.parint.2019.04.016] [PMID: 31015034]
[7]
Silva, S.R.; Almeida, A.C.G.; da Silva, G.A.V.; Ramasawmy, R.; Lopes, S.C.P.; Siqueira, A.M.; Costa, G.L.; Sousa, T.N.; Vieira, J.L.F.; Lacerda, M.V.G.; Monteiro, W.M.; de Melo, G.C. Chloroquine resistance is associated to multi-copy pvcrt-o gene in Plasmodium vivax malaria in the Brazilian Amazon. Malar. J., 2018, 17(1), 267.
[http://dx.doi.org/10.1186/s12936-018-2411-5] [PMID: 30012145]
[8]
Yadav, D.K.; Kumar, S.; Teli, M.K.; Yadav, R.; Chaudhary, S. Molecular targets for malarial chemotherapy: A review. Curr. Top. Med. Chem., 2019, 19(10), 861-873.
[http://dx.doi.org/10.2174/1568026619666190603080000] [PMID: 31161990]
[9]
Dondorp, A.M.; Smithuis, F.M.; Woodrow, C.; Seidlein, L. How to contain artemisinin- and multidrug-resistant falciparum malaria. Trends Parasitol., 2017, 33(5), 353-363.
[http://dx.doi.org/10.1016/j.pt.2017.01.004] [PMID: 28187990]
[10]
Phyo, A.P.; Nkhoma, S.; Stepniewska, K.; Ashley, E.A.; Nair, S.; McGready, R. ler Moo, C.; Al-Saai, S.; Dondorp, A.M.; Lwin, K.M.; Singhasivanon, P.; Day, N.P.J.; White, N.J.; Anderson, T.J.C.; Nosten, F. Emergence of artemisinin-resistant malaria on the western border of Thailand: A longitudinal study. Lancet, 2012, 379(9830), 1960-1966.
[http://dx.doi.org/10.1016/S0140-6736(12)60484-X] [PMID: 22484134]
[11]
Kumar, S.; Bhardwaj, T.R.; Prasad, D.N.; Singh, R.K. Drug targets for resistant malaria: Historic to future perspectives. Biomed. Pharmacother., 2018, 104, 8-27.
[http://dx.doi.org/10.1016/j.biopha.2018.05.009] [PMID: 29758416]
[12]
Plowe, C.V.; Kublin, J.G.; Doumbo, O.K.P. falciparum dihydrofolate reductase and dihydropteroate synthase mutations: Epidemiology and role in clinical resistance to antifolates. Drug Resist. Updat., 1998, 1(6), 389-396.
[http://dx.doi.org/10.1016/S1368-7646(98)80014-9] [PMID: 17092820]
[13]
Vasconcelos, K.F.; Plowe, C.V.; Fontes, C.J.; Kyle, D.; Wirth, D.F.; Pereira da Silva, L.H.; Zalis, M.G. Mutations in plasmodium falcipa-rum dihydrofolate reductase and dihydropteroate synthase of isolates from the amazon region of brazil. Mem. Inst. Oswaldo Cruz, 2000, 95(5), 721-728.
[http://dx.doi.org/10.1590/S0074-02762000000500020] [PMID: 10998224]
[14]
Smith, D.A.; Jones, R.M. The sulfonamide group as a structural alert: A distorted story? Curr. Opin. Drug Discov. Devel., 2008, 11(1), 72-79.
[PMID: 18175269]
[15]
Pinheiro, L.C.S.; Ferreira, M.L.G.; Silveira, F.F.; Feitosa, L.M.; Boechat, N. Synthetic compounds with sulfonamide moiety against Leish-maniasis: An overview. Med. Chem. Res., 2019, 28, 1807-1817.
[http://dx.doi.org/10.1007/s00044-019-02432-3]
[16]
Wan, Y.; Fang, G.; Chen, H.; Deng, X.; Tang, Z. Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur. J. Med. Chem., 2021, 226, 113837.
[http://dx.doi.org/10.1016/j.ejmech.2021.113837] [PMID: 34530384]
[17]
Kumar Verma, S.; Verma, R.; Xue, F.; Kumar Thakur, P.; Girish, Y.R.; Rakesh, K.P. Antibacterial activities of sulfonyl or sulfonamide containing heterocyclic derivatives and its structure-activity relationships (SAR) studies: A critical review. Bioorg. Chem., 2020, 105, 104400.
[http://dx.doi.org/10.1016/j.bioorg.2020.104400] [PMID: 33128966]
[18]
Apaydın, S.; Török, M. Sulfonamide derivatives as multi-target agents for complex diseases. Bioorg. Med. Chem. Lett., 2019, 29(16), 2042-2050.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.041] [PMID: 31272793]
[19]
Del Prete, S.; Vullo, D.; Fisher, G.M.; Andrews, K.T.; Poulsen, S.A.; Capasso, C.; Supuran, C.T. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum —The η-carbonic anhydrases. Bioorg. Med. Chem. Lett., 2014, 24(18), 4389-4396.
[http://dx.doi.org/10.1016/j.bmcl.2014.08.015] [PMID: 25168745]
[20]
George, R.F.; Bua, S.; Supuran, C.T.; Awadallah, F.M. Synthesis of some N-aroyl-2-oxindole benzenesulfonamide conjugates with carbo-nic anhydrase inhibitory activity. Bioorg. Chem., 2020, 96, 103635.
[http://dx.doi.org/10.1016/j.bioorg.2020.103635] [PMID: 32028060]
[21]
Alterio, V.; Di Fiore, A.; D’Ambrosio, K.; Supuran, C.T.; De Simone, G. Multiple binding modes of inhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different isoforms? Chem. Rev., 2012, 112(8), 4421-4468.
[http://dx.doi.org/10.1021/cr200176r] [PMID: 22607219]
[22]
Aurrecoechea, C.; Brestelli, J.; Brunk, B.P.; Dommer, J.; Fischer, S.; Gajria, B.; Gao, X.; Gingle, A.; Grant, G.; Harb, O.S.; Heiges, M.; Innamorato, F.; Iodice, J.; Kissinger, J.C.; Kraemer, E.; Li, W.; Miller, J.A.; Nayak, V.; Pennington, C.; Pinney, D.F.; Roos, D.S.; Ross, C.; Stoeckert, C.J., Jr; Treatman, C.; Wang, H. PlasmoDB: A functional genomic database for malaria parasites. Nucleic Acids Res., 2009, 37(Database), D539-D543.
[http://dx.doi.org/10.1093/nar/gkn814] [PMID: 18957442]
[23]
Krungkrai, J.; Krungkrai, S.R.; Supuran, C.T. Carbonic anhydrase inhibitors: Inhibition of plasmodium falciparum carbonic anhydrase with aromatic/heterocyclic sulfonamides—in vitro and in vivo studies. Bioorg. Med. Chem. Lett., 2008, 18(20), 5466-5471.
[http://dx.doi.org/10.1016/j.bmcl.2008.09.030] [PMID: 18805693]
[24]
Krungkrai, J.; Prapunwatana, P.; Wichitkul, C.; Reungprapavut, S.; Krungkrai, S.R.; Horii, T. Molecular biology and biochemistry of mala-rial parasite pyrimidine biosynthetic pathway. Southeast Asian J. Trop. Med. Public Health, 2003, 34(2), 32-43.
[PMID: 19230569]
[25]
Krungkrai, J.; Krungkrai, S.; Supuran, C. Malarial parasite carbonic anhydrase and its inhibitors. Curr. Top. Med. Chem., 2007, 7(9), 909-917.
[http://dx.doi.org/10.2174/156802607780636744] [PMID: 17504136]
[26]
Vullo, D.; Del Prete, S.; Fisher, G.M.; Andrews, K.T.; Poulsen, S.A.; Capasso, C.; Supuran, C.T. Sulfonamide inhibition studies of the η-class carbonic anhydrase from the malaria pathogen Plasmodium falciparum. Bioorg. Med. Chem., 2015, 23(3), 526-531.
[http://dx.doi.org/10.1016/j.bmc.2014.12.009] [PMID: 25533402]
[27]
Krungkrai, J.; Scozzafava, A.; Reungprapavut, S.; Krungkrai, S.R.; Rattanajak, R.; Kamchonwongpaisan, S.; Supuran, C.T. Carbonic an-hydrase inhibitors. Inhibition of Plasmodium falciparum carbonic anhydrase with aromatic sulfonamides: Towards antimalarials with a novel mechanism of action? Bioorg. Med. Chem., 2005, 13(2), 483-489.
[http://dx.doi.org/10.1016/j.bmc.2004.10.015] [PMID: 15598570]
[28]
Del Prete, S.; Vullo, D.; De Luca, V.; Carginale, V.; Osman, S.M.; AlOthman, Z.; Supuran, C.T.; Capasso, C. Cloning, expression, purifica-tion and sulfonamide inhibition profile of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum. Bioorg. Med. Chem. Lett., 2016, 26(17), 4184-4190.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.060] [PMID: 27485387]
[29]
Syrjänen, L.; Kuuslahti, M.; Tolvanen, M.; Vullo, D.; Parkkila, S.; Supuran, C.T. The β-carbonic anhydrase from the malaria mosquito Anopheles gambiae is highly inhibited by sulfonamides. Bioorg. Med. Chem., 2015, 23(10), 2303-2309.
[http://dx.doi.org/10.1016/j.bmc.2015.03.081] [PMID: 25882523]
[30]
Krungkrai, S.R.; Krungkrai, J. Malaria parasite carbonic anhydrase: Inhibition of aromatic/heterocyclic sulfonamides and its therapeutic potential. Asian Pac. J. Trop. Biomed., 2011, 1(3), 233-242.
[http://dx.doi.org/10.1016/S2221-1691(11)60034-8] [PMID: 23569766]
[31]
Fisher, G.M.; Bua, S.; Del Prete, S.; Arnold, M.S.J.; Capasso, C.; Supuran, C.T.; Andrews, K.T.; Poulsen, S.A. Investigating the antiplas-modial activity of primary sulfonamide compounds identified in open source malaria data. Int. J. Parasitol. Drugs Drug Resist., 2017, 7(1), 61-70.
[http://dx.doi.org/10.1016/j.ijpddr.2017.01.003] [PMID: 28129569]
[32]
Andrews, K.T.; Fisher, G.M.; Sumanadasa, S.D.M.; Skinner-Adams, T.; Moeker, J.; Lopez, M.; Poulsen, S.A. Antimalarial activity of compounds comprising a primary benzene sulfonamide fragment. Bioorg. Med. Chem. Lett., 2013, 23(22), 6114-6117.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.015] [PMID: 24084158]
[33]
Wagner, J.; Avvaru, B.S.; Robbins, A.H.; Scozzafava, A.; Supuran, C.T.; McKenna, R. Coumarinyl-substituted sulfonamides strongly inhibit several human carbonic anhydrase isoforms: Solution and crystallographic investigations. Bioorg. Med. Chem., 2010, 18(14), 4873-4878.
[http://dx.doi.org/10.1016/j.bmc.2010.06.028] [PMID: 20598552]
[34]
Pinheiro, L.C.S.; Boechat, N.; Ferreira, M.L.G.; Júnior, C.C.S.; Jesus, A.M.L.; Leite, M.M.M.; Souza, N.B.; Krettli, A.U. Anti- Plasmodium falciparum activity of quinoline–sulfonamide hybrids. Bioorg. Med. Chem., 2015, 23(17), 5979-5984.
[http://dx.doi.org/10.1016/j.bmc.2015.06.056] [PMID: 26190461]
[35]
Soares, R.R.; da Silva, J.M.F.; Carlos, B.C.; da Fonseca, C.C.; de Souza, L.S.A.; Lopes, F.V.; de Paula Dias, R.M.; Moreira, P.O.L.; Abra-mo, C.; Viana, G.H.R.; de Pila Varotti, F.; da Silva, A.D.; Scopel, K.K.G. New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg. Med. Chem. Lett., 2015, 25(11), 2308-2313.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.014] [PMID: 25920564]
[36]
Salahuddin, A.; Inam, A.; van Zyl, R.L.; Heslop, D.C.; Chen, C.T.; Avecilla, F.; Agarwal, S.M.; Azam, A. Synthesis and evaluation of 7-chloro-4-(piperazin-1-yl)quinoline-sulfonamide as hybrid antiprotozoal agents. Bioorg. Med. Chem., 2013, 21(11), 3080-3089.
[http://dx.doi.org/10.1016/j.bmc.2013.03.052] [PMID: 23602620]
[37]
Ekoue-Kovi, K.; Yearick, K.; Iwaniuk, D.P.; Natarajan, J.K.; Alumasa, J.; de Dios, A.C.; Roepe, P.D.; Wolf, C. Synthesis and antimalarial activity of new 4-amino-7-chloroquinolyl amides, sulfonamides, ureas and thioureas. Bioorg. Med. Chem., 2009, 17(1), 270-283.
[http://dx.doi.org/10.1016/j.bmc.2008.11.009] [PMID: 19041248]
[38]
Ryckebusch, A.; Déprez-Poulain, R.; Debreu-Fontaine, M.A.; Vandaele, R.; Mouray, E.; Grellier, P.; Sergheraert, C. Parallel synthesis and anti-malarial activity of a sulfonamide library. Bioorg. Med. Chem. Lett., 2002, 12(18), 2595-2598.
[http://dx.doi.org/10.1016/S0960-894X(02)00475-4] [PMID: 12182868]
[39]
Singh, A.; Kalamuddin, M.; Maqbool, M.; Mohmmed, A.; Malhotra, P.; Hoda, N. Quinoline carboxamide core moiety-based compounds inhibit P. falciparumfalcipain-2: Design, synthesis and antimalarial efficacy studies. Bioorg. Chem., 2021, 108, 104514.
[http://dx.doi.org/10.1016/j.bioorg.2020.104514] [PMID: 33280833]
[40]
Kumar Parai, M.; Panda, G.; Srivastava, K.; Kumar Puri, S. Design, synthesis and antimalarial activity of benzene and isoquinoline sulfo-namide derivatives. Bioorg. Med. Chem. Lett., 2008, 18(2), 776-781.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.038] [PMID: 18039570]
[41]
Devender, N.; Gunjan, S.; Tripathi, R.; Tripathi, R.P. Synthesis and antiplasmodial activity of novel indoleamide derivatives bearing sulfo-namide and triazole pharmacophores. Eur. J. Med. Chem., 2017, 131, 171-184.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.010] [PMID: 28319782]
[42]
Silva, T.B.; Bernardino, A.M.R.; Ferreira, M.L.G.; Rogerio, K.R.; Carvalho, L.J.M.; Boechat, N.; Pinheiro, L.C.S. Design, synthesis and anti-P. falciparum activity of pyrazolopyridine–sulfonamide derivatives. Bioorg. Med. Chem., 2016, 24(18), 4492-4498.
[http://dx.doi.org/10.1016/j.bmc.2016.07.049] [PMID: 27485600]
[43]
Silveira, F.F.; Feitosa, L.M.; Mafra, J.C.M.; Ferreira, M.L.G.; Rogerio, K.R.; Carvalho, L.J.M.; Boechat, N.; Pinheiro, L.C.S. Synthesis and anti-Plasmodium falciparum evaluation of novel pyrazolopyrimidine derivatives. Med. Chem. Res., 2018, 27(8), 1876-1884.
[http://dx.doi.org/10.1007/s00044-018-2199-4]
[44]
Barea, C.; Pabón, A.; Castillo, D.; Zimic, M.; Quiliano, M.; Galiano, S.; Pérez-Silanes, S.; Monge, A.; Deharo, E.; Aldana, I. New salicyla-mide and sulfonamide derivatives of quinoxaline 1,4-di-N-oxide with antileishmanial and antimalarial activities. Bioorg. Med. Chem. Lett., 2011, 21(15), 4498-4502.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.125] [PMID: 21724395]
[45]
Kamchonwongpaisan, S.; Charoensetakul, N.; Srisuwannaket, C.; Taweechai, S.; Rattanajak, R.; Vanichtanankul, J.; Vitsupakorn, D.; Ar-won, U.; Thongpanchang, C.; Tarnchompoo, B.; Vilaivan, T.; Yuthavong, Y. Flexible diaminodihydrotriazine inhibitors of Plasmodium falciparum dihydrofolate reductase: Binding strengths, modes of binding and their antimalarial activities. Eur. J. Med. Chem., 2020, 195, 112263.
[http://dx.doi.org/10.1016/j.ejmech.2020.112263] [PMID: 32294614]
[46]
Liang, X.; Jiang, Z.; Huang, Z.; Li, F.; Chen, C.; Hu, C.; Wang, W.; Hu, Z.; Liu, Q.; Wang, B.; Wang, L.; Qi, Z.; Liu, J.; Jiang, L.; Liu, Q. Discovery of 6′-chloro-N-methyl-5′-(phenylsulfonamido)-[3,3′-bipyridine]-5-carboxamide (CHMFL-PI4K-127) as a novel Plasmodium falciparum PI(4)K inhibitor with potent antimalarial activity against both blood and liver stages of Plasmodium. Eur. J. Med. Chem., 2020, 188, 112012.
[http://dx.doi.org/10.1016/j.ejmech.2019.112012] [PMID: 31911293]
[47]
Martyn, D.C.; Cortese, J.F.; Tyndall, E.; Dick, J.; Mazitschek, R.; Munoz, B.; Clardy, J. Antiplasmodial activity of piperazine sulfonami-des. Bioorg. Med. Chem. Lett., 2010, 20(1), 218-221.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.130] [PMID: 19914069]
[48]
Nguyen, W.; Dans, M.G.; Ngo, A.; Gancheva, M.R.; Romeo, O.; Duffy, S.; de Koning-Ward, T.F.; Lowes, K.N.; Sabroux, H.J.; Avery, V.M.; Wilson, D.W.; Gilson, P.R.; Sleebs, B.E. Structure activity refinement of phenylsulfonyl piperazines as antimalarials that block erythrocytic invasion. Eur. J. Med. Chem., 2021, 214, 113253.
[http://dx.doi.org/10.1016/j.ejmech.2021.113253] [PMID: 33610028]
[49]
Taylor, H.M.; McRobert, L.; Grainger, M.; Sicard, A.; Dluzewski, A.R.; Hopp, C.S.; Holder, A.A.; Baker, D.A. The malaria parasite cyclic GMP-dependent protein kinase plays a central role in blood-stage schizogony. Eukaryot. Cell, 2010, 9(1), 37-45.
[http://dx.doi.org/10.1128/EC.00186-09] [PMID: 19915077]
[50]
McRobert, L.; Taylor, C.J.; Deng, W.; Fivelman, Q.L.; Cummings, R.M.; Polley, S.D.; Billker, O.; Baker, D.A. Gametogenesis in malaria parasites is mediated by the cGMP-dependent protein kinase. PLoS Biol., 2008, 6(6), e139.
[http://dx.doi.org/10.1371/journal.pbio.0060139] [PMID: 18532880]
[51]
Moon, R.W.; Taylor, C.J.; Bex, C.; Schepers, R.; Goulding, D.; Janse, C.J.; Waters, A.P.; Baker, D.A.; Billker, O. A cyclic GMP signalling module that regulates gliding motility in a malaria parasite. PLoS Pathog., 2009, 5(9), e1000599.
[http://dx.doi.org/10.1371/journal.ppat.1000599] [PMID: 19779564]
[52]
Govindasamy, K.; Jebiwott, S.; Jaijyan, D.K.; Davidow, A.; Ojo, K.K.; Van Voorhis, W.C.; Brochet, M.; Billker, O.; Bhanot, P. Invasion of hepatocytes by Plasmodium sporozoites requires cGMP-dependent protein kinase and calcium dependent protein kinase 4. Mol. Microbiol., 2016, 102(2), 349-363.
[http://dx.doi.org/10.1111/mmi.13466] [PMID: 27425827]
[53]
Tsagris, D.J.; Birchall, K.; Bouloc, N.; Large, J.M.; Merritt, A.; Smiljanic-Hurley, E.; Wheldon, M.; Ansell, K.H.; Kettleborough, C.; Wha-lley, D.; Stewart, L.B.; Bowyer, P.W.; Baker, D.A.; Osborne, S.A. Trisubstituted thiazoles as potent and selective inhibitors of Plasmodium falciparum protein kinase G (PfPKG). Bioorg. Med. Chem. Lett., 2018, 28(19), 3168-3173.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.028] [PMID: 30174152]
[54]
Huang, H.; Lu, W.; Li, X.; Cong, X.; Ma, H.; Liu, X.; Zhang, Y.; Che, P.; Ma, R.; Li, H.; Shen, X.; Jiang, H.; Huang, J.; Zhu, J. Design and synthesis of small molecular dual inhibitor of falcipain-2 and dihydrofolate reductase as antimalarial agent. Bioorg. Med. Chem. Lett., 2012, 22(2), 958-962.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.011] [PMID: 22192590]
[55]
Caridha, D.; Kathcart, A.K.; Jirage, D.; Waters, N.C. Activity of substituted thiophene sulfonamides against malarial and mammalian cyclin dependent protein kinases. Bioorg. Med. Chem. Lett., 2010, 20(13), 3863-3867.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.039] [PMID: 20627564]
[56]
Domínguez, J.N.; León, C.; Rodrigues, J.; Gamboa de Domínguez, N.; Gut, J.; Rosenthal, P.J. Synthesis and antimalarial activity of sulfo-namide chalcone derivatives. Farmaco, 2005, 60(4), 307-311.
[http://dx.doi.org/10.1016/j.farmac.2005.01.005] [PMID: 15848205]
[57]
Vinindwa, B.; Dziwornu, G.A.; Masamba, W. Synthesis and evaluation of chalcone-quinoline based molecular hybrids as potential anti-malarial agents. Molecules, 2021, 26(13), 4093.
[http://dx.doi.org/10.3390/molecules26134093] [PMID: 34279438]
[58]
Altenkämper, M.; Bechem, B.; Perruchon, J.; Heinrich, S.; Mädel, A.; Ortmann, R.; Dahse, H.M.; Freunscht, E.; Wang, Y.; Rath, J.; Stich, A.; Hitzler, M.; Chiba, P.; Lanzer, M.; Schlitzer, M. Antimalarial and antitrypanosomal activity of a series of amide and sulfonamide deri-vatives of a 2,5-diaminobenzophenone. Bioorg. Med. Chem., 2009, 17(22), 7690-7697.
[http://dx.doi.org/10.1016/j.bmc.2009.09.043] [PMID: 19819706]
[59]
Anderson, J.W.; Sarantakis, D.; Terpinski, J.; Santha Kumar, T.R.; Tsai, H.C.; Kuo, M.; Ager, A.L.; Jacobs, W.R., Jr; Schiehser, G.A.; Ekins, S.; Sacchettini, J.C.; Jacobus, D.P.; Fidock, D.A.; Freundlich, J.S. Novel diaryl ureas with efficacy in a mouse model of malaria. Bioorg. Med. Chem. Lett., 2013, 23(4), 1022-1025.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.022] [PMID: 23313245]
[60]
Coertzen, D.; Reader, J.; Watt, M. Artemisone and artemiside are potent panreactive antimalarial agents that also synergize redox imbalance in plasmodium falciparum transmissible gametocyte stages. Antimicrob. Agents Chemother., 2018, 62, e02214-e02217.
[http://dx.doi.org/10.1128/AAC.02214-17]
[61]
Patel, O.P.S.; Beteck, R.M.; Legoabe, L.J. Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research. Eur. J. Med. Chem., 2021, 213, 113193.
[http://dx.doi.org/10.1016/j.ejmech.2021.113193] [PMID: 33508479]
[62]
Onoabedje, E.A.; Ibezim, A.; Okoro, U.C.; Batra, S. Synthesis, molecular docking, antiplasmodial and antioxidant activities of new sulfonami-do-pepetide derivatives. Heliyon, 2020, 6(9), e04958.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04958]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy