Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Osimertinib Induces the Opposite Effect of Proliferation and Migration in the Drug Resistance of EGFR-T790M Non-small Cell Lung Cancer Cells

Author(s): Rou-Hsin Wang, Chien-Jen Chang, Chien-Hung Chen, Kuang-Kai Liu and Jui-I Chao*

Volume 23, Issue 11, 2023

Published on: 16 March, 2023

Page: [1309 - 1319] Pages: 11

DOI: 10.2174/1871520623666230223111217

Price: $65

Abstract

Background: Lung cancer has become one of the leading causes of cancer incidence and mortality worldwide. Non-small cell lung carcinoma (NSCLC) is the most common type among all lung cancer cases. NSCLC patients contained high levels of activating epidermal growth factor receptor (EGFR) mutations, such as exon 19 deletion, L858R and T790M. Osimertinib, a third-generation of EGFR tyrosine kinase inhibitor (EGFR-TKI), has therapeutic efficacy on the EGFR-T790M mutation of NSCLC patients; however, treatment of osimertinib still can induce drug resistance in lung cancer patients. Therefore, investigation of the drug resistance mechanisms of osimertinib will provide novel strategies for lung cancer therapy.

Methods: The H1975OR osimertinib-resistant cell line was established by prolonged exposure with osimertinib derived from the H1975 cells. The cell proliferation ability was evaluated by the cell viability and cell growth assays. The cell migration ability was determined by the Boyden chamber assays. The differential gene expression profile was analyzed by genome-wide RNA sequencing. The protein expression and location were analyzed by western blot and confocal microscopy.

Results: In this study, we established the osimertinib-resistant H1975 (T790M/L858R) cancer cells, named the H1975OR cell line. The cell growth ability was decreased in the H1975OR cells by comparison with the H1975 parental cells. Conversely, the cell migration ability was elevated in the H1975OR cells. We found the differential gene expression profile of cell proliferation and migration pathways between the H1975OR and H1975 parental cells. Interestingly, the protein levels of phospho-EGFR, PD-L1, E-cadherin and β-catenin were decreased, but the survivin and N-cadherin proteins were increased in the H1975OR drug-resistant cells.

Conclusion: Osimertinib induces the opposite effect of proliferation and migration in the drug resistance of EGFRT790M lung cancer cells. We suggest that differential gene and protein expressions in the cell proliferation and migration pathways may mediate the drug resistance of osimertinib in lung cancer cells. Understanding the molecular drugresistant mechanisms of proliferation and migration pathways of osimertinib may provide novel targets and strategies for the clinical treatment of EGFR-TKIs in lung cancer patients.

Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[2]
Herbst, R.S.; Heymach, J.V.; Lippman, S.M. Lung Cancer. N. Engl. J. Med., 2008, 359(13), 1367-1380.
[http://dx.doi.org/10.1056/NEJMra0802714] [PMID: 18815398]
[3]
Sabbula, B.R.; Anjum, F. Squamous Cell Lung Cancer; StatPearls: Treasure Island, FL, 2022.
[4]
Bethune, G.; Bethune, D.; Ridgway, N.; Xu, Z. Epidermal growth factor receptor (EGFR) in lung cancer: An overview and update. J. Thorac. Dis., 2010, 2(1), 48-51.
[PMID: 22263017]
[5]
Kanthala, S.; Pallerla, S.; Jois, S. Current and future targeted therapies for non-small-cell lung cancers with aberrant EGF receptors. Future Oncol., 2015, 11(5), 865-878.
[http://dx.doi.org/10.2217/fon.14.312] [PMID: 25757687]
[6]
Hubbard, S.R.; Miller, W.T. Receptor tyrosine kinases: Mechanisms of activation and signaling. Curr. Opin. Cell Biol., 2007, 19(2), 117-123.
[http://dx.doi.org/10.1016/j.ceb.2007.02.010] [PMID: 17306972]
[7]
Marshall, C.J. Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation. Cell, 1995, 80(2), 179-185.
[http://dx.doi.org/10.1016/0092-8674(95)90401-8] [PMID: 7834738]
[8]
Ding, L.; Getz, G.; Wheeler, D.A.; Mardis, E.R.; McLellan, M.D.; Cibulskis, K.; Sougnez, C.; Greulich, H.; Muzny, D.M.; Morgan, M.B.; Fulton, L.; Fulton, R.S.; Zhang, Q.; Wendl, M.C.; Lawrence, M.S.; Larson, D.E.; Chen, K.; Dooling, D.J.; Sabo, A.; Hawes, A.C.; Shen, H.; Jhangiani, S.N.; Lewis, L.R.; Hall, O.; Zhu, Y.; Mathew, T.; Ren, Y.; Yao, J.; Scherer, S.E.; Clerc, K.; Metcalf, G.A.; Ng, B.; Milosavljevic, A.; Gonzalez-Garay, M.L.; Osborne, J.R.; Meyer, R.; Shi, X.; Tang, Y.; Koboldt, D.C.; Lin, L.; Abbott, R.; Miner, T.L.; Pohl, C.; Fewell, G.; Haipek, C.; Schmidt, H.; Dunford-Shore, B.H.; Kraja, A.; Crosby, S.D.; Sawyer, C.S.; Vickery, T.; Sander, S.; Robinson, J.; Winckler, W.; Baldwin, J.; Chirieac, L.R.; Dutt, A.; Fennell, T.; Hanna, M.; Johnson, B.E.; Onofrio, R.C.; Thomas, R.K.; Tonon, G.; Weir, B.A.; Zhao, X.; Ziaugra, L.; Zody, M.C.; Giordano, T.; Orringer, M.B.; Roth, J.A.; Spitz, M.R.; Wistuba, I.I., II; Ozenberger, B.; Good, P.J.; Chang, A.C.; Beer, D.G.; Watson, M.A.; Ladanyi, M.; Broderick, S.; Yoshizawa, A.; Travis, W.D.; Pao, W.; Province, M.A.; Weinstock, G.M.; Varmus, H.E.; Gabriel, S.B.; Lander, E.S.; Gibbs, R.A.; Meyerson, M.; Wilson, R.K. Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 2008, 455(7216), 1069-1075.
[http://dx.doi.org/10.1038/nature07423] [PMID: 18948947]
[9]
Tomas, A.; Futter, C.E.; Eden, E.R. EGF receptor trafficking: Consequences for signaling and cancer. Trends Cell Biol., 2014, 24(1), 26-34.
[http://dx.doi.org/10.1016/j.tcb.2013.11.002] [PMID: 24295852]
[10]
Mao, H.; Sun, Y. Neddylation-independent activities of MLN4924. Adv. Exp. Med. Biol., 2020, 1217, 363-372.
[http://dx.doi.org/10.1007/978-981-15-1025-0_21] [PMID: 31898238]
[11]
Brückl, W.; Tufman, A.; Huber, R.M. Advanced non-small cell lung cancer (NSCLC) with activating EGFR mutations: First-line treatment with afatinib and other EGFR TKIs. Expert Rev. Anticancer Ther., 2017, 17(2), 143-155.
[http://dx.doi.org/10.1080/14737140.2017.1266265] [PMID: 27898252]
[12]
Harrison, P.T.; Vyse, S.; Huang, P.H. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin. Cancer Biol., 2020, 61, 167-179.
[http://dx.doi.org/10.1016/j.semcancer.2019.09.015] [PMID: 31562956]
[13]
Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.K.; Batra, S.K. Targeting the EGFR signaling pathway in cancer thera-py. Expert Opin. Ther. Targets, 2012, 16(1), 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[14]
Sullivan, I.; Planchard, D. Next-generation EGFR tyrosine kinase inhibitors for treating EGFR-mutant lung cancer beyond first line. Front. Med., 2017, 3, 76.
[http://dx.doi.org/10.3389/fmed.2016.00076] [PMID: 28149837]
[15]
Lin, Y.; Wang, X.; Jin, H. EGFR-TKI resistance in NSCLC patients: Mechanisms and strategies. Am. J. Cancer Res., 2014, 4(5), 411-435.
[PMID: 25232485]
[16]
Wang, Y.; Guo, Z.; Li, Y.; Zhou, Q. Development of epidermal growth factor receptor tyrosine kinase inhibitors against EGFR T790M. Mutation in non small-cell lung carcinoma. Open Med., 2016, 11(1), 68-77.
[http://dx.doi.org/10.1515/med-2016-0014] [PMID: 28352770]
[17]
Choi, Y.W.; Choi, J.H. Does the efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor differ according to the type of EGFR mutation in non-small cell lung cancer? Korean J. Intern. Med., 2017, 32(3), 422-428.
[http://dx.doi.org/10.3904/kjim.2016.190] [PMID: 28352061]
[18]
Gao, X.; Le, X.; Costa, D.B. The safety and efficacy of osimertinib for the treatment of EGFR T790M mutation positive non-small-cell lung cancer. Exp. Rev. Anticancer Ther., 2016, 16(4), 383-390.
[http://dx.doi.org/10.1586/14737140.2016.1162103] [PMID: 26943236]
[19]
Duggirala, K.B.; Lee, Y.; Lee, K. Chronicles of EGFR Tyrosine Kinase Inhibitors: Targeting EGFR C797S containing triple mutations. Biomol. Ther., 2022, 30(1), 19-27.
[http://dx.doi.org/10.4062/biomolther.2021.047] [PMID: 34074804]
[20]
Liang, H.; Pan, Z.; Wang, W.; Guo, C.; Chen, D.; Zhang, J.; Zhang, Y.; Tang, S.; He, J.; Liang, W. The alteration of T790M between 19 del and L858R in NSCLC in the course of EGFR-TKIs therapy: A literature-based pooled analysis. J. Thorac. Dis., 2018, 10(4), 2311-2320.
[http://dx.doi.org/10.21037/jtd.2018.03.150] [PMID: 29850136]
[21]
Cross, D.A.E.; Ashton, S.E.; Ghiorghiu, S.; Eberlein, C.; Nebhan, C.A.; Spitzler, P.J.; Orme, J.P.; Finlay, M.R.V.; Ward, R.A.; Mellor, M.J.; Hughes, G.; Rahi, A.; Jacobs, V.N.; Brewer, M.R.; Ichihara, E.; Sun, J.; Jin, H.; Ballard, P.; Al-Kadhimi, K.; Rowlinson, R.; Klinowska, T.; Richmond, G.H.P.; Cantarini, M.; Kim, D.W.; Ranson, M.R.; Pao, W. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov., 2014, 4(9), 1046-1061.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0337] [PMID: 24893891]
[22]
Masuzawa, K.; Yasuda, H.; Hamamoto, J.; Nukaga, S.; Hirano, T.; Kawada, I.; Naoki, K.; Soejima, K.; Betsuyaku, T. Characterization of the efficacies of osimertinib and nazartinib against cells expressing clinically relevant epidermal growth factor receptor mutations. Oncotarget, 2017, 8(62), 105479-105491.
[http://dx.doi.org/10.18632/oncotarget.22297] [PMID: 29285266]
[23]
Igawa, S.; Ono, T.; Kasajima, M.; Ishihara, M.; Hiyoshi, Y.; Kusuhara, S.; Nishinarita, N.; Fukui, T.; Kubota, M.; Sasaki, J.; Hisashi, M.; Yokoba, M.; Katagiri, M.; Naoki, K. Impact of EGFR genotype on the efficacy of osimertinib in EGFR tyrosine kinase inhibitor-resistant patients with non-small cell lung cancer: A prospective observational study. Cancer Manag. Res., 2019, 11, 4883-4892.
[http://dx.doi.org/10.2147/CMAR.S207170] [PMID: 31213907]
[24]
Ito, K.; Hataji, O. Osimertinib therapy as first-line treatment before acquiring T790M mutation: From AURA1 trial. J. Thorac. Dis., 2018, 10(S26), S3071-S3077.
[http://dx.doi.org/10.21037/jtd.2018.07.52] [PMID: 30430025]
[25]
Mancini, M.; Gal, H.; Gaborit, N.; Mazzeo, L.; Romaniello, D.; Salame, T.M.; Lindzen, M.; Mahlknecht, G.; Enuka, Y.; Burton, D.G.; Roth, L.; Noronha, A.; Marrocco, I.; Adreka, D.; Altstadter, R.E.; Bousquet, E.; Downward, J.; Maraver, A.; Krizhanovsky, V.; Yarden, Y. An oligoclonal antibody durably overcomes resistance of lung cancer to third-generation EGFR inhibitors. EMBO Mol. Med., 2018, 10(2), 294-308.
[PMID: 29212784]
[26]
Ma, L.; Chen, R.; Wang, F.; Ma, L.L.; Yuan, M.M.; Chen, R.R.; Liu, J. EGFR L718Q mutation occurs without T790M mutation in a lung adenocarcinoma patient with acquired resistance to osimertinib. Ann. Transl. Med., 2019, 7(9), 207.
[http://dx.doi.org/10.21037/atm.2019.04.37] [PMID: 31205925]
[27]
Tang, Z.H.; Lu, J.J. Osimertinib resistance in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Lett., 2018, 420, 242-246.
[http://dx.doi.org/10.1016/j.canlet.2018.02.004] [PMID: 29425688]
[28]
Tan, C.S.; Kumarakulasinghe, N.B.; Huang, Y.Q.; Ang, Y.L.E.; Choo, J.R.E.; Goh, B.C.; Soo, R.A. Third generation EGFR TKIs: Current data and future directions. Mol. Cancer, 2018, 17(1), 29.
[http://dx.doi.org/10.1186/s12943-018-0778-0] [PMID: 29455654]
[29]
Lawson, C.D.; Ridley, A.J. Rho GTPase signaling complexes in cell migration and invasion. J. Cell Biol., 2018, 217(2), 447-457.
[http://dx.doi.org/10.1083/jcb.201612069] [PMID: 29233866]
[30]
Sakumura, Y.; Tsukada, Y.; Yamamoto, N.; Ishii, S. A molecular model for axon guidance based on cross talk between rho GTPases. Biophys. J., 2005, 89(2), 812-822.
[http://dx.doi.org/10.1529/biophysj.104.055624] [PMID: 15923236]
[31]
Liu, M.; Bi, F.; Zhou, X.; Zheng, Y. Rho GTPase regulation by miRNAs and covalent modifications. Trends Cell Biol., 2012, 22(7), 365-373.
[http://dx.doi.org/10.1016/j.tcb.2012.04.004] [PMID: 22572609]
[32]
Iderzorig, T.; Kellen, J.; Osude, C.; Singh, S.; Woodman, J.A.; Garcia, C.; Puri, N. Comparison of epithelial mesenchymal transition medi-ated tyrosine kinase inhibitor resistance in non-small cell lung cancer cell lines with wild type EGFR and mutant type EGFR. Biochem. Biophys. Res. Commun., 2018, 496(2), 770-777.
[33]
Du, W.; Liu, X.; Fan, G.; Zhao, X.; Sun, Y.; Wang, T.; Zhao, R.; Wang, G.; Zhao, C.; Zhu, Y.; Ye, F.; Jin, X.; Zhang, F.; Zhong, Z.; Li, X. From cell membrane to the nucleus: An emerging role of E‐cadherin in gene transcriptional regulation. J. Cell. Mol. Med., 2014, 18(9), 1712-1719.
[http://dx.doi.org/10.1111/jcmm.12340] [PMID: 25164084]
[34]
Sasaki, C.Y.; Lin, H.; Passaniti, A. Expression of E-cadherin reduces Bcl-2 expression and increases sensitivity to etoposide-induced apoptosis. Int. J. Cancer, 2000, 86(5), 660-666.
[http://dx.doi.org/10.1002/(SICI)1097-0215(20000601)86:5<660:AID-IJC9>3.0.CO;2-X] [PMID: 10797287]
[35]
Liu, K.; Chen, X.; Wu, L.; Chen, S.; Fang, N.; Cai, L.; Jia, J. ID1 mediates resistance to osimertinib in EGFR T790M-positive non-small cell lung cancer through epithelial-mesenchymal transition. BMC Pulm. Med., 2021, 21(1), 163.
[http://dx.doi.org/10.1186/s12890-021-01540-4] [PMID: 33992097]
[36]
Liu, Z.; Gao, W. Overcoming acquired resistance of gefitinib in lung cancer cells without T790M by AZD9291 or Twist1 knockdown in vitro and in vivo. Arch. Toxicol., 2019, 93(6), 1555-1571.
[http://dx.doi.org/10.1007/s00204-019-02453-2] [PMID: 30993382]
[37]
Jiang, X.M.; Xu, Y.L.; Huang, M.Y.; Zhang, L.L.; Su, M.X.; Chen, X.; Lu, J.J. Osimertinib (AZD9291) decreases programmed death lig-and-1 in EGFR-mutated non-small cell lung cancer cells. Acta Pharmacol. Sin., 2017, 38(11), 1512-1520.
[http://dx.doi.org/10.1038/aps.2017.123] [PMID: 28880013]
[38]
Huang, M.Y.; Jiang, X.M.; Wang, B.L.; Sun, Y.; Lu, J.J. Combination therapy with PD-1/PD-L1 blockade in non-small cell lung cancer: Strategies and mechanisms. Pharmacol. Ther., 2021, 219107694
[http://dx.doi.org/10.1016/j.pharmthera.2020.107694] [PMID: 32980443]
[39]
Wang, S.P.; Hsu, Y.P.; Chang, C.J.; Chan, Y.C.; Chen, C.H.; Wang, R.H.; Liu, K.K.; Pan, P.Y.; Wu, Y.H.; Yang, C.M.; Chen, C.; Yang, J.M.; Liang, M.C.; Wong, K.K.; Chao, J.I. A novel EGFR inhibitor suppresses survivin expression and tumor growth in human gefitinib-resistant EGFR-wild type and -T790M non-small cell lung cancer. Biochem. Pharmacol., 2021, 193114792
[http://dx.doi.org/10.1016/j.bcp.2021.114792]
[40]
Head, S.R.; Komori, H.K.; LaMere, S.A.; Whisenant, T.; Van Nieuwerburgh, F.; Salomon, D.R.; Ordoukhanian, P. Library construction for next-generation sequencing: Overviews and challenges. Biotechniques, 2014, 56(2), 61-77.
[http://dx.doi.org/10.2144/000114133] [PMID: 24502796]
[41]
Gillespie, M.; Jassal, B.; Stephan, R.; Milacic, M.; Rothfels, K.; Senff-Ribeiro, A.; Griss, J.; Sevilla, C.; Matthews, L.; Gong, C.; Deng, C.; Varusai, T.; Ragueneau, E.; Haider, Y.; May, B.; Shamovsky, V.; Weiser, J.; Brunson, T.; Sanati, N.; Beckman, L.; Shao, X.; Fabregat, A.; Sidiropoulos, K.; Murillo, J.; Viteri, G.; Cook, J.; Shorser, S.; Bader, G.; Demir, E.; Sander, C.; Haw, R.; Wu, G.; Stein, L.; Hermjakob, H.; D’Eustachio, P. The reactome pathway knowledgebase 2022. Nucleic Acids Res., 2022, 50(D1), D687-D692.
[http://dx.doi.org/10.1093/nar/gkab1028] [PMID: 34788843]
[42]
Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[43]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[44]
Sah, N.K.; Khan, Z.; Khan, G.J.; Bisen, P.S. Structural, functional and therapeutic biology of survivin. Cancer Lett., 2006, 244(2), 164-171.
[http://dx.doi.org/10.1016/j.canlet.2006.03.007] [PMID: 16621243]
[45]
Chen, X.; Duan, N.; Zhang, C.; Zhang, W. Survivin and tumorigenesis: Molecular mechanisms and therapeutic strategies. J. Cancer, 2016, 7(3), 314-323.
[http://dx.doi.org/10.7150/jca.13332] [PMID: 26918045]
[46]
Chandele, A.; Prasad, V.; Jagtap, J.C.; Shukla, R.; Shastry, P.R. Upregulation of survivin in G2/M cells and inhibition of caspase 9 activity enhances resistance in staurosporine-induced apoptosis. Neoplasia, 2004, 6(1), 29-40.
[http://dx.doi.org/10.1016/S1476-5586(04)80051-4] [PMID: 15068669]
[47]
Cheng, F.; Eriksson, J.E. Intermediate filaments and the regulation of cell motility during regeneration and wound healing. Cold Spring Harb. Perspect. Biol., 2017, 9(9)a022046
[http://dx.doi.org/10.1101/cshperspect.a022046] [PMID: 28864602]
[48]
Gao, Y.; Nihira, N.T.; Bu, X.; Chu, C.; Zhang, J.; Kolodziejczyk, A.; Fan, Y.; Chan, N.T.; Ma, L.; Liu, J.; Wang, D.; Dai, X.; Liu, H.; Ono, M.; Nakanishi, A.; Inuzuka, H.; North, B.J.; Huang, Y.H.; Sharma, S.; Geng, Y.; Xu, W.; Liu, X.S.; Li, L.; Miki, Y.; Sicinski, P.; Freeman, G.J.; Wei, W. Acetylation-dependent regulation of PD-L1 nuclear translocation dictates the efficacy of anti-PD-1 immunotherapy. Nat. Cell Biol., 2020, 22(9), 1064-1075.
[http://dx.doi.org/10.1038/s41556-020-0562-4] [PMID: 32839551]
[49]
Lee, H.H.; Wang, Y.N.; Xia, W.; Chen, C.H.; Rau, K.M.; Ye, L.; Wei, Y.; Chou, C.K.; Wang, S.C.; Yan, M.; Tu, C.Y.; Hsia, T.C.; Chiang, S.F.; Chao, K.S.C.; Wistuba, I.I., II; Hsu, J.L.; Hortobagyi, G.N.; Hung, M.C. Removal of N-linked glycosylation enhances PD-L1 detec-tion and predicts anti-PD-1/PD-L1 therapeutic efficacy. Cancer Cell, 2019, 36(2), 168-178.
[http://dx.doi.org/10.1016/j.ccell.2019.06.008] [PMID: 31327656]
[50]
Yu, J.; Qin, B.; Moyer, A.M.; Nowsheen, S.; Tu, X.; Dong, H.; Boughey, J.C.; Goetz, M.P.; Weinshilboum, R.; Lou, Z.; Wang, L. Regula-tion of sister chromatid cohesion by nuclear PD-L1. Cell Res., 2020, 30(7), 590-601.
[http://dx.doi.org/10.1038/s41422-020-0315-8] [PMID: 32350394]
[51]
Kornepati, A.V.R.; Vadlamudi, R.K.; Curiel, T.J. Programmed death ligand 1 signals in cancer cells. Nat. Rev. Cancer, 2022, 22(3), 174-189.
[http://dx.doi.org/10.1038/s41568-021-00431-4] [PMID: 35031777]
[52]
Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer, 2019, 121(9), 725-737.
[http://dx.doi.org/10.1038/s41416-019-0573-8] [PMID: 31564718]
[53]
Chiu, S.J.; Hsu, T.S.; Chao, J.I. Opposing securin and p53 protein expression in the oxaliplatin-induced cytotoxicity of human colorectal cancer cells. Toxicol. Lett., 2006, 167(2), 122-130.
[http://dx.doi.org/10.1016/j.toxlet.2006.08.018] [PMID: 17045763]
[54]
Chao, J.I.; Hsu, S.H.; Tsou, T.C. Depletion of securin increases arsenite-induced chromosome instability and apoptosis via a p53-independent pathway. Toxicol. Sci., 2006, 90(1), 73-86.
[http://dx.doi.org/10.1093/toxsci/kfj070] [PMID: 16338954]
[55]
Liu, H.F.; Hsiao, P.W.; Chao, J.I. Celecoxib induces p53-PUMA pathway for apoptosis in human colorectal cancer cells. Chem. Biol. Interact., 2008, 176(1), 48-57.
[http://dx.doi.org/10.1016/j.cbi.2008.07.012] [PMID: 18760266]
[56]
La Monica, S.; Fumarola, C.; Cretella, D.; Bonelli, M.; Minari, R.; Cavazzoni, A.; Digiacomo, G.; Galetti, M.; Volta, F.; Mancini, M.; Petro-nini, P.G.; Tiseo, M.; Alfieri, R. Efficacy of the CDK4/6 dual inhibitor abemaciclib in EGFR-mutated NSCLC cell lines with different re-sistance mechanisms to osimertinib. Cancers, 2020, 13(1), 6.
[http://dx.doi.org/10.3390/cancers13010006] [PMID: 33374971]
[57]
Qin, Q.; Li, X.; Liang, X.; Zeng, L.; Wang, J.; Sun, L.; Zhong, D. CDK4/6 inhibitor palbociclib overcomes acquired resistance to third‐generation EGFR inhibitor osimertinib in non‐small cell lung cancer (NSCLC). Thorac. Cancer, 2020, 11(9), 2389-2397.
[http://dx.doi.org/10.1111/1759-7714.13521] [PMID: 32677256]
[58]
Della Corte, C.M.; Malapelle, U.; Vigliar, E.; Pepe, F.; Troncone, G.; Ciaramella, V.; Troiani, T.; Martinelli, E.; Belli, V.; Ciardiello, F.; Morgillo, F. Efficacy of continuous EGFR-inhibition and role of Hedgehog in EGFR acquired resistance in human lung cancer cells with activating mutation of EGFR. Oncotarget, 2017, 8(14), 23020-23032.
[http://dx.doi.org/10.18632/oncotarget.15479] [PMID: 28416737]
[59]
Zhang, K.; Li, Y.; Liu, W.; Gao, X.; Zhang, K. Silencing survivin expression inhibits the tumor growth of non-small-cell lung cancer cells in vitro and in vivo. Mol. Med. Rep., 2015, 11(1), 639-644.
[http://dx.doi.org/10.3892/mmr.2014.2729] [PMID: 25333812]
[60]
Lou, Y.; Diao, L.; Cuentas, E.R.P.; Denning, W.L.; Chen, L.; Fan, Y.H.; Byers, L.A.; Wang, J.; Papadimitrakopoulou, V.A.; Behrens, C.; Rodriguez, J.C.; Hwu, P.; Wistuba, I.I.; Heymach, J.V.; Gibbons, D.L. Epithelial-mesenchymal transition is associated with a distinct tu-mor microenvironment including elevation of inflammatory signals and multiple immune checkpoints in lung adenocarcinoma. Clin. Cancer Res., 2016, 22(14), 3630-3642.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1434] [PMID: 26851185]
[61]
Jiang, Y.; Zhan, H. Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Cancer Lett., 2020, 468, 72-81.
[http://dx.doi.org/10.1016/j.canlet.2019.10.013] [PMID: 31605776]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy