Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Review Article

Microwave-assisted Sustainable Production of Biodiesel: A Comprehensive Review

Author(s): Supongsenla Ao, Michael VL Chhandama, Hu Li and Samuel Lalthazuala Rokhum*

Volume 10, Issue 1, 2023

Published on: 17 April, 2023

Page: [3 - 25] Pages: 23

DOI: 10.2174/2213335610666230223100707

Price: $65

Abstract

Limited crude petroleum and growing awareness of fossil fuel depletion have enabled the development of alternative fuels and new energy sources. Biodiesel, also known as fatty acid methyl esters (FAME), has received a lot of attention due to its biodegradability, renewability, cost effective and nontoxicity. The purity of biodiesel production and uniform heating are the major hurdles for large scale biodiesel production. Recent microwave energy-based heating method has proved the potential for cleaner chemical production, short time duration, uniform heating, and purity over conventional heating method. The goal of this review is to discuss the biodiesel production using microwave-assisted heating. The different feedstocks used for biodiesel production, effects of microwave irradiation, factors affecting the rate of microwave-assisted transesterification to produce biodiesel were comprehensively discussed. Microwave irradiation has been compared to other technologies aiming to enhance the efficiency of overall process. The primary knowledge gaps in biodiesel production can be identified based on this research, ensuring the biodiesel industry's longterm sustainability.

Graphical Abstract

[1]
Gouda, S.P.; Ngaosuwan, K.; Assabumrungrat, S.; Selvaraj, M.; Halder, G.; Rokhum, S.L. Microwave Assisted Biodiesel Production Using Sulfonic Acid-Functionalized Metal-Organic Frameworks UiO-66 as a Heterogeneous Catalyst. Renew. Energy, 2022, 197, 161-169.
[http://dx.doi.org/10.1016/j.renene.2022.07.061]
[2]
Khedri, B.; Mostafaei, M.; Ardebili, S.M.S. A review on microwave-assisted biodiesel production, Energy Sources, Part A Recover. Util. Environ. Eff., 2019, 41, 2377-2395.
[http://dx.doi.org/10.1080/15567036.2018.1563246]
[3]
Motasemi, F.; Ani, F.N. A review on microwave-assisted production of biodiesel, Renew. Sustain. Energy Rev., 2012, 16, 4719-4733.
[http://dx.doi.org/10.1016/j.rser.2012.03.069]
[4]
Khan, H.M.; Iqbal, T.; Mujtaba, M.A.; Soudagar, M.E.M.; Veza, I.; Fattah, I.M.R. Microwave Assisted Biodiesel Production Using Heterogeneous Catalysts. Energies, 2021, 14, 8135.
[http://dx.doi.org/10.3390/EN14238135]
[5]
Nomanbhay, S.; Ong, M.Y. A Review of Microwave-Assisted Reactions for Biodiesel Production. Bioengineering , 2017, 4.
[http://dx.doi.org/10.3390/bioengineering4020057]
[6]
6Chhandama, M.V.L; Chumpi, A.; Belur, K.; Ao, S.; Vl, J.; Lalthazuala, S. Bioresource Technology Reports Valorisation of Food Waste to Sustainable Energy and Other Value-Added Products : A Review. Bioresour. Technol. Reports., 2022, 17, 100945.
[http://dx.doi.org/10.1016/j.biteb.2022.100945]
[7]
Ao, S.; Rokhum, S.L. Recent Advances in the Valorization of Biodiesel By-Product Glycerol to Solketal., 2022, 2022
[http://dx.doi.org/10.1155/2022/4938672]
[8]
Changmai, B.; Vanlalveni, C.; Ingle, A.P.; Bhagat, R.; Rokhum, L. Widely Used Catalysts in Biodiesel Production: A Review. RSC Adv., 2020, 10, 41625-41679.
[http://dx.doi.org/10.1039/d0ra07931f]
[9]
Tan, S.X.; Lim, S.; Ong, H.C.; Pang, Y.L. State of the Art Review on Development of Ultrasound-Assisted Catalytic Transesterification Process for Biodiesel Production. Fuel, 2019, 235, 886-907.
[http://dx.doi.org/10.1016/J.FUEL.2018.08.021]
[10]
Likozar, B.; Pohar, A.; Levec, J. Transesterification of Oil to Biodiesel in a Continuous Tubular Reactor with Static Mixers: Modelling Reaction Kinetics, Mass Transfer, Scale-up and Optimization Considering Fatty Acid Composition. Fuel Process. Technol., 2016, 142, 326-336.
[http://dx.doi.org/10.1016/j.fuproc.2015.10.035]
[11]
Rajkumari, K.; Das, D.; Pathak, G.; Rokhum, L. Waste-to-Useful: A Biowaste-Derived Heterogeneous Catalyst for a Green and Sustainable Henry Reaction. New J. Chem., 2019, 43, 2134-2140.
[http://dx.doi.org/10.1039/c8nj05029e]
[12]
Jamil, F.; Al-Haj, L.; Al-Muhtaseb, A.H.; Al-Hinai, M.A.; Baawain, M.; Rashid, U.; Ahmad, M.N.M. Current Scenario of Catalysts for Biodiesel Production: A Critical Review. Rev. Chem. Eng., 2018, 34, 267-297.
[http://dx.doi.org/10.1515/REVCE-2016-0026/XML]
[13]
Bashir, M.A.; Wu, S.; Zhu, J.; Krosuri, A.; Khan, M.U.; Ndeddy Aka, R.J. Recent Development of Advanced Processing Technologies for Biodiesel Production: A Critical Review. Fuel Process. Technol., 2022, 227, 107120.
[http://dx.doi.org/10.1016/J.FUPROC.2021.107120]
[14]
Maheshwari, P.; Haider, M.B.; Yusuf, M.; Klemeš, J.J.; Bokhari, A.; Beg, M.; Al-Othman, A.; Kumar, R.; Jaiswal, A.K. A Review on Latest Trends in Cleaner Biodiesel Production: Role of Feedstock, Production Methods, and Catalysts. J. Clean. Prod., 2022, 355, 131588.
[http://dx.doi.org/10.1016/J.JCLEPRO.2022.131588]
[15]
Omoriyekomwan, J.E.; Tahmasebi, A.; Dou, J.; Wang, R.; Yu, J. A Review on the Recent Advances in the Production of Carbon Nanotubes and Carbon Nanofibers via Microwave-Assisted Pyrolysis of Biomass. Fuel Process. Technol., 2021, 214, 106686.
[http://dx.doi.org/10.1016/j.fuproc.2020.106686]
[16]
Babadi, A.A.; Rahmati, S.; Fakhlaei, R.; Barati, B.; Wang, S.; Doherty, W.; Ostrikov, K. Emerging Technologies for Biodiesel Production: Processes, Challenges, and Opportunities. Biomass and Bioenergy, 2022, 163, 106521.
[http://dx.doi.org/10.1016/J.BIOMBIOE106521]
[17]
Changmai, B.; Sudarsanam, P.; Rokhum, L. Biodiesel Production Using a Renewable Mesoporous Solid Catalyst. Ind. Crops Prod., 2020, 145, 111911.
[http://dx.doi.org/10.1016/j.indcrop.2019.111911]
[18]
Mendonça, I.M.; Machado, F.L.; Silva, C.C.; Duvoisin Junior, S.; Takeno, M.L.; de Sousa Maia, P.J.; Manzato, L.; de Freitas, F.A. Application of Calcined Waste Cupuaçu (Theobroma Grandiflorum) Seeds as a Low-Cost Solid Catalyst in Soybean Oil Ethanolysis: Statistical Optimization. Energy Convers. Manag., 2019, 200, 112095.
[http://dx.doi.org/10.1016/j.enconman.2019.112095]
[19]
Konwar, L.J.; Wärnå, J.; Mäki-Arvela, P.; Kumar, N.; Mikkola, J.P. Reaction Kinetics with Catalyst Deactivation in Simultaneous Esterification and Transesterification of Acid Oils to Biodiesel (FAME) over a Mesoporous Sulphonated Carbon Catalyst. Fuel, 2016, 166, 1-11.
[http://dx.doi.org/10.1016/j.fuel.2015.10.102]
[20]
Grillo, G.; Cintas, P.; Colia, M.; Gaudino, E.C.; Cravotto, G. Process Intensi Fi Cation in Continuous Fl Ow Organic Synthesis with Enabling and Hybrid Technologies., 2022, 1-23.
[http://dx.doi.org/10.3389/fceng.2022.966451]
[21]
Yadav, A.K.; Khan, M.E.; Pal, A.; Singh, B. Ultrasonic-Assisted Optimization of Biodiesel Production from Karabi Oil Using Heterogeneous Catalyst. Biofuels, 2018, 9, 101-112.
[http://dx.doi.org/10.1080/17597269.2016.1259522]
[22]
Goh, B.H.H.; Ong, H.C.; Chong, C.T.; Chen, W.H.; Leong, K.Y.; Tan, S.X.; Lee, X.J. Ultrasonic Assisted Oil Extraction and Biodiesel Synthesis of Spent Coffee Ground. Fuel, 2020, 261, 116121.
[http://dx.doi.org/10.1016/j.fuel.2019.116121]
[23]
Akbarian-Tefaghi, S.; Wiley, J.B. Microwave-assisted routes for rapid and efficient modification of layered perovskites. Dalton Trans., 2018, 47, 2917-2924.
[http://dx.doi.org/10.1039/C7DT03865H]
[24]
Su, G.; Ong, H.C.; Cheah, M.Y.; Chen, W.H.; Lam, S.S.; Huang, Y. Microwave-Assisted Pyrolysis Technology for Bioenergy Recovery: Mechanism, Performance, and Prospect. Fuel, 2022, 326, 124983.
[http://dx.doi.org/10.1016/J.FUEL.2022.124983]
[25]
Pathak, G.; Das, D.; Rokhum, L. A Microwave-Assisted Highly Practical Chemoselective Esterification and Amidation of Carboxylic Acids. RSC Adv., 2016, 6, 93729-93740.
[http://dx.doi.org/10.1039/c6ra22558f]
[26]
Goyal, H.; Chen, T.Y.; Chen, W.; Vlachos, D.G. A Review of Microwave-Assisted Process Intensified Multiphase Reactors. Chem. Eng. J., 2022, 430, 133183.
[http://dx.doi.org/10.1016/J.CEJ.2021.133183]
[27]
Ling, Y.; Li, Q.; Zheng, H.; Omran, M.; Gao, L.; Chen, J.; Chen, G. Optimisation on the Stability of CaO-Doped Partially Stabilised Zirconia by Microwave Heating. Ceram. Int., 2021, 47, 8067-8074.
[http://dx.doi.org/10.1016/j.ceramint.2020.11.161]
[28]
Rajkumari, k.; Lama, b.; Rokhum, l. A Microwave-Assisted Highly Stereoselective One-Pot Wittig Reaction Undersolvent-Free Conditions. Turkish J. Chem., 2019, 43, 705-712.
[http://dx.doi.org/10.3906/kim-1810-34]
[29]
Mal, D.; Alveroglu, E.; Balouch, A.; Jagirani, M.S.; Abdullah, Kumar. S. Highly Efficient and Selective Heterogeneous CatalyticReduction of 2-Nitroaniline by Cerium Oxide Nanocatalyst under Microwave Irradiation 2021 Environ Technol., 2021, 43(23), 3631-3645.
[http://dx.doi.org/10.1080/09593330.2021.1929506]
[30]
Lin, C.H.; Chang, Y.T.; Lai, M.C.; Chiou, T.Y.; Liao, C. Sen Continuous Biodiesel Production from Waste Soybean Oil Using a Nano-Fe3o4 Microwave Catalysis. Processes , 2021, 9, 1-10.
[http://dx.doi.org/10.3390/pr9050756]
[31]
González, M.E.; Cea, M.; Reyes, D.; Romero-Hermoso, L.; Hidalgo, P.; Meier, S.; Benito, N.; Navia, R. Functionalization of Biochar Derived from Lignocellulosic Biomass Using Microwave Technology for Catalytic Application in Biodiesel Production. Energy Convers. Manag., 2017, 137, 165-173.
[http://dx.doi.org/10.1016/j.enconman.2017.01.063]
[32]
Estel, L.; Poux, M.; Benamara, N.; Polaert, I. Continuous Flow-Microwave Reactor: Where Are We? Chem. Eng. Process. - Process Intensif., 2017, 113, 56-64.
[http://dx.doi.org/10.1016/j.cep.2016.09.022]
[33]
Chavali, A.; Wheat, T.; Leblanc, G.; Mcmillan, D. Complete Amino Acids Analysis Of Food And Feeds; Waters, 2013. doi: https://www.waters.com/webassets/cms/library/docs/2013rafa_mcmillan_amino_acid_analysis.pdf
[34]
Tabatabaei, M.; Aghbashlo, M. Biodiesel: From Production to Combustion; , 2019; 8, pp. 193-217. ISBN 978-3-030-00985-4.
[35]
Mishra, V.K.; Goswami, R. A Review of Production, Properties and Advantages of Biodiesel. Biofuels, 2018, 9, 273-289.
[http://dx.doi.org/10.1080/17597269.2017.1336350]
[36]
Veljkovi, M. Environmental Impacts the of Production and Use of Biodiesel. 2018, 191-199.
[http://dx.doi.org/10.1007/s11356-017-0649-z]
[37]
Giakoumis, E.G. Analysis of 22 Vegetable Oils ’ Physico-Chemical Properties and Fatty Acid Composition on a Statistical Basis, and Correlation with the Degree of Unsaturation. Renew. Energy, 2018, 126, 403-419.
[http://dx.doi.org/10.1016/j.renene.2018.03.057]
[38]
de Souza, T.A.Z.; Pinto, G.M.; Julio, A.A.V.; Coronado, C.J.R.; Perez-Herrera, R.; Siqueira, B.O.P.S.; da Costa, R.B.R.; Roberts, J.J.; Palacio, J.C.E. Biodiesel in South American Countries: A Review on Policies, Stages of Development and Imminent Competition with Hydrotreated Vegetable Oil. Renew. Sustain. Energy Rev., 2022, 153, 111755.
[http://dx.doi.org/10.1016/J.RSER.2021.111755]
[39]
Salas-Valerio, W.F.; Aykas, D.P.; Hatta Sakoda, B.A.; Ludeña-Urquizo, F.E.; Ball, C.; Plans, M.; Rodriguez-Saona, L. In-Field Screening of Trans-Fat Levels Using Mid- and near-Infrared Spectrometers for Butters and Margarines Commercialized in the Peruvian Market. LWT., 2022, 157, 113074.
[http://dx.doi.org/10.1016/J.LWT.2022.113074]
[40]
Hizami, M.; Yuso, M.; Ayoub, M.; Ramzan, N.; Nazir, M.H.; Zahid, I.; Abbas, N.; Elboughdiri, N.; Mirza, C.R. Overview of Feedstocks for Sustainable Biodiesel Production and Implementation of the Biodiesel Program in Pakistan., 2021, 157, 112012.
[http://dx.doi.org/10.1021/acsomega.1c02402]
[41]
Mukhtar, A.; Saqib, S.; Lin, H.; Hassan Shah, M.U.; Ullah, S.; Younas, M.; Rezakazemi, M.; Ibrahim, M.; Mahmood, A.; Asif, S. Current Status and Challenges in the Heterogeneous Catalysis for Biodiesel Production. Renew. Sustain. Energy Rev., 2022, 157, 112012.
[http://dx.doi.org/10.1016/J.RSER.2021.112012]
[42]
Rastegari, H.; Jazini, H.; Ghaziaskar, H.S.; Yalpani, M. Applications of Biodiesel By-Products; Springer International Publishing, 2019. ISBN 9783030009854.
[43]
Chiarello, L.M.; Porto, T.G.; Wienhage, G.H.; Botton, V.; Wiggers, V.R. Pyrolysis of Triglycerides for Fuels and Chemical Production; Handb. Biomass Valorization Ind. Appl, 2022, pp. 107-128.
[http://dx.doi.org/10.1002/9781119818816.CH6]
[44]
Abdullah, S.H.Y.S.; Hanapi, N.H.M.; Azid, A.; Umar, R.; Juahir, H.; Khatoon, H.; Endut, A. A Review of Biomass-Derived Heterogeneous Catalyst for a Sustainable Biodiesel Production. Renew. Sustain. Energy Rev., 2017, 70, 1040-1051.
[http://dx.doi.org/10.1016/j.rser.2016.12.008]
[45]
Lee, J.W.Y.; Chia, W.Y.; Ong, W.J.; Cheah, W.Y.; Lim, S.S.; Chew, K.W. Advances in Catalytic Transesterification Routes for Biodiesel Production Using Microalgae. Sustain. Energy Technol. Assessments., 2022, 52, 102336.
[http://dx.doi.org/10.1016/J.SETA.2022.102336]
[46]
Tabatabaei, M.; Aghbashlo, M.; Dehhaghi, M.; Panahi, H.K.S.; Mollahosseini, A.; Hosseini, M.; Soufiyan, M.M. Reactor Technologies for Biodiesel Production and Processing: A Review. Prog. Energy Combust. Sci., 2019, 74, 239-303.
[http://dx.doi.org/10.1016/j.pecs.2019.06.001]
[47]
Zhu, H.; Saddler, J.; Bi, X. An Economic and Environmental Assessment of Biofuel Produced via Microwave-Assisted Catalytic Pyrolysis of Forest Residues. Energy Convers. Manag., 2022, 263, 115723.
[http://dx.doi.org/10.1016/J.ENCONMAN.2022.115723]
[48]
Abioye, A.M.; Nasir Ani, F.; Bahru, J. Advancement in the Production of Activated Carbon from Biomass using Microwave Heating. Sci. Eng., 2017, 79, 2180-3722.
[49]
Nguyen, H.C.; Lee, H.Y.; Su, C.H.; Shih, W.J.; Chien, C.C. Green Process for Fatty Acid Production from Soybean Oil through Microwave-Mediated Autocatalytic Synthesis. Chem. Eng. Process. - Process Intensif., 2020, 147, 107782.
[http://dx.doi.org/10.1016/j.cep.2019.107782]
[50]
Kumar, A.; Chirchir, A.; Some, D.K.; Kiriamit, K.H. Enhanced Organic Synthesis Green Chemistry- A Study in Transesterification. Proc. Sustain. Res. Innov. Conf., 2022, 177-184.http://sri.jkuat.ac.ke/jkuatsri/index.php/sri/article/view/206/187
[51]
Ao, W.; Fu, J.; Mao, X.; Kang, Q.; Ran, C.; Liu, Y.; Zhang, H.; Gao, Z.; Li, J.; Liu, G. Microwave Assisted Preparation of Activated Carbon from Biomass: A Review. Renew. Sustain. Energy Rev., 2018, 92, 958-979.
[http://dx.doi.org/10.1016/j.rser.2018.04.051]
[52]
Arpia, A.A.; Chen, W.H.; Lam, S.S.; Rousset, P.; de Luna, M.D.G. Sustainable Biofuel and Bioenergy Production from Biomass Waste Residues Using Microwave-Assisted Heating: A Comprehensive Review. Chem. Eng. J., 2021, 403, 126233.
[http://dx.doi.org/10.1016/j.cej.2020.126233]
[53]
Costa, E.; Almeida, M.F.; Alvim-Ferraz, M. da C.; Dias, J.M. Effect of Crambe Abyssinica Oil Degumming in Phosphorus Concentration of Refined Oil and Derived Biodiesel. Renew. Energy, 2018, 124, 27-33.
[http://dx.doi.org/10.1016/j.renene.2017.08.089]
[54]
Singh, D.; Sharma, D.; Soni, S.L.; Inda, C.S.; Sharma, S.; Sharma, P.K.; Jhalani, A. A Comprehensive Review of Biodiesel Production from Waste Cooking Oil and Its Use as Fuel in Compression Ignition Engines: 3rd Generation Cleaner Feedstock. J. Clean. Prod., 2021, 307, 127299.
[http://dx.doi.org/10.1016/j.jclepro.2021.127299]
[55]
Ramos, M.; Dias, A.P.S.; Puna, J.F.; Gomes, J.; Bordado, J.C. Biodiesel Production Processes and Sustainable Raw Materials. Energies, 2019, 12.
[http://dx.doi.org/10.3390/en12234408]
[56]
Muhammad, G.; Alam, M.A.; Mofijur, M.; Jahirul, M.I.; Lv, Y.; Xiong, W.; Ong, H.C.; Xu, J. Modern Developmental Aspects in the Field of Economical Harvesting and Biodiesel Production from Microalgae Biomass. Renew. Sustain. Energy Rev., 2021, 135, 110209.
[http://dx.doi.org/10.1016/j.rser.2020.110209]
[57]
Pathak, G.; Das, D.; Rajkumari, K.; Rokhum, L. Exploiting Waste: Towards a Sustainable Production of Biodiesel Using: Musa Acuminata Peel Ash as a Heterogeneous Catalyst. Green Chem., 2018, 20, 2365-2373.
[http://dx.doi.org/10.1039/c8gc00071a]
[58]
Athar, M.; Zaidi, S.; Hassan, S.Z. Intensification and Optimization of Biodiesel Production Using Microwave-Assisted Acid-Organo Catalyzed Transesterification Process. Sci. Rep., 2020, 10, 1-18.
[http://dx.doi.org/10.1038/s41598-020-77798-1]
[59]
Nayebzadeh, H.; Saghatoleslami, N.; Haghighi, M.; Tabasizadeh, M.; Binaeian, E. Comparative Assessment of the Ability of a Microwave Absorber Nanocatalyst in the Microwave-Assisted Biodiesel Production Process. Comptes Rendus Chim., 2018, 21, 676-683.
[http://dx.doi.org/10.1016/j.crci.2018.04.003]
[60]
Kamel Ariffin, M.F.; Idris, A. Fe2O3/Chitosan Coated Superparamagnetic Nanoparticles Supporting Lipase Enzyme from Candida Antarctica for Microwave Assisted Biodiesel Production. Renew. Energy, 2022, 185, 1362-1375.
[http://dx.doi.org/10.1016/j.renene.2021.11.077]
[61]
Yaashikaa, P.R.; Kumar, P.S.; Karishma, S. Bio-Derived Catalysts for Production of Biodiesel: A Review on Feedstock, Oil Extraction Methodologies, Reactors and Lifecycle Assessment of Biodiesel. Fuel, 2022, 316, 123379.
[http://dx.doi.org/10.1016/J.FUEL.2022.123379]
[62]
Kumar, S. Production and Optimization from Karanja Oil by Adaptive Neuro-Fuzzy Inference System and Response Surface Methodology with Modified Domestic Microwave. Fuel, 2021, 296, 120684.
[http://dx.doi.org/10.1016/j.fuel.2021.120684]
[63]
Sharma, A.; Kodgire, P.; Singh, S. Biodiesel Production from Waste Cotton-Seed Cooking Oil Using Microwave- Assisted Transesteri Fi Cation : Optimization and Kinetic Modeling. Renew. Sustain. Energy Rev., 2019, 116, 109394.
[http://dx.doi.org/10.1016/j.rser.2019.109394]
[64]
Silitonga, A.S.; Shamsuddin, A.H.; Mahlia, T.M.I.; Milano, J.; Kusumo, F.; Siswantoro, J.; Dharma, S.; Sebayang, A.H.; Masjuki, H.H.; Ong, H.C. Biodiesel Synthesis from Ceiba Pentandra Oil by Microwave Irradiation-Assisted Transesterification: ELM Modeling and Optimization. Renew. Energy, 2020, 146, 1278-1291.
[http://dx.doi.org/10.1016/j.renene.2019.07.065]
[65]
Dickinson, S.; Mientus, M.; Frey, D.; Amini-Hajibashi, A.; Ozturk, S.; Shaikh, F.; Sengupta, D.; El-Halwagi, M.M. A Review of Biodiesel Production from Microalgae. Clean Technol. Environ. Policy, 2017, 19, 637-668.
[http://dx.doi.org/10.1007/s10098-016-1309-6]
[66]
Faried, M.; Samer, M.; Abdelsalam, E.; Yousef, R.S.; Attia, Y.A.; Ali, A.S. Biodiesel Production from Microalgae: Processes, Technologies and Recent Advancements. Renew. Sustain. Energy Rev., 2017, 79, 893-913.
[http://dx.doi.org/10.1016/j.rser.2017.05.199]
[67]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The Use of Microwave Ovens for Rapid Organic Synthesis. Tetrahedron Lett., 1986, 27, 279-282.
[http://dx.doi.org/10.1016/S0040-4039(00)83996-9]
[68]
Haddadi, I.; Hellal, A.; Kirouani, I.; Layaida, H.; Bensouici, C. Microwave-Assisted Synthesis, DFT Theoretical Study and Biological Activities Evaluation of Two Phosphonylated m-Toluidine Derivatives. J. Mol. Struct., 2022, 1251, 131948.
[http://dx.doi.org/10.1016/J.MOLSTRUC.2021.131948]
[69]
De Melo, E.M.; Clark, J.H.; Matharu, A.S. The Hy-MASS Concept: Hydrothermal Microwave Assisted Selective Scissoring of Cellulose for: In Situ Production of (Meso)Porous Nanocellulose Fibrils and Crystals. Green Chem., 2017, 19, 3408-3417.
[http://dx.doi.org/10.1039/c7gc01378g]
[70]
Li, T.; Remón, J.; Shuttleworth, P.S.; Jiang, Z.; Fan, J.; Clark, J.H.; Budarin, V.L. Controllable Production of Liquid and Solid Biofuels by Doping-Free, Microwave-Assisted. Pressurised Pyrolysis of Hemicellulose. Energy Convers. Manag., 2017, 144, 104-113.
[http://dx.doi.org/10.1016/j.enconman.2017.04.055]
[71]
de Jesus, S.S.; Ferreira, G.F.; Moreira, L.S.; Filho, R.M. Biodiesel Production from Microalgae by Direct Transesterification Using Green Solvents. Renew. Energy, 2020, 160, 1283-1294.
[http://dx.doi.org/10.1016/j.renene.2020.07.056]
[72]
Kumar, V.; Thakur, I.S. Extraction of Lipids and Production of Biodiesel from Secondary Tannery Sludge by in Situ Transesterification. Bioresour. Technol. Reports., 2020, 11, 100446.
[http://dx.doi.org/10.1016/j.biteb.2020.100446]
[73]
Gupta, A.R.; Rathod, V.K. Calcium Diglyceroxide Catalyzed Biodiesel Production from Waste Cooking Oil in the Presence of Microwave: Optimization and Kinetic Studies. Renew. Energy, 2018, 121, 757-767.
[http://dx.doi.org/10.1016/j.renene.2017.11.027]
[74]
Hsiao, M.C.; Liao, P.H.; Lan, N.V.; Hou, S.S. Enhancement of Biodiesel Production from High-Acid-Value Waste Cooking Oil via a Microwave Reactor Using a Homogeneous Alkaline Catalyst†. Energies, 2021, 14.
[http://dx.doi.org/10.3390/en14020437]
[75]
Supraja, K.V.; Behera, B.; Paramasivan, B. Optimization of Process Variables on Two-Step Microwave-Assisted Transesterification of Waste Cooking Oil., 2020, 27244-27255.
[76]
Kumar, A.; Osembo, S.O.; Namango, S.S.; Kiriamiti, K.H. Heterogeneous Basic Catalysts For Transesterification Of Vegetable Oils: A Review. Proc. Sustain. Res. Innov. Conf., 2022, pp. 59-68.
[77]
Nayab, R.; Imran, M.; Ramzan, M.; Tariq, M.; Taj, M.B.; Akhtar, M.N.; Iqbal, H.M.N. Sustainable Biodiesel Production via Catalytic and Non-Catalytic Transesterification of Feedstock Materials – A Review. Fuel, 2022, 328, 125254.
[http://dx.doi.org/10.1016/J.FUEL.2022.125254]
[78]
Malins, K.; Brinks, J.; Kampars, V.; Malina, I. Esterification of Rapeseed Oil Fatty Acids Using a Carbon-Based Heterogeneous Acid Catalyst Derived from Cellulose. Appl. Catal. A Gen., 2016, 519, 99-106.
[http://dx.doi.org/10.1016/j.apcata.2016.03.020]
[79]
Churasia, A.; Singh, J.; Kumar, A. Production of Biodiesel from Soybean Oil Biomass as Renewable Energy Source. J. Environ. Biol., 2016, 37, 1303-1307.
[80]
Fatimah, I.; Rubiyanto, D.; Taushiyah, A.; Badriatun, F.; Azmi, U.; Sim, Y. Use of ZrO 2 Supported on Bamboo Leaf Ash as a Heterogeneous Catalyst in Microwave-Assisted Biodiesel Conversion. Sustain. Chem. Pharm., 2019, 12, 100129.
[http://dx.doi.org/10.1016/j.scp.2019.100129]
[81]
Varol, P.M.; Çakan, A.; Kiren, B.; Ayas, N. Microwave-Assisted Catalytic Transesterification of Soybean Oil Using KOH/γ-Al2O3; Biomass Convers. Biorefinery, 2021.
[http://dx.doi.org/10.1007/s13399-020-01253-4]
[82]
Rocha, P.D.; Oliveira, L.S.; Franca, A.S. Sulfonated Activated Carbon from Corn Cobs as Heterogeneous Catalysts for Biodiesel Production Using Microwave-Assisted Transesterification. Renew. Energy, 2019, 143, 1710-1716.
[http://dx.doi.org/10.1016/j.renene.2019.05.070]
[83]
Marwan; Indarti, E. Hydrated Calcined Cyrtopleura Costata Seashells as an Effective Solid Catalyst for Microwave-Assisted Preparation of Palm Oil Biodiesel. Energy Convers. Manag., 2016, 117, 319-325.
[http://dx.doi.org/10.1016/j.enconman.2016.03.030]
[84]
Soltani, S.; Khanian, N.; Shean Yaw Choong, T.; Asim, N.; Zhao, Y. Microwave-Assisted Hydrothermal Synthesis of Sulfonated TiO2-GO Core–Shell Solid Spheres as Heterogeneous Esterification Mesoporous Catalyst for Biodiesel Production. Energy Convers. Manag., 2021, 238, 114165.
[http://dx.doi.org/10.1016/j.enconman.2021.114165]
[85]
Thushari, I.; Babel, S. Preparation of Solid Acid Catalysts from Waste Biomass and Their Application for Microwave-Assisted Biodiesel Production from Waste Palm Oil. Waste Manag. Res., 2018, 36, 719-728.
[http://dx.doi.org/10.1177/0734242X18789821]
[86]
Ong, M.Y.; Nomanbhay, S.; Kusumo, F.; Shahruzzaman, R.M.H.; Shamsuddin, A.H. Modeling and Optimization of Microwave-Based Bio-Jet Fuel from Coconut Oil: Investigation of Response Surface Methodology (RSM) and Artificial Neural Network Methodology (ANN). Energies, 2021, 14, 295.
[http://dx.doi.org/10.3390/EN14020295]
[87]
Lin, J.; Chen, Y. Production of Biodiesel by Transesterification of Jatropha Oil with Microwave Heating. J. Taiwan Inst. Chem. Eng., 2017, 0, 1-8.
[http://dx.doi.org/10.1016/j.jtice.2017.03.034]
[88]
Athar, M.; Imdad, S.; Zaidi, S.; Yusuf, M.; Kamyab, H.; Jaromír Klemeš, J.; Chelliapan, S. Biodiesel Production by Single-Step Acid-Catalysed Transesterification of Jatropha Oil under Microwave Heating with Modelling and Optimisation Using Response Surface Methodology. Fuel, 2022, 322.
[http://dx.doi.org/10.1016/j.fuel.2022.124205]
[89]
Dehghan, L.; Golmakani, M.; Mohammad, S.; Hosseini, H. Optimization of Microwave-Assisted Accelerated Transesteri Fi Cation of Inedible Olive Oil for Biodiesel Production. Renew. Energy, 2019, 138, 915-922.
[http://dx.doi.org/10.1016/j.renene.2019.02.017]
[90]
Binnal, P.; Amruth, A.; Basawaraj, M.P.; Chethan, T.S.; Murthy, K.R.S.; Rajashekhara, S. Microwave-Assisted Esterification and Transesterification of Dairy Scum Oil for Biodiesel Production: Kinetics and Optimisation Studies. Indian Chem. Eng., 2021, 63, 374-386.
[http://dx.doi.org/10.1080/00194506.2020.1748124]
[91]
Chellappan, S.; Aparna, K.; Chingakham, C.; Sajith, V.; Nair, V. Microwave Assisted Biodiesel Production Using a Novel BrØnsted Acid Catalyst Based on Nanomagnetic Biocomposite. Fuel, 2019, 246, 268-276.
[http://dx.doi.org/10.1016/j.fuel.2019.02.104]
[92]
Nayak, M.G.; Vyas, A.P. Optimization of Microwave-Assisted Biodiesel Production from Papaya Oil Using Response Surface Methodology. Renew. Energy, 2019, 138, 18-28.
[http://dx.doi.org/10.1016/j.renene.2019.01.054]
[93]
Inayat, A.; Ghani, C.; Jamil, F.; Alobaidli, A.S.; Bawazir, H.M.; Ali, N.A.A. Biodiesel Production from Date Seeds via Microwave Assisted Technique 5th Int. Conf. Renew. Energy Gener. Appl.ICREGA, 2018, 2018-Janua, pp. 61-63.
[http://dx.doi.org/10.1109/ICREGA.2018.8337617]
[94]
Hundie, K.B. Optimization of Biodiesel Production Parametersfrom Cucurbita Maxima Waste Oil Using Microwave Assisted via Box-Behnken Design Approach J. Chem., 2022, 2022
[http://dx.doi.org/10.1155/2022/8516163.]
[95]
Naor, E.O.; Koberg, M.; Gedanken, A. Nonaqueous Synthesis of SrO Nanopowder and SrO/SiO2 Composite and Their Application for Biodiesel Production via Microwave Irradiation. Renew. Energy, 2017, 101, 493-499.
[http://dx.doi.org/10.1016/j.renene.2016.09.007]
[96]
Zhang, M.; Ramya, G.; Brindhadevi, K.; Alsehli, M.; Elfasakhany, A.; Xia, C.; Lan Chi, N.T. Pugazhendhi, A. Microwave Assisted Biodiesel Production from Chicken Feather Meal Oil Using Bio-Nano Calcium Oxide Derived from Chicken Egg Shell. Environ. Res., 2022, 205, 112509.
[http://dx.doi.org/10.1016/J.ENVRES.2021.112509]
[97]
Rokni, K.; Mostafaei, M.; Dehghani Soufi, M.; Kahrizi, D. Microwave-Assisted Intensification of Transesterification Reaction for Biodiesel Production from Camelina Oil: Optimization by Box-Behnken Design. Bioresour. Technol. Reports., 2022, 17, 100928.
[http://dx.doi.org/10.1016/j.biteb.2021.100928]
[98]
Falowo, O.A.; Oloko-Oba, M.I.; Betiku, E. Biodiesel Production Intensification via Microwave Irradiation-Assisted Transesterification of Oil Blend Using Nanoparticles from Elephant-Ear Tree Pod Husk as a Base Heterogeneous Catalyst. Chem. Eng. Process. - Process Intensif., 2019, 140, 157-170.
[http://dx.doi.org/10.1016/j.cep.2019.04.010]
[99]
Dhawane, S.H.; Kumar, T.; Halder, G. Biodiesel Synthesis from Hevea Brasiliensis Oil Employing Carbon Supported Heterogeneous Catalyst: Optimization by Taguchi Method. Renew. Energy, 2016, 89, 506-514.
[http://dx.doi.org/10.1016/j.renene.2015.12.027]
[100]
Helmi, F.; Helmi, M.; Hemmati, A. Phosphomolybdic Acid/Chitosan as Acid Solid Catalyst Using for Biodiesel Production from Pomegranate Seed Oil via Microwave Heating System: RSM Optimization and Kinetic Study. Renew. Energy, 2022, 189, 881-898.
[http://dx.doi.org/10.1016/j.renene.2022.02.123]
[101]
Qu, S.; Chen, C.; Guo, M.; Jiang, W.; Lu, J.; Yi, W.; Ding, J. Microwave-assisted in-situ transesterification of Spirulina platensis to biodiesel using PEG/MgO/ZSM-5 magnetic catalyst. Journal of. Cleaner. Production, 2021, 311, 127490.
[http://dx.doi.org/ 10.1016/J.JCLEPRO.2021.127490]
[102]
Pham, E.C.; Le, T.V.T.; Le, K.C.T.; Ly, H.H.H.; Vo, B.N.T.; Van Nguyen, D.; Truong, T.N. Optimization of Microwave-Assisted Biodiesel Production from Waste Catfish Using Response Surface Methodology. Energy Reports., 2022, 8, 5739-5752.
[http://dx.doi.org/10.1016/j.egyr.2022.04.036]
[103]
Guldhe, A.; Moura, C.V.R.; Singh, P.; Rawat, I.; Moura, E.M.; Sharma, Y.; Bux, F. Conversion of Microalgal Lipids to Biodiesel Using Chromium-Aluminum Mixed Oxide as a Heterogeneous Solid Acid Catalyst. Renew. Energy, 2017, 105, 175-182.
[http://dx.doi.org/10.1016/j.renene.2016.12.053]
[104]
Mardhiah, H.H.; Ong, H.C.; Masjuki, H.H.; Lim, S.; Pang, Y.L. Investigation of Carbon-Based Solid Acid Catalyst from Jatropha Curcas Biomass in Biodiesel Production. Energy Convers. Manage., 2017, 144, 10-17.
[http://dx.doi.org/10.1016/j.enconman.2017.04.038]
[105]
Thirugnanasambandham, K.; Shine, K.; Aziz, H.A.; Gimenes, M.L. Biodiesel Synthesis from Waste Oil Using Novel Microwave Technique: Response Surface Modeling and Optimization. Energy Sources, Part A Recover. Util. Environ. Eff., 2017, 39, 636-642.
[http://dx.doi.org/10.1080/15567036.2016.1196270]
[106]
Lotfian, A.; Yadipour, R.; Lu, Z.; Jiang, X. CPO Based Biodiesel Production Using Microwaves Assisted Method CPO Based Biodiesel Production Using Microwaves Assisted Method., 2019.
[http://dx.doi.org/10.1088/1742-6596/1167/1/012036.]
[107]
Zhou, J.; Xu, W.; You, Z.; Wang, Z.; Luo, Y.; Gao, L.; Yin, C.; Peng, R.; Lan, L. A New Type of Power Energy for Accelerating Chemical Reactions: The Nature of a Microwave-Driving Force for Accelerating Chemical Reactions. Sci. Rep., 2016, 6, 1-6.
[http://dx.doi.org/10.1038/srep25149]
[108]
Hong, I.K.; Jeon, H.; Kim, H.; Lee, S.B. Preparation of Waste Cooking Oil Based Biodiesel Using Microwave Irradiation Energy. J. Ind. Eng. Chem., 2016, 42, 107-112.
[http://dx.doi.org/10.1016/j.jiec.2016.07.035]
[109]
Zu, Y.; Zhang, S.; Fu, Y.; Liu, W.; Liu, Z.; Luo, M.; Efferth, T. Rapid Microwave-Assisted Transesterification for the Preparation of Fatty Acid Methyl Esters from the Oil of Yellow Horn (Xanthoceras Sorbifolia Bunge.). Eur. Food Res. Technol., 2009, 229, 43-49.
[http://dx.doi.org/10.1007/s00217-009-1024-1]
[110]
Priambodo, R.; Chen, T.C.; Lu, M.C.; Gedanken, A.; Der Liao, J.; Der Huang, Y.H. Novel Technology for Bio-Diesel Production from Cooking and Waste Cooking Oil by Microwave Irradiation. Energy Procedia, 2015, 75, 84-91.
[http://dx.doi.org/10.1016/j.egypro.2015.07.143]
[111]
Ding, H.; Ye, W.; Wang, Y.; Wang, X.; Li, L.; Liu, D.; Gui, J.; Song, C.; Ji, N. Process Intensification of Transesterification for Biodiesel Production from Palm Oil: Microwave Irradiation on Transesterification Reaction Catalyzed by Acidic Imidazolium Ionic Liquids. Energy, 2018, 144, 957-967.
[http://dx.doi.org/10.1016/j.energy.2017.12.072]
[112]
Bai, J.; Zein, S.H.; Antony, A. Techno-Economic Analysis and Feasibility of Industrial-Scale Activated Carbon Production from Agricultural Pea Waste Using Microwave-Assisted Pyrolysis: A Circular Economy Approach. In: Process; , 2022; 10, p. 1702.
[http://dx.doi.org/10.3390/PR10091702]
[113]
Sharma, A.K.; Sahoo, P.K.; Singhal, S.; Joshi, G. Exploration of Upstream and Downstream Process for Microwave Assisted Sustainable Biodiesel Production from Microalgae Chlorella Vulgaris. Bioresour. Technol., 2016, 216, 793-800.
[http://dx.doi.org/10.1016/j.biortech.2016.06.013]
[114]
Nayak, M.G.; Vyas, A.P. Parametric Study and Optimization of Microwave Assisted Biodiesel Synthesis from Argemone Mexicana Oil Using Response Surface Methodology. Chem. Eng. Process. - Process Intensif., 2022, 170, 108665.
[http://dx.doi.org/10.1016/J.CEP.2021.108665]
[115]
Hasnain, M.; Abideen, Z.; Naz, S.; Roessner, U.; Munir, N. Biodiesel Production from New Algal Sources Using Response Surface Methodology and Microwave Application; Biomass Convers. Biorefinery, 2021.
[http://dx.doi.org/10.1007/s13399-021-01560-4]
[116]
Sitepu, E.K.; Heimann, K.; Raston, C.L.; Zhang, W. Critical Evaluation of Process Parameters for Direct Biodiesel Production from Diverse Feedstock. Renew. Sustain. Energy Rev., 2020, 123, 109762.
[http://dx.doi.org/10.1016/j.rser.2020.109762]
[117]
Feng, S.; Li, M.; Chen, H.; Huai, L.; Min, D.; Zhang, J. Synergistic Catalytic Effect of Zirconium Chloride and Brønsted Acid Salt for Conversion of Agarose to 5-Hydroxymethylfurfural in Aqueous Media. Renew. Energy, 2022, 198, 123-130.
[http://dx.doi.org/10.1016/J.RENENE.2022.08.035]
[118]
Kathumbi, L.K.; Home, P.G.; Raude, J.M.; Gathitu, B.B. Performance of Citric Acid as a Catalyst and Support Catalyst When Synthesized with NaOH and CaO in Transesterification of Biodiesel from Black Soldier Fly Larvae Fed on Kitchen Waste. Fuels, 2022, 3, 295-315.
[http://dx.doi.org/10.3390/FUELS3020018]
[119]
Bambase, M.E.; Almazan, R.A.R.; Demafelis, R.B.; Sobremisana, M.J.; Dizon, L.S.H. Biodiesel Production from Refined Coconut Oil Using Hydroxide-Impregnated Calcium Oxide by Cosolvent Method. Renew. Energy, 2021, 163, 571-578.
[http://dx.doi.org/10.1016/J.RENENE.2020.08.115]
[120]
Hasan, N.; Ratnam, M.V. Biodiesel Production from Waste Animal Fat by Transesterification Using H2SO4and KOH Catalysts: A Study of Physiochemical Properties. Int. J. Chem. Eng., 2022, 2022
[http://dx.doi.org/10.1155/2022/6932320]
[121]
Patil, P.; Gude, V.G.; Pinappu, S.; Deng, S. Transesterification Kinetics of Camelina Sativa Oil on Metal Oxide Catalysts under Conventional and Microwave Heating Conditions. Chem. Eng. J., 2011, 168, 1296-1300.
[http://dx.doi.org/10.1016/j.cej.2011.02.030]
[122]
Shibasaki-Kitakawa, N.; Hiromori, K. Sustainable Production of Biodiesel Using Ion-Exchange Resin Catalysts; Biodiesel Prod, 2022, pp. 193-207.
[http://dx.doi.org/10.1002/9781119771364.CH10]
[123]
Encinar, J.M.; González, J.F.; Martínez, G.; Sánchez, N.; Pardal, A. Soybean Oil Transesterification by the Use of a Microwave Flow System. Fuel, 2012, 95, 386-393.
[http://dx.doi.org/10.1016/j.fuel.2011.11.010]
[124]
Davies, E.; Deutz, P.; Zein, S.H. Single-Step Extraction–Esterification Process to Produce Biodiesel from Palm Oil Mill Effluent (POME) Using Microwave Heating: A Circular Economy Approach to Making Use of a Difficult Waste Product; Biomass Convers. Biorefinery, 2020.
[http://dx.doi.org/10.1007/s13399-020-00856-1]
[125]
Maafa, I.M. Biodiesel Synthesis from High Free-Fatty-Acid Chicken Fat Using a Scrap-Tire Derived Solid Acid Catalyst and KOH. Polym., 2022, 14, 643-117.
[http://dx.doi.org/10.3390/POLYM14030643]
[126]
Ewunie, G.A.; Lekang, O.I.; Morken, J.; Yigezu, Z.D. Characterizing the Potential and Suitability of Ethiopian Variety Jatropha Curcas for Biodiesel Production: Variation in Yield and Physicochemical Properties of Oil across Different Growing Areas. Energy Reports., 2021, 7, 439-452.
[http://dx.doi.org/10.1016/J.EGYR.2021.01.007]
[127]
Marchetti, J.M. Optimization of the Esterification Reaction of Free Fatty Acids Present in Waste Salmon Oil. Biofuels Bioprod. Biorefining., 2022, 16, 1297-1303.
[http://dx.doi.org/10.1002/BBB.2374]
[128]
Karmakar, A.; Karmakar, S.; Mukherjee, S. Properties of Various Plants and Animals Feedstocks for Biodiesel Production. Bioresour. Technol., 2010, 101, 7201-7210.
[http://dx.doi.org/10.1016/J.BIORTECH.2010.04.079]
[129]
Lieu, T.; Yusup, S.; Moniruzzaman, M. Kinetic Study on Microwave-Assisted Esterification of Free Fatty Acids Derived from Ceiba Pentandra Seed Oil. Bioresour. Technol., 2016, 211, 248-256.
[http://dx.doi.org/10.1016/J.BIORTECH.2016.03.105]
[130]
Idowu, I.; Pedrola, M.O.; Wylie, S.; Teng, K.H.; Kot, P.; Phipps, D.; Shaw, A. Improving Biodiesel Yield of Animal Waste Fats by Combination of a Pre-Treatment Technique and Microwave Technology. Renew. Energy, 2019, 142, 535-542.
[http://dx.doi.org/10.1016/J.RENENE.2019.04.103]
[131]
Patil, P.D.; Gude, V.G.; Camacho, L.M.; Deng, S. Microwave-Assisted Catalytic Transesterification of Camelina Sativa Oil. Energy and Fuels, 2010, 24, 1298-1304.
[http://dx.doi.org/10.1021/EF9010065/ASSET/IMAGES/LARGE/EF-2009-010065_0001.JPEG]
[132]
Trejo-Carbajal, N.; Ambriz-Luna, K.I.; Herrera-González, A.M. Efficient Method and Mechanism of Depolymerization of PET under Conventional Heating and Microwave Radiation Using T-BuNH2/Lewis Acids. Eur. Polym. J., 2022, 175, 111388.
[http://dx.doi.org/10.1016/J.EURPOLYMJ.2022.111388]
[133]
Harry, W.; Zein, S.H. A Circular Economy Approach for Industrial Scale Biodiesel Production from Palm Oil Mill Effluent Using Microwave Heating: Design, Simulation, Techno-Economic Analysis and Location Comparison. Process Saf. Environ. Prot., 2021, 148, 1006-1018.
[http://dx.doi.org/10.1016/j.psep.2021.02.011]
[134]
Saito, G.; Zhu, C.; Han, C.G.; Sakaguchi, N.; Akiyama, T. Solution Combustion Synthesis of Porous Sn–C Composite as Anode Material for Lithium Ion Batteries. Adv. Powder Technol., 2016, 27, 1730-1737.
[http://dx.doi.org/10.1016/J.APT.2016.06.004]
[135]
Mandari, V.; Devarai, S.K. Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts via Transesterification and Esterification Reactions: A Critical Review. BioEnergy Res. 2021 152, 2021, 15, 935-961.
[http://dx.doi.org/10.1007/S12155-021-10333-W]
[136]
Sharma, D.; Uniyal, S.; Tewari, L. Biocatalytic Transesterification of Algal Oil Employing a Heterogenous Methanol Tolerant Lipase Enzyme Aggregate from Bacillus Mycoides Strain CV18. Process Biochem., 2021, 111, 43-52.
[http://dx.doi.org/10.1016/J.PROCBIO.2021.10.005]
[137]
Huang, Y.F.; Chiueh, P.; Te Kuan, W.H.; Lo, S.L. Microwave Pyrolysis of Lignocellulosic Biomass: Heating Performance and Reaction Kinetics. Energy, 2016, 100, 137-144.
[http://dx.doi.org/10.1016/j.energy.2016.01.088]
[138]
Mallesham, B.; Govinda Rao, B.; Reddy, B.M. Production of Biofuel Additives by Esterification and Acetalization of Bioglycerol. Comptes Rendus Chim., 2016, 19, 1194-1202.
[http://dx.doi.org/10.1016/j.crci.2015.09.011]
[139]
Minami, E.; Saka, S. Kinetics of Hydrolysis and Methyl Esterification for Biodiesel Production in Two-Step Supercritical Methanol Process. Fuel, 2006, 85, 2479-2483.
[http://dx.doi.org/10.1016/j.fuel.2006.04.017]
[140]
Suryanto, A.; Suprapto, S.; Mahfud, M. Production Biodiesel from Coconut Oil Using Microwave: Effect of Some Parameters on Transesterification Reaction by NaOH Catalyst. Bull. Chem. React. Eng. &amp. Catal., 2015, 10, 162-168.
[http://dx.doi.org/10.9767/bcrec.10.2.8080.162-168]
[141]
Mohiddin, M.N. Bin; Tan, Y.H.; Seow, Y.X.; Kansedo, J.; Mubarak, N.M.; Abdullah, M.O.; Chan, Y.S.; Khalid, M. Evaluation on Feedstock, Technologies, Catalyst and Reactor for Sustainable Biodiesel Production: A Review. J. Ind. Eng. Chem., 2021, 98, 60-81.
[http://dx.doi.org/10.1016/J.JIEC.2021.03.036]
[142]
Munyentwali, A.; Li, H.; Yang, Q. Review of Advances in Bifunctional Solid Acid/Base Catalysts for Sustainable Biodiesel Production. Appl. Catal. A Gen., 2022, 633, 118525.
[http://dx.doi.org/10.1016/J.APCATA.2022.118525]
[143]
Tawalbeh, M.; Muhammad Nauman Javed, R.; Al-Othman, A.; Almomani, F. The Novel Advancements of Nanomaterials in Biofuel Cells with a Focus on Electrodes’ Applications. Fuel, 2022, 322, 124237.
[http://dx.doi.org/10.1016/J.FUEL.2022.124237]
[144]
Kumar, N.; Sharma, G.; Chandel, H.; Shyam, K.; Thakur, S.; Vaswani, P.; Saxena, G. Microalgae in Wastewater Treatment and Biofuel Production: Recent Advances, Challenges, and Future Prospects; Omi. Insights Environ. Bioremediation, 2022, pp. 237-271.
[http://dx.doi.org/10.1007/978-981-19-4320-1_11]
[145]
Kim, J.Y.; Jung, J.M.; Jung, S.; Park, Y.K.; Tsang, Y.F.; Lin, K.Y.A.; Choi, Y.E.; Kwon, E.E. Biodiesel from Microalgae: Recent Progress and Key Challenges. Pror. Energy Combust. Sci., 2022, 93, 101020.
[http://dx.doi.org/10.1016/J.PECS.2022.101020]
[146]
Gómez-Trejo-López, E.; González-Díaz, M.O.; Aguilar-Vega, M. Waste Cooking Oil Transesterification by Sulfonated Polyphenylsulfone Catalytic Membrane: Characterization and Biodiesel Production Yield. Renew. Energy, 2022, 182, 1219-1227.
[http://dx.doi.org/10.1016/J.RENENE.2021.11.003]
[147]
Chanakaewsomboon, I.; Moollakorn, A. Soap Formation in Biodiesel Production: Effect of Water Content on Saponification Reaction. Int. J. Chem. Environ. Sci., 2021, 2, 28-36.
[http://dx.doi.org/10.15864/IJCAES.2203]
[148]
Karimi, S.; Saidi, M. Biodiesel Production from Azadirachta India-Derived Oil by Electrolysis Technique: Process Optimization Using Response Surface Methodology (RSM). Fuel Process. Technol., 2022, 234, 107337.
[http://dx.doi.org/10.1016/J.FUPROC.2022.107337]
[149]
Ma, F.; Clements, L.D.; Hanna, M.A. Biodiesel Fuel from Animal Fat. Ancillary Studies on Transesterification of Beef Tallow. Ind. Eng. Chem. Res., 1998, 37, 3768-3771.
[http://dx.doi.org/10.1021/ie980162s]
[150]
May, C.Y. Transesterification of Palm Oil  Effect of Reaction Parameters. Journal of oil palm research, 2004, 16, 1-11.
[151]
Hanif, M.A.; Nisar, S.; Akhtar, M.N.; Nisar, N.; Rashid, N. Optimized Production and Advanced Assessment of Biodiesel: A Review. Int. J. Energy Res., 2018, 42, 2070-2083.
[http://dx.doi.org/10.1002/er.3990]
[152]
Ghadge, S.V.; Raheman, H. Biodiesel Production from Mahua (Madhuca Indica) Oil Having High Free Fatty Acids. Biomass Bioenergy, 2005, 28, 601-605.
[http://dx.doi.org/10.1016/j.biombioe.2004.11.009]
[153]
Ocreto, J.B.; Chen, W.H.; Ubando, A.T.; Park, Y.K.; Sharma, A.K.; Ashokkumar, V.; Ok, Y.S.; Kwon, E.E.; Rollon, A.P.; De Luna, M.D.G. A Critical Review on Second- and Third-Generation Bioethanol Production Using Microwaved-Assisted Heating (MAH). Pretreatment. Renew. Sustain. Energy Rev., 2021, 152, 111679.
[http://dx.doi.org/10.1016/J.RSER.2021.111679]
[154]
Tangy, A.; Pulidindi, I.N.; Perkas, N.; Gedanken, A. Continuous Flow through a Microwave Oven for the Large-Scale Production of Biodiesel from Waste Cooking Oil. Bioresour. Technol., 2017, 224, 333-341.
[http://dx.doi.org/10.1016/j.biortech.2016.10.068]
[155]
Martina, K.; Cravotto, G.; Varma, R.S. Impact of Microwaves on Organic Synthesis and Strategies toward Flow Processes and Scaling Up. J. Org. Chem., 2021, 86, 13857-13872.
[http://dx.doi.org/10.1021/ACS.JOC.1C00865/ASSET/IMAGES/LARGE/JO1C00865_0033.JPEG]
[156]
Bowman, M.D.; Holcomb, J.L.; Kormos, C.M.; Leadbeater, N.E.; Williams, V.A. Approaches for Scale-up of Microwave-Promoted Reactions. Org. Process Res. Dev., 2008, 12, 41-57.
[http://dx.doi.org/10.1021/op700187w]
[157]
Beneroso, D.; Monti, T.; Kostas, E.T.; Robinson, J. Microwave Pyrolysis of Biomass for Bio-Oil Production: Scalable Processing Concepts. Chem. Eng. J., 2017, 316, 481-498.
[http://dx.doi.org/10.1016/j.cej.2017.01.130]
[158]
Demir, V.G.; Yuksel, H.; Koten, H.; Zafer, G.M.; Soyhan, H.S. Microwave-assisted pilot-scale biodiesel production and engine tests. Proceedings of Institution of Civil Engineers: Energy, 2019, 172, 1-11.
[http://dx.doi.org/10.1680/jener.18.00006]
[159]
Soares, L.R.A.; Franca, A.S.; Oliveira, L.S. Feasibility of Biodiesel Production in a Continuous Flow Microwave Reactor with Static Mixing., 2017, 581–585
[http://dx.doi.org/10.1109/ICMAE.2017.8038712]
[160]
Choedkiatsakul, I.; Ngaosuwan, K.; Assabumrungrat, S.; Mantegna, S.; Cravotto, G. Biodiesel Production in a Novel Continuous Flow Microwave Reactor. Renew. Energy, 2015, 83, 25-29.
[http://dx.doi.org/10.1016/j.renene.2015.04.012]
[161]
Kim, D.; Seol, S.K.; Chang, W.S. Energy Efficiency of a Scaled-up Microwave-Assisted Transesterification for Biodiesel Production. Korean J. Chem. Eng., 2016, 33, 527-531.
[http://dx.doi.org/10.1007/s11814-015-0184-x]
[162]
Li, J.; Fu, Y.J.; Qu, X.J.; Wang, W.; Luo, M.; Zhao, C.J.; Zu, Y.G. Biodiesel Production from Yellow Horn (Xanthoceras Sorbifolia Bunge.) Seed Oil Using Ion Exchange Resin as Heterogeneous Catalyst. Bioresour. Technol., 2012, 108, 112-118.
[http://dx.doi.org/10.1016/j.biortech.2011.12.129]
[163]
Ye, J.; Zhang, C.; Gao, T.; Zhu, H. Microwave-Assisted Preparation of Polyphosphoric Acid in a Continuous-Flow Reactor. Int. J. Chem. React. Eng., 2022, 20, 641-648.
[http://dx.doi.org/10.1515/IJCRE-2021-0197/MACHINEREADABLECITATION/RIS]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy