Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Exploration and Validation of Lead Molecules against Yellow Fever through High Throughput Virtual Screening and Molecular Dynamics Simulation

Author(s): Nachammai Kathiresan, Sangavi Pandi, Thameema Parveen Sahul, Gowtham Kumar Subbaraj, Priyanka Ganapathy, Kirubhanand Chandrashekar and Langeswaran Kulanthaivel*

Volume 21, Issue 8, 2024

Published on: 27 March, 2023

Page: [1417 - 1428] Pages: 12

DOI: 10.2174/1570180820666230223113742

Price: $65

Abstract

Background: Yellow fever (YF) is a mosquito-borne flaviviral hemorrhagic fever (VHF) that causes severe hepatitis, renal failure, bleeding, and quick terminal events such as shock and multi-organ failure. There are currently no particular anti-viral medications for the management of the YF virus (YFV). Despite the availability of a commercial YFV vaccination, there are roughly 30,000 fatalities globally each year, with instances rising over the previous 20 years. After being translocated into the endoplasmic reticulum lumen, glycosylated NS1 resides as a membrane-associated dimer, where it is required for viral genome replication. The secreted hexamer NS1 has a role in immune evasion and pathogenesis and has been discovered as a possible diagnostic marker for the early identification of viral infections.

Objective: The main aim of this study is to analyze the small molecule as a potent drug candidate against the target NS1 protein.

Methods: In this study, Computational approaches, including high throughput virtual screening, molecular docking, and dynamics simulation, were carried out against the target NS1 protein using three different chemical libraries Enamine, Asinex, and NCI. The selected lead compounds were validated through HOMO-LUMO analysis, ADME prediction, and Toxicity parameters to analyze the biological and pharmacological properties of the lead small molecules.

Results: From the result, it was concluded that the leads possessed the highest docking scores, interacting with the binding residues, and were stable in the simulation period.

Conclusion: Overall findings revealed that the lead three small molecules could act as the potential drug candidate for the target NS1 protein to inhibit the diseasing efficacy of Yellow fever.

Graphical Abstract

[1]
Waggoner, J.J.; Rojas, A.; Pinsky, B.A. Yellow fever virus: Diagnostics for a persistent arboviral threat. J. Clin. Microbiol., 2018, 56(10), e00827-18.
[http://dx.doi.org/10.1128/JCM.00827-18] [PMID: 30021822]
[2]
Litvoc, M.N.; Novaes, C.T.G.; Lopes, M.I.B.F. Yellow fever. Rev. Assoc. Med. Bras., 2018, 64(2), 106-113.
[http://dx.doi.org/10.1590/1806-9282.64.02.106] [PMID: 29641667]
[3]
Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID) 2021, Division of Vector-Borne Diseases (DVBD).,
[4]
Visser, L.G. Fractional-dose yellow fever vaccination. Curr. Opin. Infect. Dis., 2019, 32(5), 390-393.
[http://dx.doi.org/10.1097/QCO.0000000000000576] [PMID: 31335440]
[5]
Silva, N.I.O.; Sacchetto, L.; de Rezende, I.M.; Trindade, G.S.; LaBeaud, A.D.; de Thoisy, B.; Drumond, B.P. Recent sylvatic yellow fever virus transmission in Brazil: The news from an old disease. Virol. J., 2020, 17(1), 9.
[http://dx.doi.org/10.1186/s12985-019-1277-7] [PMID: 31973727]
[6]
Davis, E.H.; Barrett, A.D.T. Structure–function of the yellow fever virus envelope protein: Analysis of antibody epitopes. Viral Immunol., 2020, 33(1), 12-21.
[http://dx.doi.org/10.1089/vim.2019.0107] [PMID: 31682201]
[7]
Rastogi, M.; Sharma, N.; Singh, S.K. Flavivirus NS1: A multifaceted enigmatic viral protein. Virol. J., 2016, 13(1), 131.
[http://dx.doi.org/10.1186/s12985-016-0590-7] [PMID: 27473856]
[8]
Plaszczyca, A.; Scaturro, P.; Neufeldt, C.J.; Cortese, M.; Cerikan, B.; Ferla, S. A novel interaction between dengue virus nonstructural protein 1 and the NS4A-2K-4B precursor is required for viral RNA replication but not for formation of the membranous replication organelle. PLoS Pathog., 2019, 15(5), e1007736.
[http://dx.doi.org/10.1371/journal.ppat.1007736.g012]
[9]
Scaturro, P.; Cortese, M.; Chatel-Chaix, L.; Fischl, W.; Bartenschlager, R. Dengue virus non-structural protein 1 modulates infectious particle production via interaction with the structural proteins. PLoS Pathog., 2015, 11(11), e1005277.
[http://dx.doi.org/10.1371/journal.ppat.1005277] [PMID: 26562291]
[10]
Akey, D.L.; Brown, W.C.; Dutta, S.; Konwerski, J.; Jose, J.; Jurkiw, T.J.; DelProposto, J.; Ogata, C.M.; Skiniotis, G.; Kuhn, R.J.; Smith, J.L. Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science, 2014, 343(6173), 881-885.
[http://dx.doi.org/10.1126/science.1247749] [PMID: 24505133]
[11]
Protein Preparation WizardEpik Schrödinger, LLC: New York NY,, 2021. Available from: https://www.schrodinger.com/science-articles/protein-preparation-wizard
[12]
Sangavi, P.; Langeswaran, K. Anti-tumorigenic efficacy of tangeretin in liver cancer-an in silico approach. Curr. Comput. Aided Drug Des., 2021, 17(3), 337-343.
[http://dx.doi.org/10.2174/1573409916666200219120254] [PMID: 32072904]
[13]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server.In: The Proteomics Protocols Handbook; John, M.W., Ed.; Humana Press: Totowa, NJ, 2005, pp. 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[14]
SiteMap Schrödinger, LLC: New York, NY, 2021. Available from: https://www.schrodinger.com/products/sitemap
[15]
LigPrep Schrödinger, LLC: New York, NY, 2021. Available from: https://www.schrodinger.com/products/ligprep
[16]
Sangavi, P.; Rajapriya, R.; Sannathul, F.; Langeswaran, K. Identification of bioactive compounds and potential inhibitors for breast cancer from Musa sapientum peel An in vitro and in silico approach., 2021.
[17]
Shaslinah, N.; Sangavi, P.; Sangeetha, R.; Gowthamkumar, S.; Sindhu, V.; Langeswaran, K. Screening and identification of potential inhibitor for visceral leishmaniasis (VL) through computational analysis. J. Genet. Eng. Biotechnol., 2022, 20(1), 35.
[http://dx.doi.org/10.1186/s43141-022-00318-3] [PMID: 35195803]
[18]
Sangavi, P.; Langeswaran, K.; Kumar, S.G. Anticarcinogenic efficacy of fucoxanthin on HepG2 cell lines. J. Clin. Diagn. Res., 2022, 16(2), 05-09.
[http://dx.doi.org/10.7860/JCDR/2022/49462.16007]
[19]
Nayak, C.; Singh, S.K. In silico identification of natural product inhibitors against Octamer-binding transcription factor 4 (Oct4) to impede the mechanism of glioma stem cells. PLoS One, 2021, 16(10), e0255803.
[http://dx.doi.org/10.1371/journal.pone.0255803] [PMID: 34613998]
[20]
Anitha, R.; Sangeetha, R. Synthesis, crystallization, XRD, Hirshfeld surface, vibrational spectra, and quantum chemical studies and computational investigation of Caffeinium bisulfate: A new noncentrosymmetric form. J. Biomol. Struct. Dyn., 2021, 41(6), 1-18.
[http://dx.doi.org/10.1080/07391102.2021.2015445] [PMID: 34913831]
[21]
Panwar, U.; Singh, S.K. In silico virtual screening of potent inhibitor to hamper the interaction between HIV-1 integrase and LEDGF/p75 interaction using E-pharmacophore modeling, molecular docking, and dynamics simulations. Comput. Biol. Chem., 2021, 93, 107509.
[http://dx.doi.org/10.1016/j.compbiolchem.2021.107509] [PMID: 34153658]
[22]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[23]
Lundborg, M.; Lindahl, E. Automatic GROMACS topology generation and comparisons of force fields for solvation free energy calculations. J. Phys. Chem. B, 2015, 119(3), 810-823.
[http://dx.doi.org/10.1021/jp505332p] [PMID: 25343332]
[24]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[25]
Turner, P.J. XMGRACE, Version 5.1.25. Center for Coastal and Land-Margin Research; Oregon Graduate Institute of Science and Technology: Beaverton, OR, USA, 2015, p. 2005.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy