Generic placeholder image

Current Drug Safety

Editor-in-Chief

ISSN (Print): 1574-8863
ISSN (Online): 2212-3911

Research Article

Protective Effect of Quercetin against Paraquat-induced Brain Mitochondrial Disruption in Mice

Author(s): Parisa Saberi-Hasanabadi, Reza Sedaghatnejad and Hamidreza Mohammadi*

Volume 19, Issue 1, 2024

Published on: 15 March, 2023

Page: [44 - 50] Pages: 7

DOI: 10.2174/1574886318666230222123346

Price: $65

conference banner
Abstract

Background: Paraquat is a highly toxic quaternary ammonium herbicide widely used in agriculture. It is an agent that induces pulmonary toxicity via the redox cyclic reaction.

Objective: The present study investigated the protective effect of quercetin against paraquatinduced brain mitochondria disruption in mice.

Methods: Paraquat (1.25 mg/kg, intraperitoneally) was administered to the mice, and then quercetin (50, 100, 200 mg/kg) was injected i.p. Oxidative damage biomarkers such as reactive oxygen species, protein carbonyl, lipid peroxidation, glutathione content, and mitochondrial function were assessed in the brain mitochondria.

Results: The results showed that paraquat significantly (P < 0.001) increased the reactive oxygen species, protein carbonyl, and lipid peroxidation and significantly (P < 0.0001) decreased the glutathione content and mitochondrial function in the brain cells. Administration of the quercetin at doses of 50, 100, and 200 mg/kg significantly reduced reactive oxygen species, lipid peroxidation, and protein carbonyl and improved mitochondrial function and glutathione content in the mice brain mitochondrial compared to the paraquat group. Quercetin at 200 mg/kg dose had better effectiveness than 50 and 100 mg/kg doses.

Conclusion: Our results suggest that quercetin in a dose-dependent manner has neuroprotective effects, probably by free radicals scavenging or enhancing the antioxidant mechanisms in the brain mitochondria. It seems that quercetin could modulate protein and lipid oxidation and improve oxidative damage induced by paraquat in the early stages.

Graphical Abstract

[1]
Suntres ZE. Exploring the potential benefit of natural product extracts in paraquat toxicity. Fitoterapia 2018; 131: 160-7.
[http://dx.doi.org/10.1016/j.fitote.2018.10.026] [PMID: 30359726]
[2]
Park HK, Kim SJ, Kwon DY, Park JH, Kim YC. Protective effect of quercetin against paraquat-induced lung injury in rats. Life Sci 2010; 87(5-6): 181-6.
[http://dx.doi.org/10.1016/j.lfs.2010.06.011] [PMID: 20600150]
[3]
Sartori F, Vidrio E. Environmental fate and ecotoxicology of paraquat: A California perspective. Toxicol Environ Chem 2018; 100(5-7): 479-517.
[http://dx.doi.org/10.1080/02772248.2018.1460369]
[4]
Wu J, Huang G, Li Y, Li X. Flavonoids from Aurantii fructus immaturus and Aurantii fructus: Promising phytomedicines for the treatment of liver diseases. Chin Med 2020; 15(1): 89.
[http://dx.doi.org/10.1186/s13020-020-00371-5] [PMID: 32863858]
[5]
Han S, Feng Y, Guo M, et al. Role of OCT3 and DRP1 in the transport of paraquat in astrocytes: A mouse study. Environ Health Perspect 2022; 130(5): 057004.
[http://dx.doi.org/10.1289/EHP9505] [PMID: 35511227]
[6]
Amin F, Roohbakhsh A, Memarzia A, Kazerani HR, Boskabady MH. Immediate and late systemic and lung effects of inhaled paraquat in rats. J Hazard Mater 2021; 415: 125633.
[http://dx.doi.org/10.1016/j.jhazmat.2021.125633] [PMID: 33743382]
[7]
Chaouhan HS, Li X, Sun KT, et al. Calycosin alleviates paraquat-induced neurodegeneration by improving mitochondrial functions and regulating autophagy in a drosophila model of Parkinson’s disease. Antioxidants 2022; 11(2): 222.
[http://dx.doi.org/10.3390/antiox11020222] [PMID: 35204105]
[8]
Eizadi-Mood N, Nasr Isfahani S, Farajzadegan Z, Sabzghabaee AM, Rahimi A, Samasamshariat S. Does hemoperfusion in combination with other treatments reduce the mortality of patients with paraquat poisoning more than hemoperfusion alone: A systematic review with meta-analysis. J Res Med Sci 2019; 24(1): 2.
[http://dx.doi.org/10.4103/jrms.JRMS_478_18] [PMID: 30815015]
[9]
Wang F, Franco R, Skotak M, Hu G, Chandra N. Mechanical stretch exacerbates the cell death in SH-SY5Y cells exposed to paraquat: Mitochondrial dysfunction and oxidative stress. Neurotoxicology 2014; 41: 54-63.
[http://dx.doi.org/10.1016/j.neuro.2014.01.002] [PMID: 24462953]
[10]
Vujić T, Schvartz D, Iliuk A, Sanchez J-C. Ubiquinone metabolism and transcription HIF-1 targets pathway are toxicity signature pathways present in extracellular vesicles of paraquat-exposed human brain microvascular endothelial cells. Int J Mol Sci 2021; 22(10): 5065.
[11]
Yi H, Peng H, Wu X, et al. The therapeutic effects and mechanisms of quercetin on metabolic diseases: Pharmacological data and clinical evidence. Oxid Med Cell Longev 2021; 2021: 1-16.
[http://dx.doi.org/10.1155/2021/6678662] [PMID: 34257817]
[12]
Alvarez-Arellano L, Salazar-García M, Corona JC. Neuroprotective effects of quercetin in pediatric neurological diseases. Molecules 2020; 25(23): 5597.
[http://dx.doi.org/10.3390/molecules25235597] [PMID: 33260783]
[13]
Benameur T, Soleti R, Porro C. The potential neuroprotective role of free and encapsulated quercetin mediated by miRNA against neurological diseases. Nutrients 2021; 13(4): 1318.
[http://dx.doi.org/10.3390/nu13041318] [PMID: 33923599]
[14]
Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 2019; 24(6): 1123.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[15]
Zeng X, Du Z, Ding X, Jiang W. Protective effects of dietary flavonoids against pesticide-induced toxicity: A review. Trends Food Sci Technol 2021; 109: 271-9.
[http://dx.doi.org/10.1016/j.tifs.2021.01.046]
[16]
Eftekhari A, Ahmadian E, Panahi-Azar V, Hosseini H, Tabibiazar M, Maleki Dizaj S. Hepatoprotective and free radical scavenging actions of quercetin nanoparticles on aflatoxin B1-induced liver damage: In vitro/in vivo studies. Artif Cells Nanomed Biotechnol 2018; 46(2): 411-20.
[http://dx.doi.org/10.1080/21691401.2017.1315427] [PMID: 28423950]
[17]
Andres S, Pevny S, Ziegenhagen R, et al. Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res 2018; 62(1): 1700447.
[http://dx.doi.org/10.1002/mnfr.201700447] [PMID: 29127724]
[18]
de la Lastra A, Martín MJ, Motilva V. Antiulcer and gastroprotective effects of quercetin: A gross and histologic study. Pharmacology 1994; 48(1): 56-62.
[http://dx.doi.org/10.1159/000139162] [PMID: 8309988]
[19]
Bameri B, Shaki F, Ahangar N, Ataee R, Samadi M, Mohammadi H. Evidence for the involvement of the dopaminergic system in seizure and oxidative damage induced by tramadol. Int J Toxicol 2018; 37(2): 164-70.
[http://dx.doi.org/10.1177/1091581817753607] [PMID: 29554822]
[20]
Gao X, Zheng CY, Yang L, Tang XC, Zhang HY. Huperzine A protects isolated rat brain mitochondria against β-amyloid peptide. Free Radic Biol Med 2009; 46(11): 1454-62.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.02.028] [PMID: 19272446]
[21]
Shaki F, Hosseini MJ, Ghazi-Khansari M, Pourahmad J. Toxicity of depleted uranium on isolated rat kidney mitochondria. Biochim Biophys Acta, Gen Subj 2012; 1820(12): 1940-50.
[http://dx.doi.org/10.1016/j.bbagen.2012.08.015] [PMID: 22940002]
[22]
Ashari S, Karami M, Shokrzadeh M, et al. The implication of mitochondrial dysfunction and mitochondrial oxidative damage in di (2-ethylhexyl) phthalate induced nephrotoxicity in both in vivo and in vitro models. Toxicol Mech Methods 2020; 30(6): 427-37.
[http://dx.doi.org/10.1080/15376516.2020.1758980] [PMID: 32312132]
[23]
Mohammadnejad L, Soltaninejad K, Seyedabadi M, Ghasem Pouri SK, Shokrzadeh M, Mohammadi H. Evaluation of mitochondrial dysfunction due to oxidative stress in therapeutic, toxic and lethal concentrations of tramadol. Toxicol Res 2021; 10(6): 1162-70.
[http://dx.doi.org/10.1093/toxres/tfab096] [PMID: 34956619]
[24]
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72(1-2): 248-54.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[25]
Wesseling C, De Joode BVW, Ruepert C, et al. Paraquat in developing countries. Int J Occup Environ Health 2001; 7(4): 275-86.
[http://dx.doi.org/10.1179/oeh.2001.7.4.275] [PMID: 11783857]
[26]
Zhang Z, Nian Q, Chen G, Cui S, Han Y, Zhang J. Klotho alleviates lung injury caused by paraquat via suppressing ROS/P38 MAPK-regulated inflammatory responses and apoptosis. Oxid Med Cell Longev 2020; 2020: 1-13.
[http://dx.doi.org/10.1155/2020/1854206] [PMID: 32509139]
[27]
Fernando M, Camilo M, Orlando P. Paraquat intoxication as a cause of multiple organ failure: Report of a case and review of the literature. MOJ Toxicol 2018; 4(4): 247-53.
[28]
Adwas AA, Elsayed A, Azab A, Quwaydir F. Oxidative stress and antioxidant mechanisms in human body. J Appl Biotechnol Bioeng 2019; 6(1): 43-7.
[29]
Tasneem S, Liu B, Li B, Choudhary MI, Wang W. Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacol Res 2019; 139: 126-40.
[http://dx.doi.org/10.1016/j.phrs.2018.11.001] [PMID: 30395947]
[30]
Srivastav S, Anand BG, Fatima M, et al. Piperine-coated gold nanoparticles alleviate paraquat-induced neurotoxicity in Drosophila melanogaster. ACS Chem Neurosci 2020; 11(22): 3772-85.
[http://dx.doi.org/10.1021/acschemneuro.0c00366] [PMID: 33125229]
[31]
Chen YB, Wang YQ, Wu JR, Cui YL. A novel idea for establishing Parkinson’s disease mouse model by intranasal administration of paraquat. Neurol Res 2021; 43(4): 267-77.
[http://dx.doi.org/10.1080/01616412.2020.1847542] [PMID: 33213296]
[32]
Lloret A, Monllor P, Fuchsberger T, Giraldo E, Perluigi M, Vina J. Increased basal antioxidant levels in RCAN1 - deficient mice lowers oxidative injury after acute paraquat insult. Free Radic Res 2020; 54(6): 442-54.
[http://dx.doi.org/10.1080/10715762.2020.1798002] [PMID: 32686528]
[33]
Josiah SS, Famusiwa CD, Crown OO, et al. Neuroprotective effects of catechin and quercetin in experimental Parkinsonism through modulation of dopamine metabolism and expression of IL-1β, TNF-α, NF-κB, IκKB, and p53 genes in male Wistar rats. Neurotoxicology 2022; 90: 158-71.
[http://dx.doi.org/10.1016/j.neuro.2022.03.004] [PMID: 35337893]
[34]
Ince E. The protective effect of quercetin in the alcohol-induced liver and lymphoid tissue injuries in newborns. Mol Biol Rep 2020; 47(1): 451-9.
[http://dx.doi.org/10.1007/s11033-019-05148-0] [PMID: 31673888]
[35]
Remigante A, Spinelli S, Basile N, Caruso D, Falliti G, Dossena S. Oxidation stress as a mechanism of aging in human erythrocytes: Protective effect of quercetin. Int J Mol Sci 2022; 23(14): 1-15.
[36]
Bernini R, Velotti F. Natural polyphenols as immunomodulators to rescue immune response homeostasis: Quercetin as a research model against severe COVID-19. Molecules 2021; 26(19): 5803.
[http://dx.doi.org/10.3390/molecules26195803] [PMID: 34641348]
[37]
Richelle M, Tavazzi I, Offord E. Comparison of the antioxidant activity of commonly consumed polyphenolic beverages (coffee, cocoa, and tea) prepared per cup serving. J Agric Food Chem 2001; 49(7): 3438-42.
[http://dx.doi.org/10.1021/jf0101410] [PMID: 11453788]
[38]
Jain J, Hasan W, Yadav RS, Jat D. Protective effects of quercetin against rotenone induced histopathological and biochemical alteration in testes of mice. Toxicol Int 2021; 28(1): 57-65.
[39]
Vanani AR, Mahdavinia M, Shirani M, Alizadeh S, Dehghani MA. Protective effects of quercetin against oxidative stress induced by bisphenol-A in rat cardiac mitochondria. Environ Sci Pollut Res Int 2020; 27(13): 15093-102.
[http://dx.doi.org/10.1007/s11356-020-08048-0] [PMID: 32064580]
[40]
Parvin K, Hasanuzzaman M, Bhuyan MB, Mohsin SM, Fujita M. Quercetin mediated salt tolerance in tomato through the enhancement of plant antioxidant defense and glyoxalase systems. Plants 2019; 8(8): 1-20.
[http://dx.doi.org/10.3390/plants8080247]
[41]
Fereidouni S, Kumar RR, Chadha VD, Dhawan DK. Quercetin plays protective role in oxidative induced apoptotic events during chronic chlorpyrifos exposure to rats. J Biochem Mol Toxicol 2019; 33(8): e22341.
[http://dx.doi.org/10.1002/jbt.22341]
[42]
Kuter K, Nowak P, Gołembiowska K, Ossowska K. Increased reactive oxygen species production in the brain after repeated low-dose pesticide paraquat exposure in rats. A comparison with peripheral tissues. Neurochem Res 2010; 35(8): 1121-30.
[http://dx.doi.org/10.1007/s11064-010-0163-x] [PMID: 20369291]
[43]
Li Q, Xiao H, Shao Y, Chang X, Zhang Y, Zhou Z. Paraquat increases Interleukin-1β in hippocampal dentate gyrus to impair hippocampal neurogenesis in adult mice. Ecotoxicol Environ Saf 2020; 200: 110733.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110733] [PMID: 32450442]
[44]
See WZC, Naidu R, Tang KS. Cellular and molecular events leading to paraquat-induced apoptosis: Mechanistic insights into parkinson’s disease pathophysiology. Mol Neurobiol 2022; 59(6): 3353-69.
[http://dx.doi.org/10.1007/s12035-022-02799-2] [PMID: 35306641]
[45]
Czerniczyniec A, Karadayian AG, Bustamante J, Cutrera RA, Lores-Arnaiz S. Paraquat induces behavioral changes and cortical and striatal mitochondrial dysfunction. Free Radic Biol Med 2011; 51(7): 1428-36.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.034] [PMID: 21802509]
[46]
Wang XH, Souders CL II, Zhao YH, Martyniuk CJ. Paraquat affects mitochondrial bioenergetics, dopamine system expression, and locomotor activity in zebrafish (Danio rerio). Chemosphere 2018; 191: 106-17.
[http://dx.doi.org/10.1016/j.chemosphere.2017.10.032] [PMID: 29031050]
[47]
Dilberger B, Baumanns S, Schmitt F, et al. Mitochondrial oxidative stress impairs energy metabolism and reduces stress resistance and longevity of C. elegans. Oxid Med Cell Longev 2019; 2019: 1-14.
[http://dx.doi.org/10.1155/2019/6840540] [PMID: 31827694]
[48]
Kong D, Ding Y, Liu J, et al. Chlorogenic acid prevents paraquat-induced apoptosis via Sirt1-mediated regulation of redox and mitochondrial function. Free Radic Res 2019; 53(6): 680-93.
[http://dx.doi.org/10.1080/10715762.2019.1621308] [PMID: 31106605]
[49]
Jamalian M, Solhi H, Ghasemi P, Rahbari A, Kazemifar AM. Prevention of lung complications following paraquat poisoning by silymarin, n-acetyl cysteine and hydrocortisone: An experimental study. Iranian J Toxicol 2020; 14(4): 193-200.
[http://dx.doi.org/10.32598/ijt.14.4.710.1]
[50]
Gao Y, Hou L, Wang Y, et al. Octreotide alleviates pancreatic damage caused by paraquat in rats by reducing inflammatory responses and oxidative stress. Environ Toxicol Pharmacol 2020; 80: 103456.
[http://dx.doi.org/10.1016/j.etap.2020.103456] [PMID: 32673753]
[51]
Shimizu K, Ohtaki K, Matsubara K, et al. Carrier-mediated processes in blood-brain barrier penetration and neural uptake of paraquat. Brain Res 2001; 906(1-2): 135-42.
[http://dx.doi.org/10.1016/S0006-8993(01)02577-X] [PMID: 11430870]
[52]
Ghabousian A, Safari S, Ansari N. Potential therapeutic approaches in paraquat poisoning: A narrative review. Front Emerg Med 2022; 6(1): 1-5.
[53]
Chen J, Su Y, Lin F, et al. Effect of paraquat on cytotoxicity involved in oxidative stress and inflammatory reaction: A review of mechanisms and ecological implications. Ecotoxicol Environ Saf 2021; 224: 112711.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112711] [PMID: 34455184]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy