Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Description and In silico ADME Studies of US-FDA Approved Drugs or Drugs under Clinical Trial which Violate the Lipinski’s Rule of 5

Author(s): Niyatha Lohit, Ankit Kumar Singh, Adarsh Kumar, Harshwardhan Singh, Jagat Pal Yadav, Kuldeep Singh* and Pradeep Kumar*

Volume 21, Issue 8, 2024

Published on: 27 March, 2023

Page: [1334 - 1358] Pages: 25

DOI: 10.2174/1570180820666230224112505

Price: $65

conference banner
Abstract

Background & Objective: Christopher A. Lipinski, in 1997, formulated Lipinski’s rule of five for drug-likeness prediction of potent molecules. It states that molecular weight (less than 500 Daltons), octanol/water partition coefficient (not exceeding more than 5), hydrogen bond acceptor (no more than 10), and hydrogen bond donor (no more than 5) are important for good oral bioavailability. Many drugs among various important classes such as antibiotics, anti-cancer, HIV and HCV protease inhibitors, immunosuppressants, cardiovascular, antifungal, and other miscellaneous classes are approved by FDA or other drug regulatory authorities as clinical use lie beyond the rule of five. In this review, beyond the rule of 5 drugs belonging to these classes (which are either currently approved or under clinical study) are explored and their ADME properties are analyzed.

Methods: Data of 73 beyond the rule of 5 drugs, belonging to various classes, were collected and their ADME properties were calculated using the Qikprop prediction program of maestro 12.9 module of Schrodinger software.

Results: Out of 73 drugs, 4 had at least 1 Rule of 5 (Ro5) violation, 16 had at least 2, 31 had at least 3 out of which 22 drugs had 4, Ro5 violations.

Conclusion: Drugs not obeying the rule of five may also serve as good clinical candidates and potential candidates should not be discarded only on the basis of this rule.

Graphical Abstract

[1]
Wishart, D.S. Improving early drug discovery through ADME modelling: An overview. Drugs R D., 2007, 8(6), 349-362.
[http://dx.doi.org/10.2165/00126839-200708060-00003] [PMID: 17963426]
[2]
Oprea, T. Virtual screening in lead discovery: A viewpoint. Molecules, 2002, 7(1), 51-62.
[http://dx.doi.org/10.3390/70100051]
[3]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 1997, 23(1-3), 3-25.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[4]
Di, L.; Kerns, E.H. Drug-like properties: Concepts, structure design and methods from ADME to toxicity optimization, 1st ed; Academic press: Oxford, UK, 2015. ISBN: 978-0-12-801076-1.
[5]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[6]
Krishna, S.; Kumar, S.B.; Murthy, T.P.K.; Murahari, M. Structure-based design approach of potential BCL-2 inhibitors for cancer chemotherapy. Comput. Biol. Med., 2021, 134, 104455.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104455] [PMID: 33962088]
[7]
Clark, D.E. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood–brain barrier penetration. J. Pharm. Sci., 1999, 88(8), 815-821.
[http://dx.doi.org/10.1021/js980402t] [PMID: 10430548]
[8]
Bytheway, I.; Darley, M.G.; Popelier, P.L.A. The calculation of polar surface area from first principles: An application of quantum chemical topology to drug design. ChemMedChem, 2008, 3(3), 445-453.
[http://dx.doi.org/10.1002/cmdc.200700262] [PMID: 18161739]
[9]
Zhang, M.Q.; Wilkinson, B. Drug discovery beyond the ‘rule-of-five’. Curr. Opin. Biotechnol., 2007, 18(6), 478-488.
[http://dx.doi.org/10.1016/j.copbio.2007.10.005] [PMID: 18035532]
[10]
Doak, B.C.; Over, B.; Giordanetto, F.; Kihlberg, J. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem. Biol., 2014, 21(9), 1115-1142.
[http://dx.doi.org/10.1016/j.chembiol.2014.08.013] [PMID: 25237858]
[11]
Doak, B.C.; Zheng, J.; Dobritzsch, D.; Kihlberg, J. How beyond rule of 5 drugs and clinical candidates bind to their targets. J. Med. Chem., 2016, 59(6), 2312-2327.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01286] [PMID: 26457449]
[12]
Tyagi, M.; Begnini, F.; Poongavanam, V.; Doak, B.C.; Kihlberg, J. Drug syntheses beyond the rule of 5. Chemistry, 2020, 26(1), 49-88.
[http://dx.doi.org/10.1002/chem.201902716] [PMID: 31483909]
[13]
Ivanović, V.; Rančić, M.; Arsić, B.; Pavlović, A. Lipinski’s rule of five, famous extensions and famous exceptions. Pop. Sci. Art., 2020, 3(1), 171-177.
[14]
Sahu, V.K.; Singh, R.K.; Singh, P.P. Extended Rule of Five and Prediction of biological activity of peptidic HIV-1-PR inhibitors Univers. J. Pharm. Sci. Res, 2022, 20
[15]
Matsson, P.; Doak, B.C.; Over, B.; Kihlberg, J. Cell permeability beyond the rule of 5. Adv. Drug Deliv. Rev., 2016, 101, 42-61.
[http://dx.doi.org/10.1016/j.addr.2016.03.013] [PMID: 27067608]
[16]
Farzam, K.; Nessel, T.A.; Quick, J. Erythromycin. StatPearls; StatPearls Publishing: Florida, USA, 2022.
[17]
Zuckerman, J.M. The newer macrolides: Azithromycin and clarithromycin. Infect. Dis. Clin. North Am., 2000, 14(2), 449-462.
[http://dx.doi.org/10.1016/S0891-5520(05)70257-9] [PMID: 10829265]
[18]
Wellington, K.; Noble, S. Telithromycin. Drugs, 2004, 64(15), 1683-1694.
[http://dx.doi.org/10.2165/00003495-200464150-00006] [PMID: 15257629]
[19]
Markham, A.; Faulds, D. Roxithromycin. Drugs, 1994, 48(2), 297-326.
[http://dx.doi.org/10.2165/00003495-199448020-00011] [PMID: 7527329]
[20]
Shinkai, I.; Ohta, Y. New drugs--reports of new drugs recently approved by the FDA. Dirithromycin. Bioorg. Med. Chem., 1996, 4(4), 521-522.
[PMID: 8735838]
[21]
Floss, H.G.; Yu, T.W. Rifamycin-mode of action, resistance, and biosynthesis. Chem. Rev., 2005, 105(2), 621-632.
[http://dx.doi.org/10.1021/cr030112j] [PMID: 15700959]
[22]
Andrei, S.; Droc, G.; Stefan, G. FDA approved antibacterial drugs: 2018-2019. Discoveries , 2019, 7(4), e102.
[http://dx.doi.org/10.15190/d.2019.15] [PMID: 32309620]
[23]
Elliott, W.; Chan, J. Omeprazole Magnesium, amoxicillin, and rifabutin delayed-release capsules (Talicia). Intern. Med. Alert., 2019, 41(23), 2020.
[24]
Alfarisi, O.; Alghamdi, W.A.; Al-Shaer, M.H.; Dooley, K.E.; Peloquin, C.A. Rifampin vs. rifapentine: What is the preferred rifamycin for tuberculosis? Expert Rev. Clin. Pharmacol., 2017, 10(10), 1027-1036.
[http://dx.doi.org/10.1080/17512433.2017.1366311] [PMID: 28803492]
[25]
Ermondi, G.; Vallaro, M.; Saame, J.; Toom, L.; Leito, I.; Ruiz, R.; Caron, G. Rifampicin as an example of beyond-rule-of-5 compound: Ionization beyond water and lipophilicity beyond octanol/water. Eur. J. Pharm. Sci., 2021, 161, 105802.
[http://dx.doi.org/10.1016/j.ejps.2021.105802] [PMID: 33716188]
[26]
Garnock-Jones, K.P. Cobimetinib first global approval. Drugs, 2015, 75(15), 1823-1830.
[http://dx.doi.org/10.1007/s40265-015-0477-8] [PMID: 26452567]
[27]
Boespflug, A.; Thomas, L. Cobimetinib and vemurafenib for the treatment of melanoma. Expert Opin. Pharmacother., 2016, 17(7), 1005-1011.
[http://dx.doi.org/10.1517/14656566.2016.1168806] [PMID: 26999478]
[28]
Singh, A.K.; Kumar, A.; Thareja, S.; Kumar, P. Current insights into the role of BRAF inhibitors in treatment of melanoma. Anticancer. Agents Med. Chem., 2022, 23(3), 278-297.
[http://dx.doi.org/10.2174/1871520622666220624164152] [PMID: 35761499]
[29]
Khozin, S.; Blumenthal, G.M.; Zhang, L.; Tang, S.; Brower, M.; Fox, E.; Helms, W.; Leong, R.; Song, P.; Pan, Y.; Liu, Q.; Zhao, P.; Zhao, H.; Lu, D.; Tang, Z.; Al Hakim, A.; Boyd, K.; Keegan, P.; Justice, R.; Pazdur, R. FDA approval: Ceritinib for the treatment of metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer. Clin. Cancer Res., 2015, 21(11), 2436-2439.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3157] [PMID: 25754348]
[30]
Raedler, L.A. Venclexta (Venetoclax) first BCL-2 inhibitor approved for high-risk relapsed chronic lymphocytic leukemia. J. Hematol. Oncol. Pharm., 2017, 7, 53-55.
[31]
Deeks, E.D. Ceritinib: A review in ALK-positive advanced NSCLC. Target. Oncol., 2016, 11(5), 693-700.
[http://dx.doi.org/10.1007/s11523-016-0460-7] [PMID: 27699584]
[32]
Shirley, M. Encorafenib and binimetinib: First global approvals. Drugs, 2018, 78(12), 1277-1284.
[http://dx.doi.org/10.1007/s40265-018-0963-x] [PMID: 30117021]
[33]
Singh, A.K.; Novak, J.; Kumar, A.; Singh, H.; Thareja, S.; Pathak, P.; Grishina, M.; Verma, A.; Yadav, J.P.; Khalilullah, H.; Pathania, V.; Nandanwar, H.; Jaremko, M.; Emwas, A.H.; Kumar, P. Gaussian field-based 3D-QSAR and molecular simulation studies to design potent pyrimidine–sulfonamide hybrids as selective BRAFV600E inhibitors. RSC Advances, 2022, 12(46), 30181-30200.
[http://dx.doi.org/10.1039/D2RA05751D] [PMID: 36329938]
[34]
Feldinger, K.; Kong, A. Profile of neratinib and its potential in the treatment of breast cancer. Breast Cancer, 2015, 7, 147-162.
[PMID: 26089701]
[35]
Spinelli, T.; Calcagnile, S.; Giuliano, C.; Rossi, G.; Lanzarotti, C.; Mair, S.; Stevens, L.; Nisbet, I. Netupitant PET imaging and ADME studies in humans. J. Clin. Pharmacol., 2014, 54(1), 97-108.
[http://dx.doi.org/10.1002/jcph.198] [PMID: 24122871]
[36]
Pulte, E.D.; Norsworthy, K.J.; Wang, Y.; Xu, Q.; Qosa, H.; Gudi, R.; Przepiorka, D.; Fu, W.; Okusanya, O.O.; Goldberg, K.B.; De Claro, R.A.; Farrell, A.T.; Pazdur, R. FDA approval summary: Gilteritinib for relapsed or refractory acute myeloid leukemia with a FLT3 mutation. Clin. Cancer Res., 2021, 27(13), 3515-3521.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-4271] [PMID: 33632926]
[37]
Markowitz, J.N.; Fancher, K.M. Cabozantinib: A multitargeted oral tyrosine kinase inhibitor. Pharmacotherapy, 2018, 38(3), 357-369.
[http://dx.doi.org/10.1002/phar.2076] [PMID: 29283440]
[38]
Singh, H.; Brave, M.; Beaver, J.A.; Cheng, J.; Tang, S.; Zahalka, E.; Palmby, T.R.; Venugopal, R.; Song, P.; Liu, Q.; Liu, C.; Yu, J.; Chen, X.H.; Wang, X.; Wang, Y.; Kluetz, P.G.; Daniels, S.R.; Papadopoulos, E.J.; Sridhara, R.; McKee, A.E.; Ibrahim, A.; Kim, G.; Pazdur, R. US Food and Drug Administration approval: Cabozantinib for the treatment of advanced renal cell carcinoma. Clin. Cancer Res., 2017, 23(2), 330-335.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1073] [PMID: 27793960]
[39]
Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; Besse, B.; Chawla, S.P.; Bazhenova, L.; Krauss, J.C.; Chae, Y.K.; Barve, M.; Garrido-Laguna, I.; Liu, S.V.; Conkling, P.; John, T.; Fakih, M.; Sigal, D.; Loong, H.H.; Buchschacher, G.L., Jr; Garrido, P.; Nieva, J.; Steuer, C.; Overbeck, T.R.; Bowles, D.W.; Fox, E.; Riehl, T.; Chow-Maneval, E.; Simmons, B.; Cui, N.; Johnson, A.; Eng, S.; Wilson, T.R.; Demetri, G.D. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol., 2020, 21(2), 271-282.
[http://dx.doi.org/10.1016/S1470-2045(19)30691-6] [PMID: 31838007]
[40]
Sartore-Bianchi, A.; Pizzutilo, E.G.; Marrapese, G.; Tosi, F.; Cerea, G.; Siena, S. Entrectinib for the treatment of metastatic NSCLC: Safety and efficacy. Expert Rev. Anticancer Ther., 2020, 20(5), 333-341.
[http://dx.doi.org/10.1080/14737140.2020.1747439] [PMID: 32223357]
[41]
Amsberg, G.K.; Schafhausen, P. Bosutinib in the management of chronic myelogenous leukemia. Biologics, 2013, 7, 115-122.
[PMID: 23674887]
[42]
Wei, A.H.; Tiong, I.S. Midostaurin, enasidenib, CPX-351, gemtuzumab ozogamicin, and venetoclax bring new hope to AML. Blood, 2017, 130(23), 2469-2474.
[http://dx.doi.org/10.1182/blood-2017-08-784066] [PMID: 29051180]
[43]
Kim, E.S. Abemaciclibfirst global approval. Drugs, 2017, 77(18), 2063-2070.
[http://dx.doi.org/10.1007/s40265-017-0840-z] [PMID: 29128965]
[44]
Mann, J.E. Brigatinib (Alunbrig®). Oncology Times, 2018, 40(4), 23.
[http://dx.doi.org/10.1097/01.COT.0000530897.10814.2a]
[45]
Jarkowski, A., III; Sweeney, R.P. Nilotinib: A new tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia. Pharmacotherapy, 2008, 28(11), 1374-1382.
[http://dx.doi.org/10.1592/phco.28.11.1374] [PMID: 18956997]
[46]
Khunger, A.; Khunger, M.; Velcheti, V. Dabrafenib in combination with trametinib in the treatment of patients with BRAF V600-positive advanced or metastatic non-small cell lung cancer: Clinical evidence and experience. Ther. Adv. Respir. Dis., 2018, 12.
[http://dx.doi.org/10.1177/1753466618767611] [PMID: 29595366]
[47]
Puszkiel, A.; Noé, G.; Bellesoeur, A.; Kramkimel, N.; Paludetto, M.N.; Thomas-Schoemann, A.; Vidal, M.; Goldwasser, F.; Chatelut, E.; Blanchet, B. Clinical pharmacokinetics and pharmacodynamics of dabrafenib. Clin. Pharmacokinet., 2019, 58(4), 451-467.
[http://dx.doi.org/10.1007/s40262-018-0703-0] [PMID: 30094711]
[48]
Voon, P.J.; Chen, E.X.; Chen, H.X.; Lockhart, A.C.; Sahebjam, S.; Kelly, K.; Vaishampayan, U.N.; Subbiah, V.; Razak, A.R.; Renouf, D.J. A phase 1 pharmacokinetic trial of single agent trametinib a MEK inhibitor in advanced cancer patients with hepatic dysfunction: An NCI Organ Dysfunction Working Group (ODWG) study (NCI 9591). AACR., 2021, 20(12), 035-035.
[49]
Wright, C.J.M.; McCormack, P.L. Trametinib: First global approval. Drugs, 2013, 73(11), 1245-1254.
[http://dx.doi.org/10.1007/s40265-013-0096-1] [PMID: 23846731]
[50]
Pulte, E.D.; Chen, H.; Price, L.S.L.; Gudi, R.; Li, H.; Okusanya, O.O.; Ma, L.; Rodriguez, L.; Vallejo, J.; Norsworthy, K.J.; de Claro, R.A.; Theoret, M.R.; Pazdur, R. FDA approval summary: Revised indication and dosing regimen for ponatinib based on the results of the OPTIC trial. Oncologist, 2022, 27(2), 149-157.
[http://dx.doi.org/10.1093/oncolo/oyab040] [PMID: 35641211]
[51]
Mullally, A.; Hood, J.; Harrison, C.; Mesa, R. Fedratinib in myelofibrosis. Blood Adv., 2020, 4(8), 1792-1800.
[http://dx.doi.org/10.1182/bloodadvances.2019000954] [PMID: 32343799]
[52]
Kirchner, G.I.; Meier-Wiedenbach, I.; Manns, M.P. Clinical pharmacokinetics of everolimus. Clin. Pharmacokinet., 2004, 43(2), 83-95.
[http://dx.doi.org/10.2165/00003088-200443020-00002] [PMID: 14748618]
[53]
Atkins, M.B.; Yasothan, U.; Kirkpatrick, P. Everolimus. Nat. Rev. Drug Discov., 2009, 8(7), 535-536.
[http://dx.doi.org/10.1038/nrd2924] [PMID: 19568281]
[54]
de Vos, S.; Leonard, J.P.; Friedberg, J.W.; Zain, J.; Dunleavy, K.; Humerickhouse, R.; Hayslip, J.; Pesko, J.; Wilson, W.H. Safety and efficacy of navitoclax, a BCL-2 and BCL-X L inhibitor, in patients with relapsed or refractory lymphoid malignancies: Results from a phase 2a study. Leuk. Lymphoma, 2021, 62(4), 810-818.
[http://dx.doi.org/10.1080/10428194.2020.1845332] [PMID: 33236943]
[55]
Choo, E.F.; Boggs, J.; Zhu, C.; Lubach, J.W.; Catron, N.D.; Jenkins, G.; Souers, A.J.; Voorman, R. The role of lymphatic transport on the systemic bioavailability of the Bcl-2 protein family inhibitors navitoclax (ABT-263) and ABT-199. Drug Metab. Dispos., 2014, 42(2), 207-212.
[http://dx.doi.org/10.1124/dmd.113.055053] [PMID: 24212376]
[56]
Pandravada, S.; Sandler, S. The role of navitoclax in myelofibrosis. Cureus, 2021, 13(9), e17976.
[PMID: 34667663]
[57]
Rivera, V.M.; Squillace, R.M.; Miller, D.; Berk, L.; Wardwell, S.D.; Ning, Y.; Pollock, R.; Narasimhan, N.I.; Iuliucci, J.D.; Wang, F.; Clackson, T. Ridaforolimus (AP23573; MK-8669), a potent mTOR inhibitor, has broad antitumor activity and can be optimally administered using intermittent dosing regimens. Mol. Cancer Ther., 2011, 10(6), 1059-1071.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0792] [PMID: 21482695]
[58]
Sivendran, S.; Agarwal, N.; Gartrell, B.; Ying, J.; Boucher, K.M.; Choueiri, T.K.; Sonpavde, G.; Oh, W.K.; Galsky, M.D. Metabolic complications with the use of mTOR inhibitors for cancer therapy. Cancer Treat. Rev., 2014, 40(1), 190-196.
[http://dx.doi.org/10.1016/j.ctrv.2013.04.005] [PMID: 23684373]
[59]
Nguyen, N.M.; Cho, J. Hedgehog pathway inhibitors as targeted cancer therapy and strategies to overcome drug resistance. Int. J. Mol. Sci., 2022, 23(3), 1733.
[http://dx.doi.org/10.3390/ijms23031733] [PMID: 35163655]
[60]
Meng, D.; He, W.; Zhang, Y.; Liang, Z.; Zheng, J.; Zhang, X.; Zheng, X.; Zhan, P.; Chen, H.; Li, W.; Cai, L. Development of PI3K inhibitors: Advances in clinical trials and new strategies. (Review). Pharmacol. Res., 2021, 173, 105900.
[http://dx.doi.org/10.1016/j.phrs.2021.105900] [PMID: 34547385]
[61]
Morgillo, F.; Lee, H.Y. Lonafarnib in cancer therapy. Expert Opin. Investig. Drugs, 2006, 15(6), 709-719.
[http://dx.doi.org/10.1517/13543784.15.6.709] [PMID: 16732721]
[62]
Izquierdo, L.; Helle, F.; François, C.; Castelain, S.; Duverlie, G.; Brochot, E. Simeprevir for the treatment of hepatitis C virus infection. Pharm. Genomics Pers. Med., 2014, 7, 241-249.
[PMID: 25206310]
[63]
Flick, A.C.; Ding, H.X.; Leverett, C.A.; Fink, S.J.; O’Donnell, C.J. Synthetic approaches to new drugs approved during 2016. J. Med. Chem., 2018, 61(16), 7004-7031.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00260] [PMID: 29620889]
[64]
Keating, G.M. Elbasvir/grazoprevir: First global approval. Drugs, 2016, 76(5), 617-624.
[http://dx.doi.org/10.1007/s40265-016-0558-3] [PMID: 26943930]
[65]
Tompa, D.R.; Immanuel, A.; Srikanth, S.; Kadhirvel, S. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs. Int. J. Biol. Macromol., 2021, 172, 524-541.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.076] [PMID: 33454328]
[66]
Lamb, Y.N. Glecaprevir/pibrentasvir: First global approval. Drugs, 2017, 77(16), 1797-1804.
[http://dx.doi.org/10.1007/s40265-017-0817-y] [PMID: 28929412]
[67]
Raedler, L.A. Viekira, Pak. (ombitasvir, paritaprevir, and ritonavir tablets; Dasabuvir tablets): All-oral fixed combination approved for genotype 1 chronic hepatitis C infection. Am. Health Drug Benefits, 2015, 8(Spec Feature), 142-147.
[PMID: 26629280]
[68]
Childs-Kean, L.M.; Brumwell, N.A.; Lodl, E.F. Profile of sofosbuvir/velpatasvir/voxilaprevir in the treatment of hepatitis C. Infect. Drug Resist., 2019, 12, 2259-2268.
[http://dx.doi.org/10.2147/IDR.S171338] [PMID: 31413603]
[69]
Poole, R.M. Daclatasvir + asunaprevir: First global approval. Drugs, 2014, 74(13), 1559-1571.
[http://dx.doi.org/10.1007/s40265-014-0279-4] [PMID: 25117197]
[70]
Markham, A.; Keam, S.J. Danoprevir: First global approval. Drugs, 2018, 78(12), 1271-1276.
[http://dx.doi.org/10.1007/s40265-018-0960-0] [PMID: 30117020]
[71]
Isakov, V.; Koloda, D.; Tikhonova, N.; Kikalishvili, T.; Krasavina, E.; Lekishvili, K.; Malaya, I.; Ryska, M.; Samsonov, M.; Tolkacheva, V. Pharmacokinetics of the new hepatitis C virus NS3 protease inhibitor narlaprevir following single-dose use with or without ritonavir in patients with liver cirrhosis. Antimicrob. Agents Chemother., 2016, 60(12), 7098-7104.
[http://dx.doi.org/10.1128/AAC.01044-16] [PMID: 27645244]
[72]
Stanciu, C.; Trifan, A.; Muzica, C.; Sfarti, C. Efficacy and safety of alisporivir for the treatment of hepatitis C infection. Expert Opin. Pharmacother., 2019, 20(4), 379-384.
[http://dx.doi.org/10.1080/14656566.2018.1560424] [PMID: 30576256]
[73]
Abutaleb, A.; Kottilil, S. Vedroprevir in the management of hepatitis C virus infection. Expert Opin. Investig. Drugs, 2017, 26(12), 1399-1402.
[http://dx.doi.org/10.1080/13543784.2017.1395412] [PMID: 29053394]
[74]
Lv, Z.; Chu, Y.; Wang, Y. HIV protease inhibitors: A review of molecular selectivity and toxicity. HIV AIDS , 2015, 7, 95-104.
[PMID: 25897264]
[75]
Kempf, D.J.; Sham, H.L.; Marsh, K.C.; Flentge, C.A.; Betebenner, D.; Green, B.E.; McDonald, E.; Vasavanonda, S.; Saldivar, A.; Wideburg, N.E.; Kati, W.M.; Ruiz, L.; Zhao, C.; Fino, L.; Patterson, J.; Molla, A.; Plattner, J.J.; Norbeck, D.W. Discovery of ritonavir, a potent inhibitor of HIV protease with high oral bioavailability and clinical efficacy. J. Med. Chem., 1998, 41(4), 602-617.
[http://dx.doi.org/10.1021/jm970636+] [PMID: 9484509]
[76]
Shah, B.M.; Schafer, J.J.; Priano, J.; Squires, K.E. Cobicistat: A new boost for the treatment of human immunodeficiency virus infection. Pharmacotherapy, 2013, 33(10), 1107-1116.
[http://dx.doi.org/10.1002/phar.1237] [PMID: 23471741]
[77]
Sherman, E.M.; Worley, M.V.; Unger, N.R.; Gauthier, T.P.; Schafer, J.J. Cobicistat: Review of a pharmacokinetic enhancer for HIV infection. Clin. Ther., 2015, 37(9), 1876-1893.
[http://dx.doi.org/10.1016/j.clinthera.2015.07.022] [PMID: 26319088]
[78]
Croom, K.F.; Dhillon, S.; Keam, S.J. Atazanavir. Drugs, 2009, 69(8), 1107-1140.
[http://dx.doi.org/10.2165/00003495-200969080-00009] [PMID: 19496633]
[79]
Alex, A.; Millan, D.S.; Perez, M.; Wakenhut, F.; Whitlock, G.A. Intramolecular hydrogen bonding to improve membrane permeability and absorption in beyond rule of five chemical space. MedChemComm, 2011, 2(7), 669-674.
[http://dx.doi.org/10.1039/c1md00093d]
[80]
Corbett, A.H.; Lim, M.L.; Kashuba, A.D.M. Kaletra (lopinavir/ritonavir). Ann. Pharmacother., 2002, 36(7-8), 1193-1203.
[http://dx.doi.org/10.1345/aph.1A363] [PMID: 12086554]
[81]
Noble, S.; Faulds, D. Saquinavir. Drugs, 1996, 52(1), 93-112.
[http://dx.doi.org/10.2165/00003495-199652010-00007] [PMID: 8799687]
[82]
Hoetelmans, R.M.W.; Koks, C.H.W.; Beijnen, J.H.; Meenhorst, P.L.; Mulder, J.W.; Burger, D.M. Clinical pharmacology of HIV protease inhibitors: focus on saquinavir, indinavir, and ritonavir. Pharm. World Sci., 1997, 19(4), 159-175.
[http://dx.doi.org/10.1023/A:1008629608556] [PMID: 9297727]
[83]
Stenton, S.B.; Partovi, N.; Ensom, M.H.H. Sirolimus. Clin. Pharmacokinet., 2005, 44(8), 769-786.
[http://dx.doi.org/10.2165/00003088-200544080-00001] [PMID: 16029064]
[84]
Sierra-Paredes, G.; Sierra-Marcuño, G. Ascomycin and FK506: Pharmacology and therapeutic potential as anticonvulsants and neuroprotectants. CNS Neurosci. Ther., 2008, 14(1), 36-46.
[http://dx.doi.org/10.1111/j.1755-5949.2008.00036.x] [PMID: 18482098]
[85]
Piekoszewski, W.; Chow, F.S.; Jusko, W.J. Pharmacokinetic and pharmacodynamic effects of coadministration of methylprednisolone and tacrolimus in rabbits. J. Pharmacol. Exp. Ther., 1994, 269(1), 103-109.
[PMID: 7513355]
[86]
Macarrón, R.; Luengo, J.I.; Yin, Y. Yin and Yang in medicinal chemistry: What does drug-likeness mean? Future Med. Chem., 2011, 3(5), 505-507.
[http://dx.doi.org/10.4155/fmc.11.19] [PMID: 21526891]
[87]
Heo, Y.A. Voclosporin: First approval. Drugs, 2021, 81(5), 605-610.
[http://dx.doi.org/10.1007/s40265-021-01488-z] [PMID: 33788181]
[88]
Li, Y.; Palmisano, M.; Sun, D.; Zhou, S. Pharmacokinetic disposition difference between cyclosporine and voclosporin drives their distinct efficacy and safety profiles in clinical studies. Clin. Pharmacol., 2020, 12, 83-96.
[http://dx.doi.org/10.2147/CPAA.S255789] [PMID: 32669879]
[89]
Kurn, H.; Wadhwa, R. Itraconazole. StatPearls; StatPearls Publishing, 2021.
[90]
Matuszewski, K.; Park, J. Itraconazole pulse therapy for onychomycosis. J. Pharm. Pract., 1997, 10(2), 101-104.
[http://dx.doi.org/10.1177/089719009701000206]
[91]
Nagappan, V.; Deresinski, S. Reviews of anti-infective agents: Posaconazole: a broad-spectrum triazole antifungal agent. Clin. Infect. Dis., 2007, 45(12), 1610-1617.
[http://dx.doi.org/10.1086/523576] [PMID: 18190324]
[92]
McIver, L.A. Siddique, M.S. Atorvastatin. StatPearls; StatPearls Publishing: Florida, USA, 2021.
[93]
Cheng, J.W.M. Aliskiren: Renin inhibitor for hypertension management. Clin. Ther., 2008, 30(1), 31-47.
[http://dx.doi.org/10.1016/j.clinthera.2008.01.011] [PMID: 18343241]
[94]
Battershill, A.J.; Scott, L.J. Telmisartan. Drugs, 2006, 66(1), 51-83.
[http://dx.doi.org/10.2165/00003495-200666010-00004] [PMID: 16398568]
[95]
Wienen, W.; Entzeroth, M.; Meel, J.C.A.; Stangier, J.; Busch, U.; Ebner, T.; Schmid, J.; Lehmann, H.; Matzek, K.; Kempthorne-Rawson, J.; Gladigau, V.; Hauel, N.H. A review on telmisartan: A novel, long‐acting angiotensin II‐receptor antagonist. Cardiovasc. Drug Rev., 2000, 18(2), 127-154.
[http://dx.doi.org/10.1111/j.1527-3466.2000.tb00039.x]
[96]
Akhrass, P.R.; McFarlane, S.I. Telmisartan and cardioprotection. Vasc. Health Risk Manag., 2011, 7, 677-683.
[PMID: 22140319]
[97]
Chan, L.; Pisano, M. Edoxaban (Savaysa): A factor Xa inhibitor. P&T, 2015, 40(10), 651-695.
[PMID: 26535021]
[98]
Sharma, S.; Singh, J.; Singh, H.; Sharma, S.; Roy, R. A systematic review on Lusutrombopag (Mulpleta) in treating thrombocytopenia. Int. J. Sci. Basic Appl. Res., 2018, 8, 619-629.
[99]
Bussel, J.; Arnold, D.M.; Grossbard, E.; Mayer, J.; Treliński, J.; Homenda, W.; Hellmann, A.; Windyga, J.; Sivcheva, L.; Khalafallah, A.A.; Zaja, F.; Cooper, N.; Markovtsov, V.; Zayed, H.; Duliege, A.M. Fostamatinib for the treatment of adult persistent and chronic immune thrombocytopenia: Results of two phase 3, randomized, placebo-controlled trials. Am. J. Hematol., 2018, 93(7), 921-930.
[http://dx.doi.org/10.1002/ajh.25125] [PMID: 29696684]
[100]
Leonard, J.; Baker, D.E. Naloxegol. Ann. Pharmacother., 2015, 49(3), 360-365.
[http://dx.doi.org/10.1177/1060028014560191] [PMID: 25471070]
[101]
Alonso, R.; Cuevas, A.; Mata, P. Lomitapide: A review of its clinical use, efficacy, and tolerability. Core Evid., 2019, 14, 19-30.
[http://dx.doi.org/10.2147/CE.S174169] [PMID: 31308834]
[102]
Rapp, R.P. Pharmacokinetics and pharmacodynamics of intravenous and oral azithromycin: Enhanced tissue activity and minimal drug interactions. Ann. Pharmacother., 1998, 32(7-8), 785-793.
[http://dx.doi.org/10.1345/aph.17299] [PMID: 9681095]
[103]
Farzam, K.; Nessel, T.A.; Quick, J. Erythromycin.In: StatPearls; StatPearls Publishing, 2021.
[104]
Zarogoulidis, P.; Papanas, N.; Kioumis, I.; Chatzaki, E.; Maltezos, E.; Zarogoulidis, K. Macrolides: from in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases. Eur. J. Clin. Pharmacol., 2012, 68(5), 479-503.
[http://dx.doi.org/10.1007/s00228-011-1161-x] [PMID: 22105373]
[105]
Rothstein, D.M. Rifamycins, alone and in combination. Cold Spring Harb. Perspect. Med., 2016, 6(7), a027011.
[http://dx.doi.org/10.1101/cshperspect.a027011] [PMID: 27270559]
[106]
Zhanel, G.G.; Esquivel, J.; Zelenitsky, S.; Lawrence, C.K.; Adam, H.J.; Golden, A.; Hink, R.; Berry, L.; Schweizer, F.; Zhanel, M.A.; Bay, D.; Lagacé-Wiens, P.R.S.; Walkty, A.J.; Lynch, J.P., III; Karlowsky, J.A. Omadacycline: A novel oral and intravenous aminomethylcycline antibiotic agent. Drugs, 2020, 80(3), 285-313.
[http://dx.doi.org/10.1007/s40265-020-01257-4] [PMID: 31970713]
[107]
Muller, I.B.; De Langen, A.J.; Honeywell, R.J.; Giovannetti, E.; Peters, G.J. Overcoming crizotinib resistance in ALK-rearranged NSCLC with the second-generation ALK-inhibitor ceritinib. Expert Rev. Anticancer Ther., 2016, 16(2), 147-157.
[http://dx.doi.org/10.1586/14737140.2016.1131612] [PMID: 26654422]
[108]
Singh, H.; Walker, A.J.; Amiri-Kordestani, L.; Cheng, J.; Tang, S.; Balcazar, P.; Barnett-Ringgold, K.; Palmby, T.R.; Cao, X.; Zheng, N.; Liu, Q.; Yu, J.; Pierce, W.F.; Daniels, S.R.; Sridhara, R.; Ibrahim, A.; Kluetz, P.G.; Blumenthal, G.M.; Beaver, J.A.; Pazdur, R. US food and drug administration approval: Neratinib for the extended adjuvant treatment of early-stage HER2-positive breast cancer. Clin. Cancer Res., 2018, 24(15), 3486-3491.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3628] [PMID: 29523624]
[109]
Bose, P.; Ozer, H. Neratinib: An oral, irreversible dual EGFR/HER2 inhibitor for breast and non-small cell lung cancer. Expert Opin. Investig. Drugs, 2009, 18(11), 1735-1751.
[http://dx.doi.org/10.1517/13543780903305428] [PMID: 19780706]
[110]
Deeks, E.D. Neratinib: First global approval. Drugs, 2017, 77(15), 1695-1704.
[http://dx.doi.org/10.1007/s40265-017-0811-4] [PMID: 28884417]
[111]
Abramovitz, R.B.; Gaertner, K.M. The role of netupitant and palonosetron in chemotherapy-induced nausea and vomiting. J. Oncol. Pharm. Pract., 2016, 22(3), 477-484.
[http://dx.doi.org/10.1177/1078155215581525] [PMID: 25914408]
[112]
Mori, M.; Kaneko, N.; Ueno, Y.; Yamada, M.; Tanaka, R.; Saito, R.; Shimada, I.; Mori, K.; Kuromitsu, S. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Invest. New Drugs, 2017, 35(5), 556-565.
[http://dx.doi.org/10.1007/s10637-017-0470-z] [PMID: 28516360]
[113]
Lacy, S.A.; Miles, D.R.; Nguyen, L.T. Clinical pharmacokinetics and pharmacodynamics of cabozantinib. Clin. Pharmacokinet., 2017, 56(5), 477-491.
[http://dx.doi.org/10.1007/s40262-016-0461-9] [PMID: 27734291]
[114]
Al-Salama, Z.T.; Keam, S.J. Entrectinib: First global approval. Drugs, 2019, 79(13), 1477-1483.
[http://dx.doi.org/10.1007/s40265-019-01177-y] [PMID: 31372957]
[115]
Medina, P.; Goodin, S. Lapatinib: A dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin. Ther., 2008, 30(8), 1426-1447.
[http://dx.doi.org/10.1016/j.clinthera.2008.08.008] [PMID: 18803986]
[116]
Tieger, E.; Kiss, V.; Pokol, G.; Finta, Z.; Rohlíček, J.; Skořepová, E.; Dušek, M. Rationalization of the formation and stability of bosutinib solvated forms. CrystEngComm, 2016, 18(48), 9260-9274.
[http://dx.doi.org/10.1039/C6CE01834C]
[117]
Valent, P.; Akin, C.; Hartmann, K.; George, T.I.; Sotlar, K.; Peter, B.; Gleixner, K.V.; Blatt, K.; Sperr, W.R.; Manley, P.W.; Hermine, O.; Kluin-Nelemans, H.C.; Arock, M.; Horny, H.P.; Reiter, A.; Gotlib, J. Midostaurin: A magic bullet that blocks mast cell expansion and activation. Ann. Oncol., 2017, 28(10), 2367-2376.
[http://dx.doi.org/10.1093/annonc/mdx290] [PMID: 28945834]
[118]
Umapathy, G.; Mendoza-Garcia, P.; Hallberg, B.; Palmer, R.H. Targeting anaplastic lymphoma kinase in neuroblastoma. Acta Pathol. Microbiol. Scand. Suppl., 2019, 127(5), 288-302.
[http://dx.doi.org/10.1111/apm.12940] [PMID: 30803032]
[119]
Ballantyne, A.D.; Garnock-Jones, K.P. Dabrafenib: First global approval. Drugs, 2013, 73(12), 1367-1376.
[http://dx.doi.org/10.1007/s40265-013-0095-2] [PMID: 23881668]
[120]
Voon, P.J.; Chen, E.X.; Chen, H.X.; Lockhart, A.C.; Sahebjam, S.; Kelly, K.; Vaishampayan, U.N.; Subbiah, V.; Razak, A.R.; Renouf, D.J. Abstract P035: A phase 1 pharmacokinetic trial of single agent trametinib a MEK inhibitor in advanced cancer patients with hepatic dysfunction: An NCI Organ Dysfunction Working Group (ODWG)study (NCI 9591). Mol. Cancer Ther., 2021, 20(12), P035-P035.
[121]
Ganschow, R.; Jankofsky, M.; Junge, G.; Pollok, J. The role of everolimus in liver transplantation. Clin. Exp. Gastroenterol., 2014, 7, 329-343.
[http://dx.doi.org/10.2147/CEG.S41780] [PMID: 25214801]
[122]
Lipinski, C.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev., 2016, 101, 34-41.
[http://dx.doi.org/10.1016/j.addr.2016.04.029] [PMID: 27154268]
[123]
Mita, M.M.; Gong, J.; Chawla, S.P. Ridaforolimus in advanced or metastatic soft tissue and bone sarcomas. Expert Rev. Clin. Pharmacol., 2013, 6(5), 465-482.
[http://dx.doi.org/10.1586/17512433.2013.827397] [PMID: 23971829]
[124]
Salphati, L.; Shahidi-Latham, S.; Quiason, C.; Barck, K.; Nishimura, M.; Alicke, B.; Pang, J.; Carano, R.A.; Olivero, A.G.; Phillips, H.S. Distribution of the phosphatidylinositol 3-kinase inhibitors Pictilisib (GDC-0941) and GNE-317 in U87 and GS2 intracranial glioblastoma models-assessment by matrix-assisted laser desorption ionization imaging. Drug Metab. Dispos., 2014, 42(7), 1110-1116.
[http://dx.doi.org/10.1124/dmd.114.057513] [PMID: 24754926]
[125]
Rosenquist, Å.; Samuelsson, B.; Johansson, P.O.; Cummings, M.D.; Lenz, O.; Raboisson, P.; Simmen, K.; Vendeville, S.; de Kock, H.; Nilsson, M.; Horvath, A.; Kalmeijer, R.; de la Rosa, G.; Beumont-Mauviel, M. Discovery and development of simeprevir (TMC435), a HCV NS3/4A protease inhibitor. J. Med. Chem., 2014, 57(5), 1673-1693.
[http://dx.doi.org/10.1021/jm401507s] [PMID: 24446688]
[126]
Lin, M.V.; Chung, R. Recent FDA approval of sofosbuvir and simeprevir. Implications for current HCV treatment. Clin. Liver Dis., 2014, 3(3), 65-68.
[http://dx.doi.org/10.1002/cld.332] [PMID: 30992888]
[127]
Link, J.O.; Taylor, J.G.; Trejo-Martin, A.; Kato, D.; Katana, A.A.; Krygowski, E.S.; Yang, Z.Y.; Zipfel, S.; Cottell, J.J.; Bacon, E.M.; Tran, C.V.; Yang, C.Y.; Wang, Y.; Wang, K.W.; Zhao, G.; Cheng, G.; Tian, Y.; Gong, R.; Lee, Y.J.; Yu, M.; Gorman, E.; Mogalian, E.; Perry, J.K. Discovery of velpatasvir (GS-5816): A potent pan-genotypic HCV NS5A inhibitor in the single-tablet regimens Vosevi® and Epclusa®. Bioorg. Med. Chem. Lett., 2019, 29(16), 2415-2427.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.027] [PMID: 31230974]
[128]
Feld, J.J.; Jacobson, I.M.; Hézode, C.; Asselah, T.; Ruane, P.J.; Gruener, N.; Abergel, A.; Mangia, A.; Lai, C.L.; Chan, H.L.Y.; Mazzotta, F.; Moreno, C.; Yoshida, E.; Shafran, S.D.; Towner, W.J.; Tran, T.T.; McNally, J.; Osinusi, A.; Svarovskaia, E.; Zhu, Y.; Brainard, D.M.; McHutchison, J.G.; Agarwal, K.; Zeuzem, S. Sofosbuvir and velpatasvir for HCV genotype 1, 2, 4, 5, and 6 infection. N. Engl. J. Med., 2015, 373(27), 2599-2607.
[http://dx.doi.org/10.1056/NEJMoa1512610] [PMID: 26571066]
[129]
German, P.; Mathias, A.; Brainard, D.; Kearney, B.P. Clinical pharmacokinetics and pharmacodynamics of ledipasvir/sofosbuvir, a fixed-dose combination tablet for the treatment of hepatitis C. Clin. Pharmacokinet., 2016, 55(11), 1337-1351.
[http://dx.doi.org/10.1007/s40262-016-0397-0] [PMID: 27193156]
[130]
Stirnimann, G. Ombitasvir (ABT-267), a novel NS5A inhibitor for the treatment of hepatitis C. Expert Opin. Pharmacother., 2014, 15(17), 2609-2622.
[http://dx.doi.org/10.1517/14656566.2014.972364] [PMID: 25347030]
[131]
Shen, J.; Serby, M.; Reed, A.; Lee, A.J.; Zhang, X.; Marsh, K.; Khatri, A.; Menon, R.; Kavetskaia, O.; Fischer, V. Metabolism and disposition of the hepatitis C protease inhibitor paritaprevir in humans. Drug Metab. Dispos., 2016, 44(8), 1164-1173.
[http://dx.doi.org/10.1124/dmd.115.067488] [PMID: 27179127]
[132]
Taylor, J.G.; Zipfel, S.; Ramey, K.; Vivian, R.; Schrier, A.; Karki, K.K.; Katana, A.; Kato, D.; Kobayashi, T.; Martinez, R.; Sangi, M.; Siegel, D.; Tran, C.V.; Yang, Z.Y.; Zablocki, J.; Yang, C.Y.; Wang, Y.; Wang, K.; Chan, K.; Barauskas, O.; Cheng, G.; Jin, D.; Schultz, B.E.; Appleby, T.; Villaseñor, A.G.; Link, J.O. Discovery of the pan-genotypic hepatitis C virus NS3/4A protease inhibitor voxilaprevir (GS-9857): A component of Vosevi®. Bioorg. Med. Chem. Lett., 2019, 29(16), 2428-2436.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.037] [PMID: 31133531]
[133]
Jensen, D.; Sherman, K.E.; Hézode, C.; Pol, S.; Zeuzem, S.; de Ledinghen, V.; Tran, A.; Elkhashab, M.; Younes, Z.H.; Kugelmas, M.; Mauss, S.; Everson, G.; Luketic, V.; Vierling, J.; Serfaty, L.; Brunetto, M.; Heo, J.; Bernstein, D.; McPhee, F.; Hennicken, D.; Mendez, P.; Hughes, E.; Noviello, S. Daclatasvir and asunaprevir plus peginterferon alfa and ribavirin in HCV genotype 1 or 4 non-responders. J. Hepatol., 2015, 63(1), 30-37.
[http://dx.doi.org/10.1016/j.jhep.2015.02.018] [PMID: 25703086]
[134]
Arasappan, A.; Bennett, F.; Bogen, S.L.; Venkatraman, S.; Blackman, M.; Chen, K.X.; Hendrata, S.; Huang, Y.; Huelgas, R.M.; Nair, L.; Padilla, A.I.; Pan, W.; Pike, R.; Pinto, P.; Ruan, S.; Sannigrahi, M.; Velazquez, F.; Vibulbhan, B.; Wu, W.; Yang, W.; Saksena, A.K.; Girijavallabhan, V.; Shih, N.Y.; Kong, J.; Meng, T.; Jin, Y.; Wong, J.; McNamara, P.; Prongay, A.; Madison, V.; Piwinski, J.J.; Cheng, K.C.; Morrison, R.; Malcolm, B.; Tong, X.; Ralston, R.; Njoroge, F.G. Discovery of Narlaprevir (SCH 900518): A potent, second generation HCV NS3 serine protease inhibitor. ACS Med. Chem. Lett., 2010, 1(2), 64-69.
[http://dx.doi.org/10.1021/ml9000276] [PMID: 24900178]
[135]
McCauley, J.A.; McIntyre, C.J.; Rudd, M.T.; Nguyen, K.T.; Romano, J.J.; Butcher, J.W.; Gilbert, K.F.; Bush, K.J.; Holloway, M.K.; Swestock, J.; Wan, B.L.; Carroll, S.S.; DiMuzio, J.M.; Graham, D.J.; Ludmerer, S.W.; Mao, S.S.; Stahlhut, M.W.; Fandozzi, C.M.; Trainor, N.; Olsen, D.B.; Vacca, J.P.; Liverton, N.J. Discovery of vaniprevir (MK-7009), a macrocyclic hepatitis C virus NS3/4a protease inhibitor. J. Med. Chem., 2010, 53(6), 2443-2463.
[http://dx.doi.org/10.1021/jm9015526] [PMID: 20163176]
[136]
Barauskas, O.; Corsa, A.C.; Wang, R.; Hluhanich, S.; Jin, D.; Hung, M.; Yang, H.; Delaney, W.E., IV; Schultz, B.E. Binding kinetics, potency, and selectivity of the hepatitis C virus NS3 protease inhibitors GS-9256 and vedroprevir. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(12), 3292-3298.
[http://dx.doi.org/10.1016/j.bbagen.2014.08.002] [PMID: 25139683]
[137]
Chandwani, A.; Shuter, J. Lopinavir/ritonavir in the treatment of HIV-1 infection: A review. Ther. Clin. Risk Manag., 2008, 4(5), 1023-1033.
[PMID: 19209283]
[138]
Deeks, E.D. Cobicistat: A review of its use as a pharmacokinetic enhancer of atazanavir and darunavir in patients with HIV-1 infection. Drugs, 2014, 74(2), 195-206.
[http://dx.doi.org/10.1007/s40265-013-0160-x] [PMID: 24343782]
[139]
Wood, R. Atazanavir: its role in HIV treatment. Expert Rev. Anti Infect. Ther., 2008, 6(6), 785-796.
[http://dx.doi.org/10.1586/14787210.6.6.785] [PMID: 19053892]
[140]
Kahan, B.D. Sirolimus: A comprehensive review. Expert Opin. Pharmacother., 2001, 2(11), 1903-1917.
[http://dx.doi.org/10.1517/14656566.2.11.1903] [PMID: 11825325]
[141]
Peters, D.H.; Fitton, A.; Plosker, G.L.; Faulds, D. Tacrolimus. Drugs, 1993, 46(4), 746-794.
[http://dx.doi.org/10.2165/00003495-199346040-00009] [PMID: 7506654]
[142]
Wegener, K. Efforts toward the synthesis of phenylalanine-containing macrocycles derived from dimerization of triazine monomers to explore bro5 properties. Honors Thesis, Texas Christian University: Texas, November, 2020.
[143]
Wiederhold, B.; Garmon, E.; Peterson, E.; Stevens, J.; O’Rourke, M. Nerve Block Aresthesia. StatPearls; StatPearls Publishing: Treasure Island, FL, 2021, p. 16. https://www.ncbi.nlm.nih.gov/books/NBK431109
[144]
Hamlyn, J.M.; Hamilton, B.P.; Manunta, P. Endogenous ouabain, sodium balance and blood pressure: A review and a hypothesis. J. Hypertens., 1996, 14(2), 151-167.
[http://dx.doi.org/10.1097/00004872-199602000-00002] [PMID: 8728291]
[145]
Poli, A. Atorvastatin. Drugs, 2007, 67(1), 3-15.
[http://dx.doi.org/10.2165/00003495-200767001-00002] [PMID: 17910517]
[146]
McIver, L.A.; Siddique, M.S. Atorvastatin.In: StatPearls; StatPearls Publishing, 2021.
[147]
Jensen, C.; Herold, P.; Brunner, H.R. Aliskiren: the first renin inhibitor for clinical treatment. Nat. Rev. Drug Discov., 2008, 7(5), 399-410.
[http://dx.doi.org/10.1038/nrd2550] [PMID: 18340340]
[148]
Deppe, S.; Böger, R.H.; Weiss, J.; Benndorf, R.A. Telmisartan: A review of its pharmacodynamic and pharmacokinetic properties. Expert Opin. Drug Metab. Toxicol., 2010, 6(7), 863-871.
[http://dx.doi.org/10.1517/17425255.2010.494597] [PMID: 20509777]
[149]
Jones, R.; Prommer, E.; Backstedt, D. Naloxegol. Am. J. Hosp. Palliat. Care, 2016, 33(9), 875-880.
[http://dx.doi.org/10.1177/1049909115593937] [PMID: 26150678]
[150]
Panno, M.D.; Cefalù, A.B.; Averna, M.R. Lomitapide: A novel drug for homozygous familial hypercholesterolemia. Clin. Lipidol., 2014, 9(1), 19-32.
[http://dx.doi.org/10.2217/clp.13.74]
[151]
Hasan, M.M.; Khan, Z.; Chowdhury, M.S.; Khan, M.A.; Moni, M.A.; Rahman, M.H. In silico molecular docking and ADME/T analysis of Quercetin compound with its evaluation of broad-spectrum therapeutic potential against particular diseases. Informat. Medic. Unlock., 2022, 29, 100894.
[http://dx.doi.org/10.1016/j.imu.2022.100894]
[152]
Pawar, V.S.; Lokwani, D.K.; Bhandari, S.V.; Bothara, K.G.; Chitre, T.S.; Devale, T.L.; Modhave, N.S.; Parikh, J.K. Design, docking study and ADME prediction of Isatin derivatives as anti-HIV agents. Med. Chem. Res., 2011, 20(3), 370-380.
[http://dx.doi.org/10.1007/s00044-010-9329-y]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy