Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Computational Study of Designed Peptide Analogs against Pseudomonas aeruginosa as a Possible Inhibitor of LptD Membrane Protein

Author(s): Saba Tauseef and Reaz Uddin*

Volume 21, Issue 6, 2024

Published on: 15 March, 2023

Page: [1048 - 1065] Pages: 18

DOI: 10.2174/1570180820666230222093031

Price: $65

conference banner
Abstract

Background: Pseudomonas aeruginosa is a common cause of nosocomial infection worldwide and is responsible for 18-61% of deaths alone. The organism has gained resistance to many known antibiotics and evolved into a multidrug-resistant strain. The LptD outer membrane protein of P. aeruginosa is a special target of interest due to its role in outer membrane biogenesis.

Objective: The study aimed to gain an insight into how mutations affect the overall properties of antimicrobial peptides and to identify novel peptide analogs against P. aeruginosa.

Methods: The peptide analogs were designed and shortlisted based on physicochemical parameters and estimated free energy change in the current study. The docking studies for wild type and shortlisted peptides were performed against LptD protein of P. aeruginosa. The toxicity, allergenicity, and solubility analyses of peptide analogs with high binding affinity to LptD were also conducted.

Results: The molecular docking results indicated that peptide analogs 523M26, 523M29, 523M34, and 523M35 for AP00523 (wild type); 608M12, 608M13, 608M19, 608M31, 608M32, 608M39, and 608M43 for AP00608 (wild type); and 2858M25 for AP02858 (wild type) bound effectively with LptD membrane than their wild types. The toxicity, allergenicity, and solubility analyses revealed all these peptide analogs to be nontoxic, non-allergen, and have good water solubility.

Conclusion: The binding energies predicted 523M26, 608M39, and 2858M25 bind effectively to LptD proteins than their wild type. Based on docking analysis, it was further predicted that 608M39 has an estimated binding affinity greater than L27-11, which is a known peptidomimetic inhibitor of the LptD protein.

Graphical Abstract

[1]
Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O.E.; Kahlmeter, G.; Kruse, H.; Laxminarayan, R.; Liébana, E.; López-Cerero, L.; MacGowan, A.; Martins, M.; Rodríguez-Baño, J.; Rolain, J.M.; Segovia, C.; Sigauque, B.; Tacconelli, E.; Wellington, E.; Vila, J. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect., 2015, 6, 22-29.
[http://dx.doi.org/10.1016/j.nmni.2015.02.007] [PMID: 26029375]
[2]
Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature, 2017, 543(7643), 15.
[http://dx.doi.org/10.1038/nature.2017.21550] [PMID: 28252092]
[3]
Shi, Q.; Huang, C.; Xiao, T.; Wu, Z.; Xiao, Y. A retrospective analysis of Pseudomonas aeruginosa bloodstream infections: prevalence, risk factors, and outcome in carbapenem-susceptible and -non-susceptible infections. Antimicrob. Resist. Infect. Control, 2019, 8(1), 68.
[http://dx.doi.org/10.1186/s13756-019-0520-8] [PMID: 31057792]
[4]
Bassetti, M.; Ginocchio, F.; Mikulska, M. New treatment options against gram-negative organisms. Crit. Care, 2011, 15(2), 215.
[http://dx.doi.org/10.1186/cc9997]
[5]
Mwangi, J.; Yin, Y.; Wang, G.; Yang, M.; Li, Y.; Zhang, Z.; Lai, R. The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc. Natl. Acad. Sci. USA, 2019, 116(52), 26516-26522.
[http://dx.doi.org/10.1073/pnas.1909585117] [PMID: 31843919]
[6]
Werneburg, M.; Zerbe, K.; Juhas, M.; Bigler, L.; Stalder, U.; Kaech, A.; Ziegler, U.; Obrecht, D.; Eberl, L.; Robinson, J.A. Inhibition of lipopolysaccharide transport to the outer membrane in Pseudomonas aeruginosa by peptidomimetic antibiotics. ChemBioChem, 2012, 13(12), 1767-1775.
[http://dx.doi.org/10.1002/cbic.201200276] [PMID: 22807320]
[7]
Henderson, J.C.; Zimmerman, S.M.; Crofts, A.A.; Boll, J.M.; Kuhns, L.G.; Herrera, C.M.; Trent, M.S. The power of asymmetry: Architecture and assembly of the Gram-negative outer membrane lipid bilayer. Annu. Rev. Microbiol., 2016, 70(1), 255-278.
[http://dx.doi.org/10.1146/annurev-micro-102215-095308] [PMID: 27359214]
[8]
Okuda, S.; Sherman, D.J.; Silhavy, T.J.; Ruiz, N.; Kahne, D. Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat. Rev. Microbiol., 2016, 14(6), 337-345.
[http://dx.doi.org/10.1038/nrmicro.2016.25] [PMID: 27026255]
[9]
Li, X.; Gu, Y.; Dong, H.; Wang, W.; Dong, C. Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Escherichia coli outer membrane. Sci. Rep., 2015, 5(1), 11883.
[http://dx.doi.org/10.1038/srep11883] [PMID: 26149544]
[10]
Miyazaki, R.; Watanabe, T.; Yoshitani, K.; Akiyama, Y. Edge strand of Escherichia coli BepA interacts with immature LptD on the β-barrel assembly machine to direct it to on-and off-pathways; Biochemistry and Chemical Biology, 2021.
[http://dx.doi.org/10.7554/eLife.70541]
[11]
Andolina, G.; Bencze, L.C.; Zerbe, K.; Müller, M.; Steinmann, J.; Kocherla, H.; Mondal, M.; Sobek, J.; Moehle, K. Malojčić, G.; Wollscheid, B.; Robinson, J.A. A peptidomimetic antibiotic interacts with the periplasmic domain of LptD from Pseudomonas aeruginosa. ACS Chem. Biol., 2018, 13(3), 666-675.
[http://dx.doi.org/10.1021/acschembio.7b00822] [PMID: 29359918]
[12]
Vetterli, S.U.; Moehle, K.; Robinson, J.A. Synthesis and antimicrobial activity against Pseudomonas aeruginosa of macrocyclic β-hairpin peptidomimetic antibiotics containing N-methylated amino acids. Bioorg. Med. Chem., 2016, 24(24), 6332-6339.
[http://dx.doi.org/10.1016/j.bmc.2016.05.027] [PMID: 27240465]
[13]
Javadmanesh, A.; Mohammadi, E.; Mousavi, Z.; Azghandi, M.; Tanhaiean, A. Antibacterial effects assessment on some livestock pathogens, thermal stability and proposing a probable reason for different levels of activity of thanatin. Sci. Rep., 2021, 11(1), 10890.
[http://dx.doi.org/10.1038/s41598-021-90313-4] [PMID: 34035354]
[14]
Gao, Y.; Wu, D.; Wang, L.; Lin, C.; Ma, C.; Xi, X.; Zhou, M.; Duan, J.; Bininda-Emonds, O.R.P.; Chen, T.; Shaw, C. Targeted modification of a novel amphibian antimicrobial peptide from Phyllomedusa tarsius to enhance its activity against MRSA and microbial biofilm. Front. Microbiol., 2017, 8, 628.
[http://dx.doi.org/10.3389/fmicb.2017.00628] [PMID: 28469603]
[15]
Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; Cherkasov, A.; Seleem, M.N.; Pinilla, C.; de la Fuente-Nunez, C.; Lazaridis, T.; Dai, T.; Houghten, R.A.; Hancock, R.E.W.; Tegos, G.P. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis., 2020, 20(9), e216-e230.
[http://dx.doi.org/10.1016/S1473-3099(20)30327-3] [PMID: 32653070]
[16]
Monincová, L. Buděšínský, M.; Slaninová, J.; Hovorka, O.; Cvačka, J.; Voburka, Z.; Fučík, V.; Borovičková, L.; Bednárová, L.; Straka, J.; Čeřovský, V. Novel antimicrobial peptides from the venom of the eusocial bee Halictus sexcinctus (Hymenoptera: Halictidae) and their analogs. Amino Acids, 2010, 39(3), 763-775.
[http://dx.doi.org/10.1007/s00726-010-0519-1] [PMID: 20198492]
[17]
Cherkasov, A.; Hilpert, K.; Jenssen, H.; Fjell, C.D.; Waldbrook, M.; Mullaly, S.C.; Volkmer, R.; Hancock, R.E.W. Use of artificial intelligence in the design of small peptide antibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs. ACS Chem. Biol., 2009, 4(1), 65-74.
[http://dx.doi.org/10.1021/cb800240j] [PMID: 19055425]
[18]
Haney, E.F.; Nazmi, K.; Bolscher, J.G.M.; Vogel, H.J. Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin. Biochim. Biophys. Acta Biomembr., 2012, 1818(3), 762-775.
[http://dx.doi.org/10.1016/j.bbamem.2011.11.023] [PMID: 22155682]
[19]
Carratalá, J.V.; Serna, N.; Villaverde, A.; Vázquez, E.; Ferrer-Miralles, N. Nanostructured antimicrobial peptides: The last push towards clinics. Biotechnol. Adv., 2020, 44, 107603.
[http://dx.doi.org/10.1016/j.biotechadv.2020.107603] [PMID: 32738381]
[20]
Koehbach, J.; Craik, D.J. The vast structural diversity of antimicrobial peptides. Trends Pharmacol. Sci., 2019, 40(7), 517-528.
[http://dx.doi.org/10.1016/j.tips.2019.04.012] [PMID: 31230616]
[21]
Li, S.; Wang, Y.; Xue, Z.; Jia, Y.; Li, R.; He, C.; Chen, H. The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review. Trends Food Sci. Technol., 2021, 109, 103-115.
[http://dx.doi.org/10.1016/j.tifs.2021.01.005]
[22]
Menousek, J.; Mishra, B.; Hanke, M.L.; Heim, C.E.; Kielian, T.; Wang, G. Database screening and in vivo efficacy of antimicrobial peptides against methicillin-resistant Staphylococcus aureus USA300. Int. J. Antimicrob. Agents, 2012, 39(5), 402-406.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.02.003] [PMID: 22445495]
[23]
Wang, G. Antimicrobial peptides: discovery, design and novel therapeutic strategies, 2nd ed; CABI: Wallingford, 2017.
[24]
Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov., 2021, 20(4), 309-325.
[http://dx.doi.org/10.1038/s41573-020-00135-8] [PMID: 33536635]
[25]
Gong, H.; Zhang, J.; Hu, X.; Li, Z.; Fa, K.; Liu, H.; Waigh, T.A.; McBain, A.; Lu, J.R. Hydrophobic control of the bioactivity and cytotoxicity of de novo-designed antimicrobial peptides. ACS Appl. Mater. Interfaces, 2019, 11(38), 34609-34620.
[http://dx.doi.org/10.1021/acsami.9b10028] [PMID: 31448889]
[26]
Jindal, H.M.; Le, C.F.; Mohd Yusof, M.Y.; Velayuthan, R.D.; Lee, V.S.; Zain, S.M.; Isa, D.M.; Sekaran, S.D. Antimicrobial activity of novel synthetic peptides derived from indolicidin and ranalexin against Streptococcus pneumoniae. PLoS One, 2015, 10(6), e0128532.
[http://dx.doi.org/10.1371/journal.pone.0128532] [PMID: 26046345]
[27]
Azad, M.A.; Huttunen-Hennelly, H.E.K.; Ross Friedman, C. Bioactivity and the first transmission electron microscopy immunogold studies of short de novo-designed antimicrobial peptides. Antimicrob. Agents Chemother., 2011, 55(5), 2137-2145.
[http://dx.doi.org/10.1128/AAC.01148-10] [PMID: 21300831]
[28]
Tsai, C.W.; Hsu, N.Y.; Wang, C.H.; Lu, C.Y.; Chang, Y.; Tsai, H.H.G.; Ruaan, R.C. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. J. Mol. Biol., 2009, 392(3), 837-854.
[http://dx.doi.org/10.1016/j.jmb.2009.06.071] [PMID: 19576903]
[29]
Kumar, N.; Sood, D.; Tomar, R.; Chandra, R. Antimicrobial peptide designing and optimization employing large-scale flexibility analysis of protein-peptide fragments. ACS Omega, 2019, 4(25), 21370-21380.
[http://dx.doi.org/10.1021/acsomega.9b03035] [PMID: 31867532]
[30]
Khurshid, Z.; Najeeb, S.; Mali, M.; Moin, S.F.; Raza, S.Q.; Zohaib, S.; Sefat, F.; Zafar, M.S. Histatin peptides: Pharmacological functions and their applications in dentistry. Saudi Pharm. J., 2017, 25(1), 25-31.
[http://dx.doi.org/10.1016/j.jsps.2016.04.027] [PMID: 28223859]
[31]
Yin, A.; Margolis, H.C.; Grogan, J.; Yao, Y.; Troxler, R.F.; Oppenheim, F.G. Physical parameters of hydroxyapatite adsorption and effect on candidacidal activity of histatins. Arch. Oral Biol., 2003, 48(5), 361-368.
[http://dx.doi.org/10.1016/S0003-9969(03)00012-8] [PMID: 12711380]
[32]
Wang, G. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J. Biol. Chem., 2008, 283(47), 32637-32643.
[http://dx.doi.org/10.1074/jbc.M805533200] [PMID: 18818205]
[33]
Hilpert, K.; Elliott, M.; Jenssen, H.; Kindrachuk, J.; Fjell, C.D.; Körner, J.; Winkler, D.F.H.; Weaver, L.L.; Henklein, P.; Ulrich, A.S.; Chiang, S.H.Y.; Farmer, S.W.; Pante, N.; Volkmer, R.; Hancock, R.E.W. Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem. Biol., 2009, 16(1), 58-69.
[http://dx.doi.org/10.1016/j.chembiol.2008.11.006] [PMID: 19171306]
[34]
Weng, G.; Wang, E.; Wang, Z.; Liu, H.; Zhu, F.; Li, D.; Hou, T. HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Res., 2019, 47(W1), W322-W330.
[http://dx.doi.org/10.1093/nar/gkz397] [PMID: 31106357]
[35]
Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res., 2016, 44(D1), D1087-D1093.
[http://dx.doi.org/10.1093/nar/gkv1278] [PMID: 26602694]
[36]
Lamiable, A.; Thévenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res., 2016, 44(W1), W449-W454.
[http://dx.doi.org/10.1093/nar/gkw329] [PMID: 27131374]
[37]
Maupetit, J.; Tuffery, P.; Derreumaux, P. A coarse-grained protein force field for folding and structure prediction. Proteins, 2007, 69(2), 394-408.
[http://dx.doi.org/10.1002/prot.21505] [PMID: 17600832]
[38]
Pandurangan, A.P.; Ochoa-Montaño, B.; Ascher, D.B.; Blundell, T.L. SDM: A server for predicting effects of mutations on protein stability. Nucleic Acids Res., 2017, 45(W1), W229-W235.
[http://dx.doi.org/10.1093/nar/gkx439] [PMID: 28525590]
[39]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[41]
Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P.S. In silico approach for predicting toxicity of peptides and proteins. PLoS One, 2013, 8(9), e73957.
[http://dx.doi.org/10.1371/journal.pone.0073957] [PMID: 24058508]
[42]
Maurer-Stroh, S.; Krutz, N.L.; Kern, P.S.; Gunalan, V.; Nguyen, M.N.; Limviphuvadh, V.; Eisenhaber, F.; Gerberick, G.F. AllerCatPro—prediction of protein allergenicity potential from the protein sequence. Bioinformatics, 2019, 35(17), 3020-3027.
[http://dx.doi.org/10.1093/bioinformatics/btz029] [PMID: 30657872]
[43]
Rončević, T.; Vukičević, D.; Ilić, N.; Krce, L.; Gajski, G.; Tonkić, M.; Goić-Barišić, I.; Zoranić, L.; Sonavane, Y.; Benincasa, M.; Juretić, D.; Maravić, A.; Tossi, A. Antibacterial activity affected by the conformational flexibility in glycine-lysine based α-helical antimicrobial peptides. J. Med. Chem., 2018, 61(7), 2924-2936.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01831] [PMID: 29553266]
[44]
Lambert, M.L.; Suetens, C.; Savey, A.; Palomar, M.; Hiesmayr, M.; Morales, I.; Agodi, A.; Frank, U.; Mertens, K.; Schumacher, M.; Wolkewitz, M. Clinical outcomes of health-care-associated infections and antimicrobial resistance in patients admitted to European intensive-care units: A cohort study. Lancet Infect. Dis., 2011, 11(1), 30-38.
[http://dx.doi.org/10.1016/S1473-3099(10)70258-9] [PMID: 21126917]
[45]
Poole, K. Pseudomonas aeruginosa: Resistance to the max. Front. Microbiol., 2011, 2, 65.
[http://dx.doi.org/10.3389/fmicb.2011.00065] [PMID: 21747788]
[46]
Uddin, R.; Jamil, F. Prioritization of potential drug targets against P. aeruginosa by core proteomic analysis using computational subtractive genomics and Protein-Protein interaction network. Comput. Biol. Chem., 2018, 74, 115-122.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.02.017] [PMID: 29587180]
[47]
Lo Sciuto, A.; Martorana, A.M.; Fernández-Piñar, R.; Mancone, C.; Polissi, A.; Imperi, F. Pseudomonas aeruginosa LptE is crucial for LptD assembly, cell envelope integrity, antibiotic resistance and virulence. Virulence, 2018, 9(1), 1718-1733.
[http://dx.doi.org/10.1080/21505594.2018.1537730] [PMID: 30354941]
[48]
Schmidt, J.; Patora-Komisarska, K.; Moehle, K.; Obrecht, D.; Robinson, J.A. Structural studies of β-hairpin peptidomimetic antibiotics that target LptD in Pseudomonas sp. Bioorg. Med. Chem., 2013, 21(18), 5806-5810.
[http://dx.doi.org/10.1016/j.bmc.2013.07.013] [PMID: 23932450]
[49]
Jiao, Y.; Zheng, X.; Chang, Y.; Li, D.; Sun, X.; Liu, X. Zein-derived peptides as nanocarriers to increase the water solubility and stability of lutein. Food Funct., 2018, 9(1), 117-123.
[http://dx.doi.org/10.1039/C7FO01652B] [PMID: 29336438]
[50]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[51]
Luthra, R.; Datta, S.; Roy, A. Role of different peptides for cancer immunotherapy. Int. J. Pept. Res. Ther., 2021, 27(4), 2777-2793.
[http://dx.doi.org/10.1007/s10989-021-10289-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy