Generic placeholder image

Current Aging Science

Editor-in-Chief

ISSN (Print): 1874-6098
ISSN (Online): 1874-6128

Review Article

Inter-organ Crosstalk and the Effect on the Aging Process in Obesity

Author(s): Ferah Armutcu* and Oguz Aslan Ozen

Volume 16, Issue 2, 2023

Published on: 16 March, 2023

Page: [97 - 111] Pages: 15

DOI: 10.2174/1874609816666230223110458

Price: $65

conference banner
Abstract

Aging is characterized by progressive regression in tissue and organ functions and an increased risk of disease and death. Aging is also accompanied by chronic low-grade inflammation. Both obesity and aging are associated with the development of metabolic diseases, leading to an increase in the senescent cell burden in multiple organs. Chronic low-grade inflammation of adipose tissue is one of the mechanisms implicated in the progression of these diseases. As a real endocrine organ, adipose tissue secretes many mediators and hormones (adipokines) to maintain metabolic homeostasis, and their dysfunction has been causally linked to a wide range of metabolic diseases. Dysfunctional adipose tissue participates in interorgan communication both by producing new signaling mediators and by transforming or disrupting signal mediators, reaching from other organs. In addition to obesity and similar metabolic diseases, this situation causes dysfunction in more organs in the aging process, and the complexity of the problem causes challenges in the diagnosis and treatment processes. This review aims to highlight recent developments and current information supporting the relationship between obesity and adipose tissue dysfunction with aging and the role of homeostatic and physio-pathological processes that mediate interorgan communication in aging progress. More understanding clearly of interorgan communication in the process of obesity and aging will facilitate the early diagnosis as well as the management of treatment practices in short- and long-term organ dysfunction.

Graphical Abstract

[1]
James PT, Leach R, Kalamara E, Shayeghi M. The worldwide obesity epidemic. Obes Res 2001; 9(S11): 228S-33S.
[http://dx.doi.org/10.1038/oby.2001.123] [PMID: 11707546]
[2]
Fruh SM. Obesity. J Am Assoc Nurse Pract 2017; 29(S1): S3-S14.
[http://dx.doi.org/10.1002/2327-6924.12510] [PMID: 29024553]
[3]
Reilly JJ, El-Hamdouchi A, Diouf A, Monyeki A, Somda SA. Determining the worldwide prevalence of obesity. Lancet 2018; 391(10132): 1773-4.
[http://dx.doi.org/10.1016/S0140-6736(18)30794-3] [PMID: 29739565]
[4]
Hruby A, Hu FB. The epidemiology of obesity: A big picture. PharmacoEconomics 2015; 33(7): 673-89.
[http://dx.doi.org/10.1007/s40273-014-0243-x] [PMID: 25471927]
[5]
Frasca D, Blomberg BB, Paganelli R. Aging, obesity, and inflammatory age-related diseases. Front Immunol 2017; 8: 1745.
[http://dx.doi.org/10.3389/fimmu.2017.01745] [PMID: 29270179]
[6]
Heymsfield SB, Wadden TA. Mechanisms, pathophysiology, and management of obesity. N Engl J Med 2017; 376(3): 254-66.
[http://dx.doi.org/10.1056/NEJMra1514009] [PMID: 28099824]
[7]
Armutcu F. Organ crosstalk: The potent roles of inflammation and fibrotic changes in the course of organ interactions. Inflamm Res 2019; 68(10): 825-39.
[http://dx.doi.org/10.1007/s00011-019-01271-7] [PMID: 31327029]
[8]
Bodine SC, Brooks HL, Bunnett NW, et al. An American physiological society cross-journal call for papers on “inter-organ communication in homeostasis and disease”. Am J Physiol Lung Cell Mol Physiol 2021; 321(1): L42-9.
[http://dx.doi.org/10.1152/ajplung.00209.2021] [PMID: 34010064]
[9]
Zhang X, Ji X, Wang Q, Li JZ. New insight into inter-organ crosstalk contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Protein Cell 2018; 9(2): 164-77.
[http://dx.doi.org/10.1007/s13238-017-0436-0] [PMID: 28643267]
[10]
Oishi Y, Manabe I. Organ system crosstalk in cardiometabolic disease in the age of multimorbidity. Front Cardiovasc Med 2020; 7: 64.
[http://dx.doi.org/10.3389/fcvm.2020.00064] [PMID: 32411724]
[11]
Kuvat N, Tanriverdi H, Armutcu F. The relationship between obstructive sleep apnea syndrome and obesity: A new perspective on the pathogenesis in terms of organ crosstalk. Clin Respir J 2020; 14(7): 595-604.
[http://dx.doi.org/10.1111/crj.13175] [PMID: 32112481]
[12]
Huang Z, Xu A. Adipose extracellular vesicles in intercellular and inter-organ crosstalk in metabolic health and diseases. Front Immunol 2021; 12: 608680.
[http://dx.doi.org/10.3389/fimmu.2021.608680] [PMID: 33717092]
[13]
Guilherme A, Henriques F, Bedard AH, Czech MP. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat Rev Endocrinol 2019; 15(4): 207-25.
[http://dx.doi.org/10.1038/s41574-019-0165-y] [PMID: 30733616]
[14]
Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature 2019; 576(7785): 51-60.
[http://dx.doi.org/10.1038/s41586-019-1797-8] [PMID: 31802013]
[15]
Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and age-related diseases: Role of inflammation triggers and cytokines. Front Immunol 2018; 9: 586.
[http://dx.doi.org/10.3389/fimmu.2018.00586] [PMID: 29686666]
[16]
Trim W, Turner JE, Thompson D. Parallels in immunometabolic adipose tissue dysfunction with ageing and obesity. Front Immunol 2018; 9: 169.
[http://dx.doi.org/10.3389/fimmu.2018.00169]
[17]
Roos V, Elmståhl S, Ingelsson E, Sundström J, Ärnlöv J, Lind L. Metabolic syndrome development during aging with special reference to obesity without the metabolic syndrome. Metab Syndr Relat Disord 2017; 15(1): 36-43.
[http://dx.doi.org/10.1089/met.2016.0082] [PMID: 27754771]
[18]
Kim JB. Dynamic cross talk between metabolic organs in obesity and metabolic diseases. Exp Mol Med 2016; 48(3): e214.
[http://dx.doi.org/10.1038/emm.2015.119] [PMID: 26964830]
[19]
Priest C, Tontonoz P. Inter-organ cross-talk in metabolic syndrome. Nat Metab 2019; 1(12): 1177-88.
[http://dx.doi.org/10.1038/s42255-019-0145-5] [PMID: 32694672]
[20]
Mendrick DL, Diehl AM, Topor LS, et al. Metabolic syndrome and associated diseases: From the bench to the clinic. Toxicol Sci 2018; 162(1): 36-42.
[http://dx.doi.org/10.1093/toxsci/kfx233] [PMID: 29106690]
[21]
Castillo-Armengol J, Fajas L, Lopez-Mejia IC. Inter-organ communication: A gatekeeper for metabolic health. EMBO Rep 2019; 20(9): e47903.
[http://dx.doi.org/10.15252/embr.201947903] [PMID: 31423716]
[22]
Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese. Biomed Pharmacother 2021; 137: 111315.
[http://dx.doi.org/10.1016/j.biopha.2021.111315] [PMID: 33561645]
[23]
Zatterale F, Longo M, Naderi J, et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front Physiol 2020; 10: 1607.
[http://dx.doi.org/10.3389/fphys.2019.01607] [PMID: 32063863]
[24]
Longo M, Zatterale F, Naderi J, et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci 2019; 20(9): 2358.
[http://dx.doi.org/10.3390/ijms20092358] [PMID: 31085992]
[25]
Kunz HE, Hart CR, Gries KJ, et al. Adipose tissue macrophage populations and inflammation are associated with systemic inflammation and insulin resistance in obesity. Am J Physiol Endocrinol Metab 2021; 321(1): E105-21.
[http://dx.doi.org/10.1152/ajpendo.00070.2021] [PMID: 33998291]
[26]
Kirpich IA, Marsano LS, McClain CJ. Gut–liver axis, nutrition, and non-alcoholic fatty liver disease. Clin Biochem 2015; 48(13-14): 923-30.
[http://dx.doi.org/10.1016/j.clinbiochem.2015.06.023] [PMID: 26151226]
[27]
Lim S, Kim JW, Targher G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab 2021; 32(7): 500-14.
[http://dx.doi.org/10.1016/j.tem.2021.04.008] [PMID: 33975804]
[28]
Oikonomou EK, Antoniades C. The role of adipose tissue in cardiovascular health and disease. Nat Rev Cardiol 2019; 16(2): 83-99.
[http://dx.doi.org/10.1038/s41569-018-0097-6] [PMID: 30287946]
[29]
Younossi ZM. Non-alcoholic fatty liver disease - A global public health perspective. J Hepatol 2019; 70(3): 531-44.
[http://dx.doi.org/10.1016/j.jhep.2018.10.033] [PMID: 30414863]
[30]
Bence KK, Birnbaum MJ. Metabolic drivers of non-alcoholic fatty liver disease. Mol Metab 2021; 50: 101143.
[http://dx.doi.org/10.1016/j.molmet.2020.101143] [PMID: 33346069]
[31]
Wang YD, Wu LL, Qi XY, et al. New insight of obesity-associated NAFLD: Dysregulated “crosstalk” between multi-organ and the liver? Genes & Diseases. 2022. Available from: https://www.sciencedirect.com/science/article/pii/S2352304222000071
[32]
Li X, Wang H. Multiple organs involved in the pathogenesis of non-alcoholic fatty liver disease. Cell Biosci 2020; 10(1): 140.
[http://dx.doi.org/10.1186/s13578-020-00507-y] [PMID: 33372630]
[33]
Eslam M, Sanyal AJ, George J, et al. International consensus panel. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020; 158(7): 1999-2014.e1.
[http://dx.doi.org/10.1053/j.gastro.2019.11.312] [PMID: 32044314]
[34]
Alharthi J, Gastaldelli A, Cua IH, Ghazinian H, Eslam M. Metabolic dysfunction-associated fatty liver disease: A year in review. Curr Opin Gastroenterol 2022; 38(3): 251-60.
[http://dx.doi.org/10.1097/MOG.0000000000000823] [PMID: 35143431]
[35]
Sakurai Y, Kubota N, Yamauchi T, Kadowaki T. Role of insulin resistance in MAFLD. Int J Mol Sci 2021; 22(8): 4156.
[http://dx.doi.org/10.3390/ijms22084156] [PMID: 33923817]
[36]
Armutcu F, Akyol S, Vural H. Metabolic syndrome is an important cornerstone in the health-disease line and pathological organ interaction. J Cell Signal 2020; 1(3): 70-5.
[37]
Hunt NJ, Kang SWS, Lockwood GP, Le Couteur DG, Cogger VC. Hallmarks of aging in the liver. Comput Struct Biotechnol J 2019; 17: 1151-61.
[http://dx.doi.org/10.1016/j.csbj.2019.07.021] [PMID: 31462971]
[38]
Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular physiology of bile acid signaling in health, disease, and aging. Physiol Rev 2021; 101(2): 683-731.
[http://dx.doi.org/10.1152/physrev.00049.2019] [PMID: 32790577]
[39]
Baiocchi L, Glaser S, Francis H, et al. Impact of aging on liver cells and liver disease: Focus on the biliary and vascular compartments. Hepatol Commun 2021; 5(7): 1125-37.
[http://dx.doi.org/10.1002/hep4.1725] [PMID: 34278165]
[40]
Gong Z, Tas E, Yakar S, Muzumdar R. Hepatic lipid metabolism and non-alcoholic fatty liver disease in aging. Mol Cell Endocrinol 2017; 455: 115-30.
[http://dx.doi.org/10.1016/j.mce.2016.12.022] [PMID: 28017785]
[41]
Sheedfar F, Biase SD, Koonen D, Vinciguerra M. Liver diseases and aging: Friends or foes? Aging Cell 2013; 12(6): 950-4.
[http://dx.doi.org/10.1111/acel.12128] [PMID: 23815295]
[42]
Azman KF, Safdar A, Zakaria R. D-galactose-induced liver aging model: Its underlying mechanisms and potential therapeutic interventions. Exp Gerontol 2021; 150: 111372.
[http://dx.doi.org/10.1016/j.exger.2021.111372] [PMID: 33905879]
[43]
Wang F, So KF, Xiao J, Wang H. Organ-organ communication: The liver’s perspective. Theranostics 2021; 11(7): 3317-30.
[http://dx.doi.org/10.7150/thno.55795] [PMID: 33537089]
[44]
Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 2018; 14(10): 576-90.
[http://dx.doi.org/10.1038/s41574-018-0059-4] [PMID: 30046148]
[45]
Tabibzadeh S. Cell-centric hypotheses of aging. Front Biosci 2021; 26(1): 4888.
[http://dx.doi.org/10.2741/4888] [PMID: 33049664]
[46]
Akbari M, Shanley DP, Bohr VA, Rasmussen LJ. Cytosolic self-DNA-A potential source of chronic inflammation in aging. Cells 2021; 10(12): 3544.
[http://dx.doi.org/10.3390/cells10123544] [PMID: 34944052]
[47]
Hong S, Choi KM. Sarcopenic obesity, insulin resistance, and their implications in cardiovascular and metabolic consequences. Int J Mol Sci 2020; 21(2): 494.
[http://dx.doi.org/10.3390/ijms21020494] [PMID: 31941015]
[48]
Droujinine IA, Perrimon N. Defining the interorgan communication network: Systemic coordination of organismal cellular processes under homeostasis and localized stress. Front Cell Infect Microbiol 2013; 3: 82.
[http://dx.doi.org/10.3389/fcimb.2013.00082] [PMID: 24312902]
[49]
Palmer AK, Kirkland JL. Aging and adipose tissue: Potential interventions for diabetes and regenerative medicine. Exp Gerontol 2016; 86: 97-105.
[http://dx.doi.org/10.1016/j.exger.2016.02.013] [PMID: 26924669]
[50]
Altajar S, Baffy G. Skeletal muscle dysfunction in the development and progression of nonalcoholic fatty liver disease. J Clin Transl Hepatol 2020; 8(4): 1-10.
[http://dx.doi.org/10.14218/JCTH.2020.00065] [PMID: 33447525]
[51]
Landecho MF, Tuero C, Valentí V, Bilbao I, de la Higuera M, Frühbeck G. Relevance of leptin and other adipokines in obesity-associated cardiovascular risk. Nutrients 2019; 11(11): 2664.
[http://dx.doi.org/10.3390/nu11112664] [PMID: 31694146]
[52]
Gonzalez A, Simon F, Achiardi O, Vilos C, Cabrera D, Cabello-Verrugio C. The critical role of oxidative stress in sarcopenic obesity. Oxid Med Cell Longev 2021; 2021: 4493817.
[http://dx.doi.org/10.1155/2021/4493817] [PMID: 34676021]
[53]
Martyniak K, Masternak MM. Changes in adipose tissue cellular composition during obesity and aging as a cause of metabolic dysregulation. Exp Gerontol 2017; 94: 59-63.
[http://dx.doi.org/10.1016/j.exger.2016.12.007] [PMID: 27939445]
[54]
Jeffery E, Church CD, Holtrup B, Colman L, Rodeheffer MS. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat Cell Biol 2015; 17(4): 376-85.
[http://dx.doi.org/10.1038/ncb3122] [PMID: 25730471]
[55]
Serena C, Keiran N, Ceperuelo-Mallafre V, et al. Obesity and type 2 diabetes alters the immune properties of human adipose derived stem cells. Stem Cells 2016; 34(10): 2559-73.
[http://dx.doi.org/10.1002/stem.2429] [PMID: 27352919]
[56]
Stout MB, Justice JN, Nicklas BJ, Kirkland JL. Physiological aging: Links among adipose tissue dysfunction, diabetes, and frailty. Physiology 2017; 32(1): 9-19.
[http://dx.doi.org/10.1152/physiol.00012.2016] [PMID: 27927801]
[57]
Liu Z, Wu KKL, Jiang X, Xu A, Cheng KKY. The role of adipose tissue senescence in obesity and ageing-related metabolic disorders. Clin Sci 2020; 134(2): 315-30.
[http://dx.doi.org/10.1042/CS20190966] [PMID: 31998947]
[58]
Mancuso P, Bouchard B. The impact of aging on adipose function and adipokine synthesis. Front Endocrinol 2019; 10: 137.
[http://dx.doi.org/10.3389/fendo.2019.00137] [PMID: 30915034]
[59]
Lu B, Huang L, Cao J, et al. Adipose tissue macrophages in aging-associated adipose tissue function. J Physiol Sci 2021; 71(1): 38.
[http://dx.doi.org/10.1186/s12576-021-00820-2] [PMID: 34863096]
[60]
Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360(15): 1509-17.
[http://dx.doi.org/10.1056/NEJMoa0810780] [PMID: 19357406]
[61]
Becher T, Palanisamy S, Kramer DJ, et al. Brown adipose tissue is associated with cardiometabolic health. Nat Med 2021; 27(1): 58-65.
[http://dx.doi.org/10.1038/s41591-020-1126-7] [PMID: 33398160]
[62]
Yang FT, Stanford KI. Batokines: Mediators of inter-tissue communication. Curr Obes Rep 2022; 11(1): 1-9.
[http://dx.doi.org/10.1007/s13679-021-00465-7] [PMID: 34997461]
[63]
Reyes-Farias M, Fos-Domenech J, Serra D, Herrero L, Sánchez-Infantes D. White adipose tissue dysfunction in obesity and aging. Biochem Pharmacol 2021; 192: 114723.
[http://dx.doi.org/10.1016/j.bcp.2021.114723] [PMID: 34364887]
[64]
Khan S, Chan YT, Revelo XS, Winer DA. The immune landscape of visceral adipose tissue during obesity and aging. Front Endocrinol 2020; 11: 267.
[http://dx.doi.org/10.3389/fendo.2020.00267] [PMID: 32499756]
[65]
Kalathookunnel Antony A, Lian Z, Wu H. T Cells in adipose tissue in aging. Front Immunol 2018; 9: 2945.
[http://dx.doi.org/10.3389/fimmu.2018.02945] [PMID: 30619305]
[66]
Li Y, Wang F, Imani S, Tao L, Deng Y, Cai Y. Natural killer cells: Friend or foe in metabolic diseases? Front Immunol 2021; 12: 614429.
[http://dx.doi.org/10.3389/fimmu.2021.614429] [PMID: 33717101]
[67]
Cypess AM. Reassessing human adipose tissue. N Engl J Med 2022; 386(8): 768-79.
[http://dx.doi.org/10.1056/NEJMra2032804] [PMID: 35196429]
[68]
Shamsi F, Wang CH, Tseng YH. The evolving view of thermogenic adipocytes-ontogeny, niche and function. Nat Rev Endocrinol 2021; 17(12): 726-44.
[http://dx.doi.org/10.1038/s41574-021-00562-6] [PMID: 34625737]
[69]
Balasubramanian P, Hall D, Subramanian M. Sympathetic nervous system as a target for aging and obesity-related cardiovascular diseases. Geroscience 2019; 41(1): 13-24.
[http://dx.doi.org/10.1007/s11357-018-0048-5] [PMID: 30519806]
[70]
Sun M, Tan Y, Rexiati M, Dong M, Guo W. Obesity is a common soil for premature cardiac aging and heart diseases-role of autophagy. Biochim Biophys Acta Mol Basis Dis 2019; 1865(7): 1898-904.
[http://dx.doi.org/10.1016/j.bbadis.2018.09.004] [PMID: 31109454]
[71]
Longenecker JZ, Petrosino JM, Martens CR, et al. Cardiac-derived TGF-β1 confers resistance to diet-induced obesity through the regulation of adipocyte size and function. Mol Metab 2021; 54: 101343.
[http://dx.doi.org/10.1016/j.molmet.2021.101343] [PMID: 34583010]
[72]
Kennedy BK, Berger SL, Brunet A, et al. Geroscience: Linking aging to chronic disease. Cell 2014; 159(4): 709-13.
[http://dx.doi.org/10.1016/j.cell.2014.10.039] [PMID: 25417146]
[73]
Santoro A, Bientinesi E, Monti D. Immunosenescence and inflammaging in the aging process: Age-related diseases or longevity? Ageing Res Rev 2021; 71: 101422.
[http://dx.doi.org/10.1016/j.arr.2021.101422] [PMID: 34391943]
[74]
Franceschi C, Bonafè M, Valensin S, De Luca M, Ottaviani E, De Benedictis G. Inflammaging an evolutionary perspective on immunosenescence. Ann N Y Acad Sci 2000; 908: 244-54.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06651.x]
[75]
Franceschi C, Capri M, Monti D, et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 2007; 128(1): 92-105.
[http://dx.doi.org/10.1016/j.mad.2006.11.016] [PMID: 17116321]
[76]
a) López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838];
b) Liberale L, Montecucco F, Tardif JC, Libby P, Camici GG. Inflamm-ageing: the role of inflammation in age-dependent cardiovascular disease. Eur Heart J 2020; 41(31): 2974-82.
[http://dx.doi.org/10.1093/eurheartj/ehz961]
[77]
Xia S, Zhang X, Zheng S, et al. An update on inflammaging: Mechanisms, prevention, and treatment. J Immunol Res 2016; 2016: 8426874.
[http://dx.doi.org/10.1155/2016/8426874] [PMID: 27493973]
[78]
Mraz M, Haluzik M. The role of adipose tissue immune cells in obesity and low-grade inflammation. J Endocrinol 2014; 222(3): R113-27.
[http://dx.doi.org/10.1530/JOE-14-0283] [PMID: 25006217]
[79]
Fulop T, Larbi A, Dupuis G, et al. Immunosenescence and infammaging as two sides of the same coin: Friends or foes? Front Immunol 2018; 8(8): 1960.
[http://dx.doi.org/10.3389/fimmu.2017.01960] [PMID: 29375577]
[80]
Fulop T, Larbi A, Pawelec G, et al. Immunology of aging: The birth of inflammaging. Clin Rev Allergy Immunol 2021; 18: 1-14.
[http://dx.doi.org/10.1007/s12016-021-08899-6] [PMID: 34536213]
[81]
Li AA, Kim D, Ahmed A. Association of sarcopenia and NAFLD: An overview. Clin Liver Dis 2020; 16(2): 73-6.
[http://dx.doi.org/10.1002/cld.900] [PMID: 32922754]
[82]
Ferrucci L, Fabbri E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol 2018; 15(9): 505-22.
[http://dx.doi.org/10.1038/s41569-018-0064-2] [PMID: 30065258]
[83]
McBride MJ, Foley KP, D’Souza DM, et al. The NLRP3 inflammasome contributes to sarcopenia and lower muscle glycolytic potential in old mice. Am J Physiol Endocrinol Metab 2017; 313(2): E222-32.
[http://dx.doi.org/10.1152/ajpendo.00060.2017] [PMID: 28536183]
[84]
Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med 2019; 25(12): 1822-32.
[http://dx.doi.org/10.1038/s41591-019-0675-0] [PMID: 31806905]
[85]
Meex RCR, Watt MJ. Hepatokines: Linking nonalcoholic fatty liver disease and insulin resistance. Nat Rev Endocrinol 2017; 13(9): 509-20.
[http://dx.doi.org/10.1038/nrendo.2017.56] [PMID: 28621339]
[86]
Romero A, Eckel J. Organ crosstalk and the modulation of insulin signaling. Cells 2021; 10(8): 2082.
[http://dx.doi.org/10.3390/cells10082082] [PMID: 34440850]
[87]
Bhanji RA, Narayanan P, Allen AM, Malhi H, Watt KD. Sarcopenia in hiding: The risk and consequence of underestimating muscle dysfunction in nonalcoholic steatohepatitis. Hepatology 2017; 66(6): 2055-65.
[http://dx.doi.org/10.1002/hep.29420] [PMID: 28777879]
[88]
Nachit M, Leclercq IA. Emerging awareness on the importance of skeletal muscle in liver diseases: Time to dig deeper into mechanisms! Clin Sci (Lond) 2019; 133(3): 465-81.
[http://dx.doi.org/10.1042/CS20180421] [PMID: 30755499]
[89]
Suriano F, Van Hul M, Cani PD. Gut microbiota and regulation of myokine-adipokine function. Curr Opin Pharmacol 2020; 52: 9-17.
[http://dx.doi.org/10.1016/j.coph.2020.03.006] [PMID: 32388413]
[90]
Von Bank H. Kirsh C, Simcox J. Aging adipose: Depot location dictates age-associated expansion and dysfunction. Ageing Res Rev 2021; 67: 101259.
[http://dx.doi.org/10.1016/j.arr.2021.101259] [PMID: 33515751]
[91]
Scheja L, Heeren J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat Rev Endocrinol 2019; 15(9): 507-24.
[http://dx.doi.org/10.1038/s41574-019-0230-6] [PMID: 31296970]
[92]
Lercher A, Baazim H, Bergthaler A. Systemic immunometabolism: Challenges and opportunities. Immunity 2020; 53(3): 496-509.
[http://dx.doi.org/10.1016/j.immuni.2020.08.012] [PMID: 32937151]
[93]
Yan B, Yang J, Zhao B, Wu Y, Bai L, Ma X. Causal effect of visceral adipose tissue accumulation on the human longevity: A mendelian randomization study. Front Endocrinol 2021; 12: 722187.
[http://dx.doi.org/10.3389/fendo.2021.722187] [PMID: 34539575]
[94]
Salvestrini V, Sell C, Lorenzini A. Obesity may accelerate the aging process. Front Endocrinol 2019; 10: 266.
[http://dx.doi.org/10.3389/fendo.2019.00266] [PMID: 31130916]
[95]
Wilhelmsen A, Tsintzas K, Jones SW. Recent advances and future avenues in understanding the role of adipose tissue cross talk in mediating skeletal muscle mass and function with ageing. Geroscience 2021; 43(1): 85-110.
[http://dx.doi.org/10.1007/s11357-021-00322-4] [PMID: 33528828]
[96]
Rome S. Muscle and adipose tissue communicate with extracellular vesicles. Int J Mol Sci 2022; 23(13): 7052.
[http://dx.doi.org/10.3390/ijms23137052] [PMID: 35806052]
[97]
Westcott GP, Rosen ED. Crosstalk between adipose and lymphatics in health and disease. Endocrinology 2022; 163(1): bqab224.
[http://dx.doi.org/10.1210/endocr/bqab224] [PMID: 34718498]
[98]
Norden PR, Kume T. The role of lymphatic vascular function in metabolic disorders. Front Physiol 2020; 11: 404.
[http://dx.doi.org/10.3389/fphys.2020.00404] [PMID: 32477160]
[99]
Oliver G, Kipnis J, Randolph GJ, Harvey NL. The lymphatic vasculature in the 21st century: Novel functional roles in homeostasis and disease. Cell 2020; 182(2): 270-96.
[http://dx.doi.org/10.1016/j.cell.2020.06.039] [PMID: 32707093]
[100]
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977.
[http://dx.doi.org/10.1126/science.aau6977]
[101]
Panagiotou N, Neytchev O, Selman C, Shiels P. Extracellular vesicles, ageing, and therapeutic interventions. Cells 2018; 7(8): 110.
[http://dx.doi.org/10.3390/cells7080110] [PMID: 30126173]
[102]
Noren Hooten N, Evans MK. Extracellular vesicles as signaling mediators in type 2 diabetes mellitus. Am J Physiol Cell Physiol 2020; 318(6): C1189-99.
[http://dx.doi.org/10.1152/ajpcell.00536.2019] [PMID: 32348178]
[103]
Yin Y, Chen H, Wang Y, Zhang L, Wang X. Roles of extracellular vesicles in the aging microenvironment and age-related diseases. J Extracell Vesicles 2021; 10(12): e12154.
[http://dx.doi.org/10.1002/jev2.12154] [PMID: 34609061]
[104]
Lazo S, Noren Hooten N, Green J, et al. Mitochondrial DNA in extracellular vesicles declines with age. Aging Cell 2021; 20(1): e13283.
[http://dx.doi.org/10.1111/acel.13283] [PMID: 33355987]
[105]
Alibhai FJ, Lim F, Yeganeh A, et al. Cellular senescence contributes to age-dependent changes in circulating extracellular vesicle cargo and function. Aging Cell 2020; 19(3): e13103.
[http://dx.doi.org/10.1111/acel.13103] [PMID: 31960578]
[106]
Moran L, Cubero FJ. Extracellular vesicles in liver disease and beyond. World J Gastroenterol 2018; 24(40): 4519-26.
[http://dx.doi.org/10.3748/wjg.v24.i40.4519]
[107]
Srinivas AN, Suresh D, Santhekadur PK, Suvarna D, Kumar DP. Extracellular vesicles as inflammatory drivers in NAFLD. Front Immunol 2021; 11: 627424.
[http://dx.doi.org/10.3389/fimmu.2020.627424] [PMID: 33603757]
[108]
Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab 2021; 33(9): 1744-62.
[http://dx.doi.org/10.1016/j.cmet.2021.08.006] [PMID: 34496230]
[109]
Funcke JB, Scherer PE. Beyond adiponectin and leptin: Adipose tissue-derived mediators of inter-organ communication. J Lipid Res 2019; 60(10): 1648-97.
[http://dx.doi.org/10.1194/jlr.R094060] [PMID: 31209153]
[110]
Eguchi A, Lazic M, Armando AM, et al. Circulating adipocyte-derived extracellular vesicles are novel markers of metabolic stress. J Mol Med (Berl) 2016; 94(11): 1241-53.
[http://dx.doi.org/10.1007/s00109-016-1446-8] [PMID: 27394413]
[111]
Pardo F, Villalobos-Labra R, Sobrevia B, Toledo F, Sobrevia L. Extracellular vesicles in obesity and diabetes mellitus. Mol Aspects Med 2018; 60: 81-91.
[http://dx.doi.org/10.1016/j.mam.2017.11.010] [PMID: 29175307]
[112]
Kwan HY, Chen M, Xu K, Chen B. The impact of obesity on adipocyte-derived extracellular vesicles. Cell Mol Life Sci 2021; 78(23): 7275-88.
[http://dx.doi.org/10.1007/s00018-021-03973-w] [PMID: 34677643]
[113]
Karsenty G, Olson EN. Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell 2016; 164(6): 1248-56.
[http://dx.doi.org/10.1016/j.cell.2016.02.043] [PMID: 26967290]
[114]
Jensen-Cody SO, Potthoff MJ. Hepatokines and metabolism: Deciphering communication from the liver. Mol Metab 2021; 44: 101138.
[http://dx.doi.org/10.1016/j.molmet.2020.101138] [PMID: 33285302]
[115]
Flippo KH, Potthoff MJ. Metabolic messengers: FGF21. Nat Metab 2021; 3(3): 309-17.
[http://dx.doi.org/10.1038/s42255-021-00354-2] [PMID: 33758421]
[116]
Forouzanfar MH, Afshin A, Alexander LT, et al. GBD 2015 Risk factors collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the global burden of disease study 2015. Lancet 2016; 388(10053): 1659-724.
[http://dx.doi.org/10.1016/S0140-6736(16)31679-8] [PMID: 27733284]
[117]
Pérez LM, Pareja-Galeano H, Sanchis-Gomar F, Emanuele E, Lucia A, Gálvez BG. ‘Adipaging’: ageing and obesity share biological hallmarks related to a dysfunctional adipose tissue. J Physiol 2016; 594(12): 3187-207.
[http://dx.doi.org/10.1113/JP271691] [PMID: 26926488]
[118]
Yang H, Youm YH, Vandanmagsar B, et al. Obesity accelerates thymic aging. Blood 2009; 114(18): 3803-12.
[http://dx.doi.org/10.1182/blood-2009-03-213595] [PMID: 19721009]
[119]
Grant RW, Dixit VD, Grant RW, Dixit VD. Adipose tissue as an immunological organ. Obesity 2015; 23(3): 512-8.
[http://dx.doi.org/10.1002/oby.21003] [PMID: 25612251]
[120]
Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature 2013; 496(7446): 445-55.
[http://dx.doi.org/10.1038/nature12034] [PMID: 23619691]
[121]
Castoldi A, Naffah de Souza C, Câmara NOS, Moraes-Vieira PM. The macrophage switch in obesity development. Front Immunol 2016; 6: 637.
[http://dx.doi.org/10.3389/fimmu.2015.00637] [PMID: 26779183]
[122]
Ni Y, Ni L, Zhuge F, Xu L, Fu Z, Ota T. Adipose tissue macrophage phenotypes and characteristics: the key to insulin resistance in obesity and metabolic disorders. Obesity 2020; 28(2): 225-34.
[http://dx.doi.org/10.1002/oby.22674] [PMID: 31903735]
[123]
Stahl EC, Haschak MJ, Popovic B, Brown BN. Macrophages in the aging liver and age-related liver disease. Front Immunol 2018; 9: 2795.
[http://dx.doi.org/10.3389/fimmu.2018.02795] [PMID: 30555477]
[124]
Aubert G. Telomere dynamics and aging. Prog Mol Biol Transl Sci 2014; 125: 89-111.
[http://dx.doi.org/10.1016/B978-0-12-397898-1.00004-9] [PMID: 24993699]
[125]
Peeters A, Barendregt JJ, Willekens F, Mackenbach JP, Mamun AA, Bonneux L. NEDCOM, the Netherlands epidemiology and demography compression of morbidity research group. Obesity in adulthood and its consequences for life expectancy: a life-table analysis. Ann Intern Med 2003; 138(1): 24-32.
[http://dx.doi.org/10.7326/0003-4819-138-1-200301070-00008] [PMID: 12513041]
[126]
Tam BT, Morais JA, Santosa S. Obesity and ageing: Two sides of the same coin. Obes Rev 2020; 21(4): e12991.
[http://dx.doi.org/10.1111/obr.12991] [PMID: 32020741]
[127]
Horvath S, Erhart W, Brosch M, et al. Obesity accelerates epigenetic aging of human liver. Proc Natl Acad Sci USA 2014; 111(43): 15538-43.
[http://dx.doi.org/10.1073/pnas.1412759111] [PMID: 25313081]
[128]
Mikolasevic I, Milic S, Turk Wensveen T, et al. Nonalcoholic fatty liver disease - A multisystem disease? World J Gastroenterol 2016; 22(43): 9488-505.
[http://dx.doi.org/10.3748/wjg.v22.i43.9488] [PMID: 27920470]
[129]
Bilson J, Sethi JK, Byrne CD. Non-alcoholic fatty liver disease: A multi-system disease influenced by ageing and sex, and affected by adipose tissue and intestinal function. Proc Nutr Soc 2022; 81(2): 146-61.
[http://dx.doi.org/10.1017/S0029665121003815] [PMID: 35934688]
[130]
Smith HJ, Sharma A, Mair WB. Metabolic communication and healthy aging: Where should we focus our energy? Dev Cell 2020; 54(2): 196-211.
[http://dx.doi.org/10.1016/j.devcel.2020.06.011] [PMID: 32619405]
[131]
Zambon Azevedo V, Silaghi CA, Maurel T, Silaghi H, Ratziu V, Pais R. Impact of sarcopenia on the severity of the liver damage in patients with non-alcoholic fatty liver disease. Front Nutr 2022; 8: 774030.
[http://dx.doi.org/10.3389/fnut.2021.774030] [PMID: 35111794]
[132]
Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol 2017; 13(11): 633-43.
[http://dx.doi.org/10.1038/nrendo.2017.90] [PMID: 28799554]
[133]
Kurosawa T, Goto M, Kaji N, et al. Liver fibrosis-induced muscle atrophy is mediated by elevated levels of circulating TNFα. Cell Death Dis 2021; 12(1): 11.
[http://dx.doi.org/10.1038/s41419-020-03353-5] [PMID: 33414474]
[134]
Trapecar M. Multiorgan microphysiological systems as tools to interrogate interorgan crosstalk and complex diseases. FEBS Lett 2022; 596(5): 681-95.
[http://dx.doi.org/10.1002/1873-3468.14260] [PMID: 34923635]
[135]
Lopes-Pacheco M, Silva PL, Cruz FF, et al. Pathogenesis of multiple organ injury in COVID-19 and potential therapeutic strategies. Front Physiol 2021; 12: 593223.
[http://dx.doi.org/10.3389/fphys.2021.593223] [PMID: 33584343]
[136]
Di Felice V, Coletti D, Seelaender M. Editorial: Myokines, adipokines, cytokines in muscle pathophysiology. Front Physiol 2020; 11: 592856.
[http://dx.doi.org/10.3389/fphys.2020.592856] [PMID: 33192608]
[137]
Montgomery MK, De Nardo W, Watt MJ. Impact of lipotoxicity on tissue “cross talk” and metabolic regulation. Physiology 2019; 34(2): 134-49.
[http://dx.doi.org/10.1152/physiol.00037.2018] [PMID: 30724128]
[138]
Thomou T, Mori MA, Dreyfuss JM, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 2017; 542(7642): 450-5.
[http://dx.doi.org/10.1038/nature21365] [PMID: 28199304]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy