Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Lentils (Lens culinaris Medik) as a Source of Phenolic Compounds - their Content, Changes during Processing, Antioxidant and Biological Activities

Author(s): Ryszard Amarowicz* and Ronald B. Pegg

Volume 29, Issue 11, 2023

Published on: 08 March, 2023

Page: [852 - 864] Pages: 13

DOI: 10.2174/1381612829666230223105804

Price: $65

Abstract

While often recognized as a good plant protein source and a rich source of essential nutrients including folate, iron, manganese and phosphorus, lentils (Lens culinaris L.) also contain healthful bioactive compounds. They possess a number of phenolic compounds including phenolic acids, flavonoids such as flavan- 3-ols, flavonols and anthocyanins, proanthocyanidins, as well as saponins and phytic acid. This review provides a summary of the types and levels of phenolic compounds found in the cotyledon of lentils as well as their seed coats. The values define broad ranges due to varied cultivars, horticultural practices, climatic conditions during lentil development, and the different phenolic extraction approaches employed. The prepared lentil extracts were found to possess marked antioxidant activity, as assessed by in vitro assays, with the results clearly indicating that the endogenous phenolic compounds dictated this activity. Processing of raw lentils in the forms of cooking, germination and fermentation was determined to affect the phenolics’ contents: phenolic content of some lentils decreased while those of others increased, most likely due to the release of bound phenolics from the plant wall matrix. Finally, a summary of some of the positive biological activities observed for lentil extracts from cell culture and animal studies is given.

[1]
Food and Agriculture Organization of the United Nations (FAO) 2022 . Available from: http://www.fao.org/faostat/en/#data/QC (Accessed on: 30 December 2022).
[2]
Dhull SB, Kinabo J, Uebersax MA. Nutrient profile and effect of processing methods on the composition and functional properties of lentils (Lens culinaris Medik): A review. Legume Sci 2022; e156.
[http://dx.doi.org/10.1002/leg3.156]
[3]
Joshi M, Adhikari B, Aldred P, Panozzo JF, Kasapis S. Physicochemical and functional properties of lentil protein isolates prepared by different drying methods. Food Chem 2011; 129(4): 1513-22.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.131]
[4]
de Almeida Costa GE, da Silva Queiroz-Monici K, Pissini Machado Reis SM, de Oliveira AC. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem 2006; 94(3): 327-30.
[http://dx.doi.org/10.1016/j.foodchem.2004.11.020]
[5]
Ramírez-Ojeda AM, Moreno-Rojas R, Cámara-Martos F. Mineral and trace element content in legumes (lentils, chickpeas and beans): Bioaccesibility and probabilistic assessment of the dietary intake. J Food Compos Anal 2018; 73: 17-28.
[http://dx.doi.org/10.1016/j.jfca.2018.07.007]
[6]
Ciudad-Mulero M, Fernández-Ruiz V, Cuadrado C, et al. Novel gluten-free formulations from lentil flours and nutritional yeast: Evaluation of extrusion effect on phytochemicals and non-nutritional factors. Food Chem 2020; 315: 126175.
[http://dx.doi.org/10.1016/j.foodchem.2020.126175] [PMID: 31991254]
[7]
Ganesan K, Xu B. Polyphenol-rich lentils and their health promoting effects. Int J Mol Sci 2017; 18(11): 2390.
[http://dx.doi.org/10.3390/ijms18112390] [PMID: 29125587]
[8]
Didinger C, Thompson HJ. The role of pulses in improving human health: A review. Legume Sci 2022; 4(4): e147.
[http://dx.doi.org/10.1002/leg3.147]
[9]
Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1965; 16: 144-58.
[10]
Christ B, Müller KH. For serial determination of the content of flavonol derivatives in drugs. Arch Pharm 1960; 293(12): 1033-42.
[http://dx.doi.org/10.1002/ardp.19602931202]
[11]
Price ML, Van Scoyoc S, Butler LG. A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. J Agric Food Chem 1978; 26(5): 1214-8.
[http://dx.doi.org/10.1021/jf60219a031]
[12]
Liberal Â, Fernandes Â, Dias MI, et al. Phytochemical and antioxidant profile of Pardina lentil cultivars from different regions of Spain. Foods 2021; 10(7): 1629.
[http://dx.doi.org/10.3390/foods10071629] [PMID: 34359499]
[13]
Galgano F, Tolve R, Scarpa T, et al. Extraction kinetics of total polyphenols, flavonoids, and condensed tannins of lentil seed coat: Comparison of solvent and extraction methods. Foods 2021; 10(8): 1810.
[http://dx.doi.org/10.3390/foods10081810] [PMID: 34441587]
[14]
Rolnik A, Żuchowski J, Stochmal A, Olas B. Quercetin and kaempferol derivatives isolated from aerial parts of Lens culinaris Medik as modulators of blood platelet functions. Ind Crops Prod 2020; 152: 112536.
[http://dx.doi.org/10.1016/j.indcrop.2020.112536]
[15]
Kowitcharoen L, Phornvillay S, Lekkham P, Pongprasert N, Srilaong V. Bioactive composition and nutritional profile of microgreens cultivated in Thailand. Appl Sci 2021; 11(17): 7981.
[http://dx.doi.org/10.3390/app11177981]
[16]
Aguilera Y, Dueñas M, Estrella I, et al. Evaluation of phenolic profile and antioxidant properties of Pardina lentil as affected by industrial dehydration. J Agric Food Chem 2010; 58(18): 10101-8.
[http://dx.doi.org/10.1021/jf102222t] [PMID: 20735138]
[17]
López A, El-Naggar T, Dueñas M, et al. Influence of processing in the phenolic composition and health-promoting properties of lentils (Lens culinaris L.). J Food Process Preserv 2017; 41(5): e13113.
[http://dx.doi.org/10.1111/jfpp.13113]
[18]
Liu Y, Ragaee S, Marcone MF, Abdel-Aal ESM. Composition of phenolic acids and antioxidant properties of selected pulses cooked with different heating conditions. Foods 2020; 9(7): 908.
[http://dx.doi.org/10.3390/foods9070908] [PMID: 32664208]
[19]
Benmeziane-Derradji F, Djermoune-Arkoub L, Ayat NEH, Aoufi D. Impact of roasting on the physicochemical, functional properties, antioxidant content and microstructure changes of Algerian lentil (Lens culinaris) flour. J Food Meas Charact 2020; 14(5): 2840-53.
[http://dx.doi.org/10.1007/s11694-020-00529-7]
[20]
Portman D, Dolgow C, Maharjan P, et al. Frost-affected lentil (Lens culinaris M.) compositional changes through extrusion: Potential application for the food industry. Cereal Chem 2020; 97(4): 818-26.
[http://dx.doi.org/10.1002/cche.10296]
[21]
Żuchowski J, Rolnik A, Adach W, Stochmal A, Olas B. Modulation of oxidative stress and hemostasis by flavonoids from lentil aerial parts. Molecules 2021; 26(2): 497.
[http://dx.doi.org/10.3390/molecules26020497] [PMID: 33477724]
[22]
Moongngarm A, Chottanom P, Nontasan S. Melatonin, its precursors, total phenolic content and antioxidant activity in legumes germinated under normal and saline conditions. J Sustain Sci Manag 2021; 16(2): 53-66.
[http://dx.doi.org/10.46754/jssm.2021.02.007]
[23]
Oskaybaş-Emlek B, Özbey A, Kahraman K. Effects of germination on the physicochemical and nutritional characteristics of lentil and its utilization potential in cookie-making. J Food Meas Charact 2021; 15(5): 4245-55.
[http://dx.doi.org/10.1007/s11694-021-00958-y]
[24]
Alkaltham MS, Musa Özcan M, Uslu N, Salamatullah AM, Hayat K. Changes in antioxidant activity, phenolic compounds, fatty acids, and mineral contents of raw, germinated, and boiled lentil seeds. J Food Sci 2022; 87(4): 1639-49.
[http://dx.doi.org/10.1111/1750-3841.16099] [PMID: 35279839]
[25]
Di Stefano E, Tsopmo A, Oliviero T, Fogliano V, Udenigwe CC. Bioprocessing of common pulses changed seed microstructures, and improved dipeptidyl peptidase-IV and α-glucosidase inhibitory activities. Sci Rep 2019; 9(1): 15308.
[http://dx.doi.org/10.1038/s41598-019-51547-5] [PMID: 31653886]
[26]
Peñas E, Limón RI, Martínez-Villaluenga C, Restani P, Pihlanto A, Frias J. Impact of elicitation on antioxidant and potential antihypertensive properties of lentil sprouts. Plant Foods Hum Nutr 2015; 70(4): 401-7.
[http://dx.doi.org/10.1007/s11130-015-0508-3] [PMID: 26433888]
[27]
Piergiovanni AR. Nutritional characteristics of black lentil from Soleto: A single-flower vetch landrace of Apulia region (Southern Italy). Foods 2021; 10(11): 2863.
[http://dx.doi.org/10.3390/foods10112863] [PMID: 34829144]
[28]
Rico D, Peñas E, del Carmen García M, et al. Development of antioxidant and nutritious lentil (Lens culinaris) flour using controlled optimized germination as a bioprocess. Foods 2021; 10(12): 2924.
[http://dx.doi.org/10.3390/foods10122924] [PMID: 34945474]
[29]
Boudjou S, Oomah BD, Zaidi F, Hosseinian F. Phenolics content and antioxidant and anti-inflammatory activities of legume fractions. Food Chem 2013; 138(2-3): 1543-50.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.108] [PMID: 23411279]
[30]
Amarowicz R, Piskuła M, Honke J, et al. Extraction of phenolic compounds from lentil seeds (Lens culinaris) with various solvents. Pol J Food Nutr Sci 1995; 4: 53-62.
[31]
Kalantari H, Houshmand G, Hasanvand A, Kalantar M, Goudarzi M, Khadem Haghighian H. Ameliorative effects of red lentil extract on sodium arsenite-induced oxidative stress in rats. Jundishapur J Nat Pharm Prod 2017; In Press(In Press): e64309.
[http://dx.doi.org/10.5812/jjnpp.64309]
[32]
Byanju B, Hojilla-Evangelista MP, Lamsal BP. Fermentation performance and nutritional assessment of physically processed lentil and green pea flour. J Sci Food Agric 2021; 101(14): 5792-806.
[http://dx.doi.org/10.1002/jsfa.11229] [PMID: 33792043]
[33]
Amarowicz R, Estrella I, Hernández T, et al. Antioxidant activity of a red lentil extract and its fractions. Int J Mol Sci 2009; 10(12): 5513-27.
[http://dx.doi.org/10.3390/ijms10125513] [PMID: 20054484]
[34]
Amarowicz R, Estrella I, Hernández T, et al. Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chem 2010; 121(3): 705-11.
[http://dx.doi.org/10.1016/j.foodchem.2010.01.009]
[35]
Fouad AA, Rehab FMA. Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris Medik.) sprouts. Acta Sci Pol Technol Aliment 2015; 14(3): 233-46.
[http://dx.doi.org/10.17306/J.AFS.2015.3.25] [PMID: 28068031]
[36]
Bragança GCM, Ziegler V, Ávila BP, Monks JLF, Peres W, Elias MC. Multivariate analysis of the conditions of temperature, moisture and storage time in the technological, chemical, nutritional parameters and phytochemical of green lentils. J Stored Prod Res 2020; 87: 101617.
[http://dx.doi.org/10.1016/j.jspr.2020.101617]
[37]
Irakli M, Kargiotidou A, Tigka E, et al. Genotypic and environmental effect on the concentration of phytochemical contents of lentil (Lens culinaris L.). Agronomy 2021; 11(6): 1154.
[http://dx.doi.org/10.3390/agronomy11061154]
[38]
Yeo J, Tsao R, Sun Y, Shahidi F. Liberation of insoluble-bound phenolics from lentil hull matrices as affected by Rhizopus oryzae fermentation: Alteration in phenolic profiles and their inhibitory capacities against low-density lipoprotein (LDL) and DNA oxidation. Food Chem 2021; 363: 130275.
[http://dx.doi.org/10.1016/j.foodchem.2021.130275] [PMID: 34116493]
[39]
Paranavitana L, Oh WY, Yeo J, Shahidi F. Determination of soluble and insoluble-bound phenolic compounds in dehulled, whole, and hulls of green and black lentils using electrospray ionization (ESI)-MS/MS and their inhibition in DNA strand scission. Food Chem 2021; 361: 130083.
[http://dx.doi.org/10.1016/j.foodchem.2021.130083] [PMID: 34029906]
[40]
Yeo J, Shahidi F. Identification and quantification of soluble and insoluble-bound phenolics in lentil hulls using HPLC-ESI-MS/MS and their antioxidant potential. Food Chem 2020; 315: 126202.
[http://dx.doi.org/10.1016/j.foodchem.2020.126202] [PMID: 32028197]
[41]
Dębski H, Wiczkowski W, Horbowicz M. Effect of elicitation with iron chelate and sodium metasilicate on phenolic compounds in legume sprouts. Molecules 2021; 26(5): 1345.
[http://dx.doi.org/10.3390/molecules26051345] [PMID: 33802449]
[42]
Gawlik-Dziki U, Baraniak B, Sikora M, Jakubczyk A, Kapusta I, Świeca M. Potentially bioaccessible phenolic and antioxidant potential of fresh and stored lentil sprouts - Effect of Lactobacillus plantarum 299v enrichment. Molecules 2021; 26(8): 2109.
[http://dx.doi.org/10.3390/molecules26082109] [PMID: 33916936]
[43]
Sun Y, Deng Z, Liu R, et al. A comprehensive profiling of free, conjugated and bound phenolics and lipophilic antioxidants in red and green lentil processing by-products. Food Chem 2020; 325: 126925.
[http://dx.doi.org/10.1016/j.foodchem.2020.126925] [PMID: 32387929]
[44]
Yeo J, Shahidi F. Effect of hydrothermal processing on changes of insoluble-bound phenolics of lentils. J Funct Foods 2017; 38: 716-22.
[http://dx.doi.org/10.1016/j.jff.2016.12.010]
[45]
Babacan Cevik S, Kahraman K, Ekici L. Production of oven-baked wheat chips enriched with red lentil: An optimization study by response surface methodology. J Food Sci Technol 2022; 59(6): 2243-54.
[http://dx.doi.org/10.1007/s13197-021-05237-8] [PMID: 35602450]
[46]
Tok H, Ertaş N. Effects of different germinated seeds flour on mineral, phytic acid and total phenolic content of cookies. J Agric Sci 2020; 26: 424-33.
[47]
Saharan P, Sadh PK, Duhan S, Duhan JS. Bio-enrichment of phenolic, flavonoids content and antioxidant activity of commonly used pulses by solid-state fermentation. J Food Meas Charact 2020; 14(3): 1497-510.
[http://dx.doi.org/10.1007/s11694-020-00399-z]
[48]
Magro AEA, Silva LC, Rasera GB, de Castro RJS. Solid-state fermentation as an efficient strategy for the biotransformation of lentils: enhancing their antioxidant and antidiabetic potentials. Bioresour Bioprocess 2019; 6(1): 38.
[http://dx.doi.org/10.1186/s40643-019-0273-5]
[49]
Liu R, Xu B. Inhibitory effects of phenolics and saponins from commonly consumed food legumes in China against digestive enzymes pancreatic lipase and α-glycosidase. Int J Food Prop 2015; 18(10): 2246-55.
[http://dx.doi.org/10.1080/10942912.2014.971178]
[50]
Zia-Ul-Haq M, Ahmad S, Iqbal S, et al. Antioxidant potential of lentil cultivars commonly consumed in Pakistan. Oxid Commun 2011; 34: 820-31.
[51]
Hefnawy TH. Effect of processing methods on nutritional composition and anti-nutritional factors in lentils (Lens culinaris). Ann Agric Sci 2011; 56(2): 57-61.
[http://dx.doi.org/10.1016/j.aoas.2011.07.001]
[52]
Karamać M, Kosińska A, Rybarczyk A, et al. Extraction and chromatographic separation of tannin fractions from tannin-rich plant material. Pol J Food Nutr Sci 2007; 57: 471-4.
[53]
Xu BJ, Chang SKC. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci 2007; 72(2): S159-66.
[http://dx.doi.org/10.1111/j.1750-3841.2006.00260.x] [PMID: 17995858]
[54]
López-Amorós ML, Hernández T, Estrella I. Effect of germination on legume phenolic compounds and their antioxidant activity. J Food Compos Anal 2006; 19(4): 277-83.
[http://dx.doi.org/10.1016/j.jfca.2004.06.012]
[55]
Amarowicz R, Troszyńska A, Baryłko-Pikielna N, Shahidi F. Polyphenolic extracts from legume seeds: Correlations between total antioxidant activity, total phenolics content, tannins content and astringency. J Food Lipids 2004; 11(4): 278-86.
[http://dx.doi.org/10.1111/j.1745-4522.2004.01143.x]
[56]
Fernandez-Orozco R, Zieliński H, Piskuła MK. Contribution of low-molecular-weight antioxidants to the antioxidant capacity of raw and processed lentil seeds. Nahrung 2003; 47(5): 291-9.
[http://dx.doi.org/10.1002/food.200390069]
[57]
Amarowicz R, Raab B. Antioxidative activity of leguminous seed extracts evaluated by chemiluminescence methods. Z Naturforsch C J Biosci 1997; 52(9-10): 709-12.
[http://dx.doi.org/10.1515/znc-1997-9-1022]
[58]
Chitisankul W, Shimada K, Tsukamoto C. Antioxidative capacity of soyfoods and soy active compounds. Pol J Food Nutr Sci 2022; 72: 101-8.
[http://dx.doi.org/10.31883/pjfns/146562]
[59]
Karamać M, Gai F, Peiretti P. Effect of the growth stage of false flax (Camelina sativa L.) on the phenolic compound content and antioxidant potential of the aerial part of the plant. Pol J Food Nutr Sci 2020; 70: 189-98.
[http://dx.doi.org/10.31883/pjfns/119719]
[60]
Costantini M, Summo C, Centrone M, et al. Macro- and micro-nutrient composition and antioxidant activity of chickpea and pea accessions. Pol J Food Nutr Sci 2021; 71: 177-85.
[http://dx.doi.org/10.31883/pjfns/135813]
[61]
Dueñas M, Hernández T, Estrella I. Phenolic composition of the cotyledon and the seed coat of lentils (Lens culinaris L.). Eur Food Res Technol 2002; 215(6): 478-83.
[http://dx.doi.org/10.1007/s00217-002-0603-1]
[62]
Mirali M, Ambrose SJ, Wood SA, Vandenberg A, Purves RW. Development of a fast extraction method and optimization of liquid chromatography-mass spectrometry for the analysis of phenolic compounds in lentil seed coats. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 969: 149-61.
[http://dx.doi.org/10.1016/j.jchromb.2014.08.007] [PMID: 25173496]
[63]
Zhang B, Peng H, Deng Z, Tsao R. Phytochemicals of lentil (Lens culinaris) and their antioxidant and anti-inflammatory effects. J Food Bioact 2018; 1: 93-103.
[http://dx.doi.org/10.31665/JFB.2018.1128]
[64]
Bautista-Expósito S, Peñas E, Dueñas M, Silván JM, Frias J, Martínez-Villaluenga C. Individual contributions of Savinase and Lactobacillus plantarum to lentil functionalization during alkaline pH-controlled fermentation. Food Chem 2018; 257: 341-9.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.044] [PMID: 29622220]
[65]
Takeoka GR, Dao LT, Tamura H, Harden LA. Delphinidin 3-O-(2-O-β-D-Glucopyranosyl-α-l-arabinopyranoside): A novel anthocyanin identified in Beluga black lentils. J Agric Food Chem 2005; 53(12): 4932-7.
[http://dx.doi.org/10.1021/jf040493h] [PMID: 15941338]
[66]
Halvorsen BL, Holte K, Myhrstad MCW, et al. A systematic screening of total antioxidants in dietary plants. J Nutr 2002; 132(3): 461-71.
[http://dx.doi.org/10.1093/jn/132.3.461] [PMID: 11880572]
[67]
Xu B, Chang SKC. Effect of soaking, boiling, and steaming on total phenolic contentand antioxidant activities of cool season food legumes. Food Chem 2008; 110(1): 1-13.
[http://dx.doi.org/10.1016/j.foodchem.2008.01.045] [PMID: 26050159]
[68]
Pellegrini N, Serafini M, Salvatore S, Del Rio D, Bianchi M, Brighenti F. Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Mol Nutr Food Res 2006; 50(11): 1030-8.
[http://dx.doi.org/10.1002/mnfr.200600067] [PMID: 17039458]
[69]
Xu B, Chang SKC. Phytochemical profiles and health-promoting effects of cool-season food legumes as influenced by thermal processing. J Agric Food Chem 2009; 57(22): 10718-31.
[http://dx.doi.org/10.1021/jf902594m] [PMID: 19873971]
[70]
Pal RS, Bhartiya A, Yadav P, et al. Effect of dehulling, germination and cooking on nutrients, anti-nutrients, fatty acid composition and antioxidant properties in lentil (Lens culinaris). J Food Sci Technol 2017; 54(4): 909-20.
[http://dx.doi.org/10.1007/s13197-016-2351-4] [PMID: 28303042]
[71]
Aguilera Y, Liébana R, Herrera T, et al. Effect of illumination on the content of melatonin, phenolic compounds, and antioxidant activity during germination of lentils (Lens culinaris L.) and kidney beans (Phaseolus vulgaris L.). J Agric Food Chem 2014; 62(44): 10736-43.
[http://dx.doi.org/10.1021/jf503613w] [PMID: 25310717]
[72]
Alves Magro AE, de Castro RJS. Effects of solid-state fermentation and extraction solvents on the antioxidant properties of lentils. Biocatal Agric Biotechnol 2020; 28: 101753.
[http://dx.doi.org/10.1016/j.bcab.2020.101753]
[73]
Alrosan M, Tan TC, Mat Easa A, Gammoh S, Alu’datt MH. Effects of fermentation on the quality, structure, and nonnutritive contents of lentil (Lens culinaris) proteins. J Food Qual 2021; 2021: 1-7.
[http://dx.doi.org/10.1155/2021/5556450]
[74]
Landi N, Pacifico S, Piccolella S, et al. Valle Agricola lentil, an unknown lentil (Lens culinaris Medik.) seed from Southern Italy as a novel antioxidant and prebiotic source. Food Funct 2015; 6(9): 3155-64.
[http://dx.doi.org/10.1039/C5FO00604J] [PMID: 26222801]
[75]
Duez H, Cariou B, Staels B. DPP-4 inhibitors in the treatment of type 2 diabetes. Biochem Pharmacol 2012; 83(7): 823-32.
[http://dx.doi.org/10.1016/j.bcp.2011.11.028] [PMID: 22172989]
[76]
Torino MI, Limón RI, Martínez-Villaluenga C, et al. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chem 2013; 136(2): 1030-7.
[http://dx.doi.org/10.1016/j.foodchem.2012.09.015] [PMID: 23122159]
[77]
Bautista-Expósito S, Peñas E, Silván JM, Frias J, Martínez-Villaluenga C. pH-controlled fermentation in mild alkaline conditions enhances bioactive compounds and functional features of lentil to ameliorate metabolic disturbances. Food Chem 2018; 248: 262-71.
[http://dx.doi.org/10.1016/j.foodchem.2017.12.059] [PMID: 29329853]
[78]
Xu BJ, Yuan SH, Chang SKC. Comparative studies on the antioxidant activities of nine common food legumes against copper-induced human low-density lipoprotein oxidation in vitro. J Food Sci 2007; 72(7): S522-7.
[http://dx.doi.org/10.1111/j.1750-3841.2007.00464.x] [PMID: 17995667]
[79]
Alshikh N, de Camargo AC, Shahidi F. Phenolics of selected lentil cultivars: Antioxidant activities and inhibition of low-density lipoprotein and DNA damage. J Funct Foods 2015; 18: 1022-38.
[http://dx.doi.org/10.1016/j.jff.2015.05.018]
[80]
Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and Atherosclerosis. 2013; 2013: 52786.
[81]
Zhang B, Deng Z, Tang Y, et al. Bioaccessibility, in vitro antioxidant and anti-inflammatory activities of phenolics in cooked green lentil (Lens culinaris). J Funct Foods 2017; 32: 248-55.
[http://dx.doi.org/10.1016/j.jff.2017.03.004]
[82]
Bautista-Expósito S, Peñas E, Frias J, Martínez-Villaluenga C. Pilot-scale produced fermented lentil protects against t-BHP-triggered oxidative stress by activation of Nrf2 dependent on SAPK/JNK phosphorylation. Food Chem 2019; 274: 750-9.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.012] [PMID: 30373004]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy