Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Electrospun Scaffold-based Antibiotic Therapeutics for Chronic Wound Recovery

Author(s): Ganesan Padmini Tamilarasi, Govindaraj Sabarees, Manikandan Krishnan*, Siddan Gouthaman, Veerachamy Alagarsamy* and Viswas Raja Solomon*

Volume 23, Issue 16, 2023

Published on: 21 March, 2023

Page: [1653 - 1677] Pages: 25

DOI: 10.2174/1389557523666230221155544

Price: $65

Abstract

Treatment of a wound infection caused by a multidrug-resistant (MDR) bacterium is challenging since traditional medicine is incapable of curing such infections. As a result, there is a critical need to develop wound dressings resistant to MDR bacteria. Over half of diabetic and burn wounds showed clinical symptoms of infection. Diabetes is a metabolic disorder that may have various consequences, including chronic sores, vascular damage, and neuropathy. Microbial infection and oxidative stress to the fibroblast are common causes of slow and ineffective wound healing. Since wound healing and tissue repair are complex cascades of cellular activities, prompt and ordered healing is critical throughout this process. Despite advances in medication development and sophisticated formulations, treating persistent wound infections remains difficult. The drawbacks of administering antibiotics through the digestive system have motivated the development of enhanced therapeutic dressings with antibacterial activity and the application of antibiotics by localized administration. Antimicrobial wound dressings have great promise for reducing infection risk and improving the healing rate of chronic lesions. Most current research in skin tissue engineering focuses on developing threedimensional scaffolds that mimic natural skin's extracellular matrix (ECM). Electrospinning is a wellestablished method for producing nanoscale fibers. It is a simple, cost-effective, reproducible, and efficient process for encapsulating hydrophobic and hydrophilic antimicrobial compounds in synthetic and natural polymeric carriers. This review discusses various nanofibers as novel delivery systems for antimicrobial compounds in chronic wound healing. We will discuss the significant polymers used to make nanofibers, their manufacturing processes, and, most importantly, their antibacterial effectiveness against microorganisms that typically cause chronic wound infections.

« Previous
Graphical Abstract

[1]
Robson, M.C.; Steed, D.L.; Franz, M.G. Wound healing: Biologic features and approaches to maximize healing trajectories. Curr. Probl. Surg., 2001, 38(2), A1-A140.
[http://dx.doi.org/10.1067/msg.2001.111167] [PMID: 11452260]
[2]
Abrigo, M.; McArthur, S.L.; Kingshott, P. Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol. Biosci., 2014, 14(6), 772-792.
[http://dx.doi.org/10.1002/mabi.201300561] [PMID: 24678050]
[3]
Sorg, H.; Tilkorn, D.J.; Hager, S.; Hauser, J.; Mirastschijski, U. Skin wound healing: An update on the current knowledge and concepts. Eur. Surg. Res., 2017, 58(1-2), 81-94.
[http://dx.doi.org/10.1159/000454919] [PMID: 27974711]
[4]
Rousselle, P.; Montmasson, M.; Garnier, C. Extracellular matrix contribution to skin wound re-epithelialization. Matrix Biol., 2019, 75-76, 12-26.
[http://dx.doi.org/10.1016/j.matbio.2018.01.002] [PMID: 29330022]
[5]
Simões, D.; Miguel, S.P.; Ribeiro, M.P.; Coutinho, P.; Mendonça, A.G.; Correia, I.J. Recent advances on antimicrobial wound dressing: A review. Eur. J. Pharm. Biopharm., 2018, 127, 130-141.
[http://dx.doi.org/10.1016/j.ejpb.2018.02.022] [PMID: 29462687]
[6]
Han, G.; Ceilley, R. Chronic Wound Healing: A review of current management and treatments. Adv. Ther., 2017, 34(3), 599-610.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[7]
Azimi, B.; Maleki, H.; Zavagna, L.; De la Ossa, J.G.; Linari, S.; Lazzeri, A.; Danti, S. Bio-based electrospun fibers for wound healing. J. Funct. Biomater., 2020, 11(3), 67.
[http://dx.doi.org/10.3390/jfb11030067] [PMID: 32971968]
[8]
Fahimirad, S.; Ajalloueian, F. Naturally-derived electrospun wound dressings for target delivery of bio-active agents. Int. J. Pharm., 2019, 566, 307-328.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.053] [PMID: 31125714]
[9]
Ottosson, M.; Jakobsson, A.; Johansson, F. Accelerated Wound Closure - Differently organized nanofibers affect cell migration and hence the closure of artificial wounds in a cell based in vitro model. PLoS One, 2017, 12(1), e0169419.
[http://dx.doi.org/10.1371/journal.pone.0169419] [PMID: 28060880]
[10]
Liu, X.; Xu, H.; Zhang, M.; Yu, D.G. Electrospun medicated nanofibers for wound healing: Review. Membranes, 2021, 11(10), 770.
[http://dx.doi.org/10.3390/membranes11100770] [PMID: 34677536]
[11]
Song, X.; Liu, P.; Liu, X.; Wang, Y.; Wei, H.; Zhang, J.; Yu, L.; Yan, X.; He, Z. Dealing with MDR bacteria and biofilm in the post-antibiotic era: Application of antimicrobial peptides-based nano-formulation. Mater. Sci. Eng. C, 2021, 128, 112318.
[http://dx.doi.org/10.1016/j.msec.2021.112318] [PMID: 34474869]
[12]
Taymouri, S.; Hashemi, S.; Varshosaz, J.; Minaiyan, M.; Talebi, A. Fabrication and evaluation of hesperidin loaded polyacrylonitrile/polyethylene oxide nanofibers for wound dressing application. J. Biomater. Sci. Polym. Ed., 2021, 32(15), 1944-1965.
[http://dx.doi.org/10.1080/09205063.2021.1952380] [PMID: 34228587]
[13]
Seyedian, R.; Shabankareh Fard, E.; Hashemi, S.S.; Hasanzadeh, H.; Assadi, M.; Zaeri, S. Diltiazem-loaded electrospun nanofibers as a new wound dressing: fabrication, characterization, and experimental wound healing. Pharm. Dev. Technol., 2021, 26(2), 167-180.
[http://dx.doi.org/10.1080/10837450.2020.1852420] [PMID: 33213235]
[14]
Sarhan, W.A.; Salem, H.G.; Khalil, M.A.F.; El-Sherbiny, I.M.; Azzazy, H.M.E. Fabrication of gelatin/silk fibroin/phage nanofiber scaffold effective against multidrug resistant Pseudomonas aeruginosa. Drug Dev. Ind. Pharm., 2021, 47(6), 947-953.
[http://dx.doi.org/10.1080/03639045.2021.1957915] [PMID: 34278896]
[15]
Martins, A.; Araújo, J.V.; Reis, R.L.; Neves, N.M. Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine, 2007, 2(6), 929-942.
[http://dx.doi.org/10.2217/17435889.2.6.929] [PMID: 18095855]
[16]
Xu, C.Y.; Inai, R.; Kotaki, M.; Ramakrishna, S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 2004, 25(5), 877-886.
[http://dx.doi.org/10.1016/S0142-9612(03)00593-3] [PMID: 14609676]
[17]
Kalashnikova, I.; Das, S.; Seal, S. Nanomaterials for wound healing: scope and advancement. Nanomedicine, 2015, 10(16), 2593-2612.
[http://dx.doi.org/10.2217/nnm.15.82] [PMID: 26295361]
[18]
Halicka, K.; Cabaj, J. Electrospun nanofibers for sensing and biosensing applications—a review. Int. J. Mol. Sci., 2021, 22(12), 6357.
[http://dx.doi.org/10.3390/ijms22126357] [PMID: 34198611]
[19]
Lan, X.; Wang, H.; Bai, J.; Miao, X.; Lin, Q.; Zheng, J.; Ding, S.; Li, X.; Tang, Y. Multidrug-loaded electrospun micro/nanofibrous membranes: Fabrication strategies, release behaviors and applications in regenerative medicine. J. Control. Release, 2021, 330, 1264-1287.
[http://dx.doi.org/10.1016/j.jconrel.2020.11.036] [PMID: 33232749]
[20]
Raja, I.S.; Preeth, D.R.; Vedhanayagam, M.; Hyon, S.H.; Lim, D.; Kim, B.; Rajalakshmi, S.; Han, D.W. Polyphenols-loaded electrospun nanofibers in bone tissue engineering and regeneration. Biomater. Res., 2021, 25(1), 29.
[http://dx.doi.org/10.1186/s40824-021-00229-3] [PMID: 34563260]
[21]
Singh, B.; Kim, K.; Park, M.H. On-demand drug delivery systems using nanofibers. Nanomaterials, 2021, 11(12), 3411.
[http://dx.doi.org/10.3390/nano11123411] [PMID: 34947758]
[22]
Hassiba, A.J.; El Zowalaty, M.E.; Nasrallah, G.K.; Webster, T.J.; Luyt, A.S.; Abdullah, A.M.; Elzatahry, A.A. Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine, 2016, 11(6), 715-737.
[http://dx.doi.org/10.2217/nnm.15.211] [PMID: 26744905]
[23]
Richard, A.S.; Verma, R.S. Bioactive nano yarns as surgical sutures for wound healing. Mater. Sci. Eng. C, 2021, 128, 112334.
[http://dx.doi.org/10.1016/j.msec.2021.112334] [PMID: 34474885]
[24]
Li, X.; Cho, B.; Martin, R.; Seu, M.; Zhang, C.; Zhou, Z.; Choi, J.S.; Jiang, X.; Chen, L.; Walia, G.; Yan, J.; Callanan, M.; Liu, H.; Colbert, K.; Morrissette-McAlmon, J.; Grayson, W.; Reddy, S.; Sacks, J.M.; Mao, H.Q. Nanofiber-hydrogel composite–mediated angiogenesis for soft tissue reconstruction. Sci. Transl. Med., 2019, 11(490), eaau6210.
[http://dx.doi.org/10.1126/scitranslmed.aau6210] [PMID: 31043572]
[25]
Miguel, S.P.; Sequeira, R.S.; Moreira, A.F.; Cabral, C.S.D.; Mendonça, A.G.; Ferreira, P.; Correia, I.J. An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. Eur. J. Pharm. Biopharm., 2019, 139, 1-22.
[http://dx.doi.org/10.1016/j.ejpb.2019.03.010] [PMID: 30853442]
[26]
Chen, S.; Liu, B.; Carlson, M.A.; Gombart, A.F.; Reilly, D.A.; Xie, J. Recent advances in electrospun nanofibers for wound healing. Nanomedicine, 2017, 12(11), 1335-1352.
[http://dx.doi.org/10.2217/nnm-2017-0017] [PMID: 28520509]
[27]
Liu, N.; Zhu, L.; Li, Z.; Liu, W.; Sun, M.; Zhou, Z. In situ self-assembled peptide nanofibers for cancer theranostics. Biomater. Sci., 2021, 9(16), 5427-5436.
[http://dx.doi.org/10.1039/D1BM00782C] [PMID: 34319316]
[28]
Wen, Z.; Zhan, J.; Li, H.; Xu, G.; Ma, S.; Zhang, J.; Li, Z.; Ou, C.; Yang, Z.; Cai, Y.; Chen, M. Dual-ligand supramolecular nanofibers inspired by the renin-angiotensin system for the targeting and synergistic therapy of myocardial infarction. Theranostics, 2021, 11(8), 3725-3741.
[http://dx.doi.org/10.7150/thno.53644] [PMID: 33664858]
[29]
AnjiReddy, K.; Subramanian, S.K. A new mode of thinfilm and nanofiber for burst release of the drug for Alzheimer Disease; A complete scenario from dispersible polymer to formulation methodology. Mini Rev. Med. Chem., 2022, 22(6), 949-966.
[http://dx.doi.org/10.2174/1389557521666211008152446] [PMID: 34629042]
[30]
Amaral, H.R.; Wilson, J.A.; do Amaral, R.J.F.C.; Pasçu, I.; de Oliveira, F.C.S.; Kearney, C.J.; Freitas, J.C.C.; Heise, A. Synthesis of bilayer films from regenerated cellulose nanofibers and poly(globalide) for skin tissue engineering applications. Carbohydr. Polym., 2021, 252, 117201.
[http://dx.doi.org/10.1016/j.carbpol.2020.117201] [PMID: 33183637]
[31]
Ding, H.; Cheng, Y.; Niu, X.; Hu, Y. Application of electrospun nanofibers in bone, cartilage and osteochondral tissue engineering. J. Biomater. Sci. Polym. Ed., 2021, 32(4), 536-561.
[http://dx.doi.org/10.1080/09205063.2020.1849922] [PMID: 33175667]
[32]
Abdo, G.G.; Zagho, M.M.; Al Moustafa, A.E.; Khalil, A.; Elzatahry, A.A. A comprehensive review summarizing the recent biomedical applications of functionalized carbon nanofibers. J. Biomed. Mater. Res. B Appl. Biomater., 2021, 109(11), 1893-1908.
[http://dx.doi.org/10.1002/jbm.b.34828] [PMID: 33749098]
[33]
Kim, H.S.; Mandakhbayar, N.; Kim, H.W.; Leong, K.W.; Yoo, H.S. Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects. Biomaterials, 2021, 269, 120214.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120214] [PMID: 32736808]
[34]
Tajirian, A.L.; Goldberg, D.J. A review of sutures and other skin closure materials. J. Cosmet. Laser Ther., 2010, 12(6), 296-302.
[http://dx.doi.org/10.3109/14764172.2010.538413] [PMID: 21142740]
[35]
Moy, R.L.; Waldman, B.; Hein, D.W. A review of sutures and suturing techniques. J. Dermatol. Surg. Oncol., 1992, 18(9), 785-795.
[http://dx.doi.org/10.1111/j.1524-4725.1992.tb03036.x] [PMID: 1512311]
[36]
Xu, L.; Liu, Y.; Zhou, W.; Yu, D. Electrospun medical sutures for wound healing: A review. Polymers, 2022, 14(9), 1637.
[http://dx.doi.org/10.3390/polym14091637] [PMID: 35566807]
[37]
Hu, W.; Huang, Z.M.; Liu, X.Y. Development of braided drug-loaded nanofiber sutures. Nanotechnology, 2010, 21(31), 315104.
[http://dx.doi.org/10.1088/0957-4484/21/31/315104] [PMID: 20622298]
[38]
Li, H.; Cheng, F.; Chávez-Madero, C.; Choi, J.; Wei, X.; Yi, X.; Zheng, T.; He, J. Manufacturing and physical characterization of absorbable oxidized regenerated cellulose braided surgical sutures. Int. J. Biol. Macromol., 2019, 134, 56-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.030] [PMID: 31071394]
[39]
Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, (80), 2002, 296, 1673-1676.
[http://dx.doi.org/10.1126/science.1066102]
[40]
Lim, T.Y.; Poh, C.K.; Wang, W. Poly (lactic-co-glycolic acid) as a controlled release delivery device. J. Mater. Sci. Mater. Med., 2009, 20(8), 1669-1675.
[http://dx.doi.org/10.1007/s10856-009-3727-z] [PMID: 19283453]
[41]
Liu, S.; Wu, G.; Chen, X.; Zhang, X.; Yu, J.; Liu, M.; Zhang, Y.; Wang, P. Degradation behavior in vitro of carbon nanotubes (CNTs)/Poly(lactic acid) (PLA) composite suture. Polymers, 2019, 11(6), 1015.
[http://dx.doi.org/10.3390/polym11061015] [PMID: 31181799]
[42]
Zhu, L.; Liang, K.; Ji, Y. Prominent reinforcing effect of chitin nanocrystals on electrospun polydioxanone nanocomposite fiber mats. J. Mech. Behav. Biomed. Mater., 2015, 44, 35-42.
[http://dx.doi.org/10.1016/j.jmbbm.2014.12.019] [PMID: 25598072]
[43]
Bai, Y.; Jiang, C.; Wang, Q.; Wang, T. A novel high mechanical strength shape memory polymer based on ethyl cellulose and polycaprolactone. Carbohydr. Polym., 2013, 96(2), 522-527.
[http://dx.doi.org/10.1016/j.carbpol.2013.04.026] [PMID: 23768596]
[44]
Altman, G.H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R.L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D.L. Silk-based biomaterials. Biomaterials, 2003, 24(3), 401-416.
[http://dx.doi.org/10.1016/S0142-9612(02)00353-8] [PMID: 12423595]
[45]
Homaeigohar, S.; Boccaccini, A.R. Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater., 2020, 107, 25-49.
[http://dx.doi.org/10.1016/j.actbio.2020.02.022] [PMID: 32084600]
[46]
Liu, M.; Duan, X.P.; Li, Y.M.; Yang, D.P.; Long, Y.Z. Electrospun nanofibers for wound healing. Mater. Sci. Eng. C, 2017, 76, 1413-1423.
[http://dx.doi.org/10.1016/j.msec.2017.03.034] [PMID: 28482508]
[47]
Fatehi, P.; Abbasi, M. Medicinal plants used in wound dressings made of electrospun nanofibers. J. Tissue Eng. Regen. Med., 2020, 14(11), 1527-1548.
[http://dx.doi.org/10.1002/term.3119] [PMID: 32841495]
[48]
Law, J.X.; Liau, L.L.; Saim, A.; Yang, Y.; Idrus, R. Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Eng. Regen. Med., 2017, 14(6), 699-718.
[http://dx.doi.org/10.1007/s13770-017-0075-9] [PMID: 30603521]
[49]
Zhong, S.P.; Zhang, Y.Z.; Lim, C.T. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2(5), 510-525.
[http://dx.doi.org/10.1002/wnan.100] [PMID: 20607703]
[50]
Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Mohajeri, A.; Fattahi, A.; Sheervalilou, R.; Zarghami, N. An overview on application of natural substances incorporated with electrospun nanofibrous scaffolds to development of innovative wound dressings. Mini Rev. Med. Chem., 2018, 18(5), 414-427.
[http://dx.doi.org/10.2174/1389557517666170308112147] [PMID: 28271816]
[51]
Fu, R.; Li, C.; Yu, C.; Xie, H.; Shi, S.; Li, Z.; Wang, Q.; Lu, L. A novel electrospun membrane based on moxifloxacin hydrochloride/poly(vinyl alcohol)/sodium alginate for antibacterial wound dressings in practical application. Drug Deliv., 2016, 23(3), 818-829.
[http://dx.doi.org/10.3109/10717544.2014.918676] [PMID: 24870202]
[52]
Zahedi, P.; Karami, Z.; Rezaeian, I.; Jafari, S.H.; Mahdaviani, P.; Abdolghaffari, A.H.; Abdollahi, M. Preparation and performance evaluation of tetracycline hydrochloride loaded wound dressing mats based on electrospun nanofibrous poly(lactic acid)/poly(ϵ-caprolactone) blends. J. Appl. Polym. Sci., 2012, 124(5), 4174-4183.
[http://dx.doi.org/10.1002/app.35372]
[53]
Razzaq, A.; Khan, Z.U.; Saeed, A.; Shah, K.A.; Khan, N.U.; Menaa, B.; Iqbal, H.; Menaa, F. Development of cephradine-loaded gelatin/polyvinyl alcohol electrospun nanofibers for effective diabetic wound healing: in vitro and in vivo assessments. Pharmaceutics, 2021, 13(3), 349.
[http://dx.doi.org/10.3390/pharmaceutics13030349] [PMID: 33799983]
[54]
Rath, G.; Hussain, T.; Chauhan, G.; Garg, T.; Goyal, A.K. Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J. Drug Target., 2016, 24(6), 520-529.
[http://dx.doi.org/10.3109/1061186X.2015.1095922] [PMID: 26487102]
[55]
Rather, H.A.; Thakore, R.; Singh, R.; Jhala, D.; Singh, S.; Vasita, R. Antioxidative study of Cerium Oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application. Bioact. Mater., 2018, 3(2), 201-211.
[http://dx.doi.org/10.1016/j.bioactmat.2017.09.006] [PMID: 29744458]
[56]
Harandi, F.N.; Khorasani, A.C.; Shojaosadati, S.A.; Hashemi-Najafabadi, S. Living Lactobacillus–ZnO nanoparticles hybrids as antimicrobial and antibiofilm coatings for wound dressing application. Mater. Sci. Eng. C, 2021, 130, 112457.
[http://dx.doi.org/10.1016/j.msec.2021.112457] [PMID: 34702533]
[57]
Charernsriwilaiwat, N.; Rojanarata, T.; Ngawhirunpat, T.; Sukma, M.; Opanasopit, P. Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Int. J. Pharm., 2013, 452(1-2), 333-343.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.012] [PMID: 23680732]
[58]
Yousefi, I.; Pakravan, M.; Rahimi, H.; Bahador, A.; Farshadzadeh, Z.; Haririan, I. An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering. Mater. Sci. Eng. C, 2017, 75, 433-444.
[http://dx.doi.org/10.1016/j.msec.2017.02.076] [PMID: 28415483]
[59]
García-Salinas, S.; Evangelopoulos, M.; Gámez-Herrera, E.; Arruebo, M.; Irusta, S.; Taraballi, F.; Mendoza, G.; Tasciotti, E. Electrospun anti-inflammatory patch loaded with essential oils for wound healing. Int. J. Pharm., 2020, 577, 119067.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119067] [PMID: 31981705]
[60]
Avizheh, L.; Peirouvi, T.; Diba, K.; Fathi-Azarbayjani, A. Electrospun wound dressing as a promising tool for the therapeutic delivery of ascorbic acid and caffeine. Ther. Deliv., 2019, 10(12), 757-767.
[http://dx.doi.org/10.4155/tde-2019-0059]
[61]
Farzanfar, S. kouzekonan, G.S.; Mirjani, R.; Shekarchi, B. Vitamin B12-loaded polycaprolacton/gelatin nanofibrous scaffold as potential wound care material. Biomed. Eng. Lett., 2020, 10(4), 547-554.
[http://dx.doi.org/10.1007/s13534-020-00165-6] [PMID: 33194247]
[62]
Kheradvar, S.A.; Nourmohammadi, J.; Tabesh, H.; Bagheri, B. Starch nanoparticle as a vitamin E-TPGS carrier loaded in silk fibroin-poly(vinyl alcohol)-Aloe vera nanofibrous dressing. Colloids Surf. B Biointerfaces, 2018, 166, 9-16.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.004] [PMID: 29525623]
[63]
Tang, K.C.; Yang, K.C.; Lin, C.W.; Chen, Y.K.; Lu, T.Y.; Chen, H.Y.; Cheng, N.C.; Yu, J. Human adipose-derived stem cell secreted extra-cellular matrix incorporated into electrospun poly(lactic-co-glycolic acid) nanofibrous dressing for enhancing wound healing. Polymers, 2019, 11(10), 1609.
[http://dx.doi.org/10.3390/polym11101609] [PMID: 31623334]
[64]
Keshel, S.H.; Biazar, E.; Rezaei Tavirani, M.; Rahmati Roodsari, M.; Ronaghi, A.; Ebrahimi, M.; Rad, H.; Sahebalzamani, A.; Rakhshan, A.; Afsordeh, K. The healing effect of unrestricted somatic stem cells loaded in collagen-modified nanofibrous PHBV scaffold on full-thickness skin defects. Artif. Cells Nanomed. Biotechnol., 2014, 42(3), 210-6.
[http://dx.doi.org/10.3109/21691401.2013.800080]
[65]
Steffens, D.; Leonardi, D.; Soster, P.R.L.; Lersch, M.; Rosa, A.; Crestani, T.; Scher, C.; de Morais, M.G.; Costa, J.A.V.; Pranke, P. Development of a new nanofiber scaffold for use with stem cells in a third degree burn animal model. Burns, 2014, 40(8), 1650-1660.
[http://dx.doi.org/10.1016/j.burns.2014.03.008] [PMID: 24794225]
[66]
Xie, Z.; Paras, C.B.; Weng, H.; Punnakitikashem, P.; Su, L.C.; Vu, K.; Tang, L.; Yang, J.; Nguyen, K.T. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater., 2013, 9(12), 9351-9359.
[http://dx.doi.org/10.1016/j.actbio.2013.07.030] [PMID: 23917148]
[67]
Augustine, R.; Hasan, A.; Dalvi, Y.B.; Rehman, S.R.U.; Varghese, R.; Unni, R.N.; Yalcin, H.C.; Alfkey, R.; Thomas, S.; Al Moustafa, A.E. Growth factor loaded in situ photocrosslinkable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/gelatin methacryloyl hybrid patch for diabetic wound healing. Mater. Sci. Eng. C, 2021, 118, 111519.
[http://dx.doi.org/10.1016/j.msec.2020.111519] [PMID: 33255074]
[68]
López-Noriega, A.; Quinlan, E.; Celikkin, N.; O’Brien, F.J. Incorporation of polymeric microparticles into collagen-hydroxyapatite scaffolds for the delivery of a pro-osteogenic peptide for bone tissue engineering. APL Mater., 2015, 3(1), 014910.
[http://dx.doi.org/10.1063/1.4902833]
[69]
Browning, M.B.; Dempsey, D.; Guiza, V.; Becerra, S.; Rivera, J.; Russell, B.; Höök, M.; Clubb, F.; Miller, M.; Fossum, T.; Dong, J.F.; Bergeron, A.L.; Hahn, M.; Cosgriff-Hernandez, E. Multilayer vascular grafts based on collagen-mimetic proteins. Acta Biomater., 2012, 8(3), 1010-1021.
[http://dx.doi.org/10.1016/j.actbio.2011.11.015] [PMID: 22142564]
[70]
Farrell, E.; O’Brien, F.J.; Doyle, P.; Fischer, J.; Yannas, I.; Harley, B.A.; O’Connell, B.; Prendergast, P.J.; Campbell, V.A. A collagen-glycosaminoglycan scaffold supports adult rat mesenchymal stem cell differentiation along osteogenic and chondrogenic routes. Tissue Eng., 2006, 12(3), 459-468.
[http://dx.doi.org/10.1089/ten.2006.12.459] [PMID: 16579679]
[71]
Liu, Y.; Ma, L.; Gao, C. Facile fabrication of the glutaraldehyde cross-linked collagen/chitosan porous scaffold for skin tissue engineering. Mater. Sci. Eng. C, 2012, 32(8), 2361-2366.
[http://dx.doi.org/10.1016/j.msec.2012.07.008]
[72]
Soller, E.C.; Tzeranis, D.S.; Miu, K.; So, P.T.C.; Yannas, I.V. Common features of optimal collagen scaffolds that disrupt wound contraction and enhance regeneration both in peripheral nerves and in skin. Biomaterials, 2012, 33(19), 4783-4791.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.068] [PMID: 22483241]
[73]
Sahay, R.; Thavasi, V.; Ramakrishna, S. Design modifications in electrospinning setup for advanced applications. J. Nanomater., 2011, 2011, 1-17.
[http://dx.doi.org/10.1155/2011/317673]
[74]
Croitoru, A.M.; Ficai, D.; Ficai, A.; Mihailescu, N.; Andronescu, E.; Turculet, S. Nanostructured fibers containing natural or synthetic bioactive compounds in wound dressing applications. Materials, 2020, 13(10), 2407.
[http://dx.doi.org/10.3390/ma13102407] [PMID: 32456196]
[75]
Boda, S.K.; Li, X.; Xie, J. Electrospraying an enabling technology for pharmaceutical and biomedical applications: A review. J. Aerosol Sci., 2018, 125, 164-181.
[http://dx.doi.org/10.1016/j.jaerosci.2018.04.002] [PMID: 30662086]
[76]
Miguel, S.P.; Figueira, D.R.; Simões, D.; Ribeiro, M.P.; Coutinho, P.; Ferreira, P.; Correia, I.J. Electrospun polymeric nanofibres as wound dressings: A review. Colloids Surf. B Biointerfaces, 2018, 169, 60-71.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.011] [PMID: 29747031]
[77]
Liu, Y.; Li, Y.; Deng, L.; Zou, L.; Feng, F.; Zhang, H. Hydrophobic ethylcellulose/gelatin nanofibers containing zinc oxide nanoparticles for antimicrobial packaging. J. Agric. Food Chem., 2018, 66(36), 9498-9506.
[http://dx.doi.org/10.1021/acs.jafc.8b03267] [PMID: 30138556]
[78]
Aytac, Z.; Ipek, S.; Erol, I.; Durgun, E.; Uyar, T. Fast-dissolving electrospun gelatin nanofibers encapsulating ciprofloxacin/cyclodextrin inclusion complex. Colloids Surf. B Biointerfaces, 2019, 178, 129-136.
[http://dx.doi.org/10.1016/j.colsurfb.2019.02.059] [PMID: 30852264]
[79]
Mozaffari, A.; Parvinzadeh Gashti, M.; Mirjalili, M.; Parsania, M. Argon and argon–oxygen plasma surface modification of gelatin nanofibers for tissue engineering applications. Membranes, 2021, 11(1), 31.
[http://dx.doi.org/10.3390/membranes11010031] [PMID: 33401681]
[80]
Luraghi, A.; Peri, F.; Moroni, L. Electrospinning for drug delivery applications: A review. J. Control. Release, 2021, 334, 463-484.
[http://dx.doi.org/10.1016/j.jconrel.2021.03.033] [PMID: 33781809]
[81]
Shahriar, S.; Mondal, J.; Hasan, M.; Revuri, V.; Lee, D.; Lee, Y.K. Electrospinning nanofibers for therapeutics delivery. Nanomaterials, 2019, 9(4), 532.
[http://dx.doi.org/10.3390/nano9040532] [PMID: 30987129]
[82]
Sabarees, G.; Velmurugan, V.; Tamilarasi, G.P.; Alagarsamy, V.; Raja Solomon, V. Recent advances in silver nanoparticles containing nanofibers for chronic wound management. Polymers, 2022, 14(19), 3994.
[http://dx.doi.org/10.3390/polym14193994] [PMID: 36235942]
[83]
Stojanov, S.; Berlec, A. Electrospun nanofibers as carriers of microorganisms, stem cells, proteins, and nucleic acids in therapeutic and other applications. Front. Bioeng. Biotechnol., 2020, 8, 130.
[http://dx.doi.org/10.3389/fbioe.2020.00130] [PMID: 32158751]
[84]
Safaee-Ardakani, M.R.; Hatamian-Zarmi, A.; Sadat, S.M.; Mokhtari-Hosseini, Z.B.; Ebrahimi-Hosseinzadeh, B.; Rashidiani, J.; Kooshki, H. Electrospun Schizophyllan/polyvinyl alcohol blend nanofibrous scaffold as potential wound healing. Int. J. Biol. Macromol., 2019, 127, 27-38.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.256] [PMID: 30597239]
[85]
Sultan, M.T.; Lee, O.J.; Kim, S.H.; Ju, H.W.; Park, C.H. Silk fibroin in wound healing process. Adv. Exp. Med. Biol., 2018, 1077, 115-126.
[http://dx.doi.org/10.1007/978-981-13-0947-2_7] [PMID: 30357686]
[86]
Tan, G.; Wang, L.; Pan, W.; Chen, K. Polysaccharide electrospun nanofibers for wound healing applications. Int. J. Nanomedicine, 2022, 17, 3913-3931.
[http://dx.doi.org/10.2147/IJN.S371900] [PMID: 36097445]
[87]
Priya, S.; Batra, U. R N, S.; Sharma, S.; Chaurasiya, A.; Singhvi, G. Polysaccharide-based nanofibers for pharmaceutical and biomedical applications: A review. Int. J. Biol. Macromol., 2022, 218, 209-224.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.07.118] [PMID: 35872310]
[88]
Akhmetova, A.; Heinz, A. Electrospinning proteins for wound healing purposes: opportunities and challenges. Pharmaceutics, 2020, 13(1), 4.
[http://dx.doi.org/10.3390/pharmaceutics13010004] [PMID: 33374930]
[89]
Guo, B.; Ma, P.X. Conducting polymers for tissue engineering. Biomacromolecules, 2018, 19(6), 1764-1782.
[http://dx.doi.org/10.1021/acs.biomac.8b00276] [PMID: 29684268]
[90]
Keshvardoostchokami, M.; Majidi, S.S.; Huo, P.; Ramachandran, R.; Chen, M.; Liu, B. Electrospun nanofibers of natural and synthetic polymers as artificial extracellular matrix for tissue engineering. Nanomaterials, 2020, 11(1), 21.
[http://dx.doi.org/10.3390/nano11010021] [PMID: 33374248]
[91]
Rather, A.H.; Khan, R.S.; Wani, T.U.; Beigh, M.A.; Sheikh, F.A. Overview on immobilization of enzymes on synthetic polymeric nanofibers fabricated by electrospinning. Biotechnol. Bioeng., 2022, 119(1), 9-33.
[http://dx.doi.org/10.1002/bit.27963] [PMID: 34672360]
[92]
Sharma, S.; Rai, V.K.; Narang, R.K.; Markandeywar, T.S. Collagen-based formulations for wound healing: A literature review. Life Sci., 2022, 290, 120096.
[http://dx.doi.org/10.1016/j.lfs.2021.120096] [PMID: 34715138]
[93]
Ndlovu, S.P.; Ngece, K.; Alven, S.; Aderibigbe, B.A. Gelatin-based hybrid scaffolds: Promising wound dressings. Polymers, 2021, 13(17), 2959.
[http://dx.doi.org/10.3390/polym13172959] [PMID: 34502997]
[94]
Patil, P.P.; Reagan, M.R.; Bohara, R.A. Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. Int. J. Biol. Macromol., 2020, 164, 4613-4627.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.041] [PMID: 32814099]
[95]
Muhamed, I.; Sproul, E.P.; Ligler, F.S.; Brown, A.C. Fibrin nanoparticles coupled with keratinocyte growth factor enhance the dermal wound-healing rate. ACS Appl. Mater. Interfaces, 2019, 11(4), 3771-3780.
[http://dx.doi.org/10.1021/acsami.8b21056] [PMID: 30604611]
[96]
Roth, A.D.; Elmer, J.; Harris, D.R.; Huntley, J.; Palmer, A.F.; Nelson, T.; Johnson, J.K.; Xue, R.; Lannutti, J.J.; Viapiano, M.S. Hemoglobin regulates the migration of glioma cells along poly(ε-caprolactone)-aligned nanofibers. Biotechnol. Prog., 2014, 30(5), 1214-1220.
[http://dx.doi.org/10.1002/btpr.1950] [PMID: 25044995]
[97]
Wen, Q.; Mithieux, S.M.; Weiss, A.S. Elastin biomaterials in dermal repair. Trends Biotechnol., 2020, 38(3), 280-291.
[http://dx.doi.org/10.1016/j.tibtech.2019.08.005] [PMID: 31870589]
[98]
Zhanel, G.G.; Ennis, K.; Vercaigne, L.; Walkty, A.; Gin, A.S.; Embil, J.; Smith, H.; Hoban, D.J. A critical review of the fluoroquinolones: focus on respiratory infections. Drugs, 2002, 62(1), 13-59.
[http://dx.doi.org/10.2165/00003495-200262010-00002] [PMID: 11790155]
[99]
Ma, X.; Xiao, Y.; Xu, H.; Lei, K.; Lang, M. Preparation, degradation and in vitro release of ciprofloxacin-eluting ureteral stents for potential antibacterial application. Mater. Sci. Eng. C, 2016, 66, 92-99.
[http://dx.doi.org/10.1016/j.msec.2016.04.072] [PMID: 27207042]
[100]
He, F.L.; Deng, X.; Zhou, Y.Q.; Zhang, T-D.; Liu, Y.L.; Ye, Y.J.; Yin, D.C. Controlled release of antibiotics from poly-ε-caprolactone/polyethylene glycol wound dressing fabricated by direct-writing melt electrospinning. Polym. Adv. Technol., 2019, 30(2), 425-434.
[http://dx.doi.org/10.1002/pat.4481]
[101]
Yazdanbakhsh, M.F.; Rashidi, A.; Rahimi, M.K.; Khajavi, R.; Shafaroodi, H. The effect of impregnated alpha-cellulose nanofibers with ciprofloxacin hydrochloride on staphylococcus aureus in vitro and healing process of wound in rat. Regen. Eng. Transl. Med., 2018, 4(4), 247-256.
[http://dx.doi.org/10.1007/s40883-018-0066-y]
[102]
Ayati Najafabadi, S.A.; Shirazaki, P.; Zargar Kharazi, A.; Varshosaz, J.; Tahriri, M.; Tayebi, L. Evaluation of sustained ciprofloxacin release of biodegradable electrospun gelatin/poly(glycerol sebacate) mat membranes for wound dressing applications. Asia-Pac. J. Chem. Eng., 2018, 13(6), e2255.
[http://dx.doi.org/10.1002/apj.2255]
[103]
Liu, X.; Nielsen, L.H.; Kłodzińska, S.N.; Nielsen, H.M.; Qu, H.; Christensen, L.P.; Rantanen, J.; Yang, M. Ciprofloxacin-loaded sodium alginate/poly (lactic-co-glycolic acid) electrospun fibrous mats for wound healing. Eur. J. Pharm. Biopharm., 2018, 123, 42-49.
[http://dx.doi.org/10.1016/j.ejpb.2017.11.004] [PMID: 29129734]
[104]
Khorshidi, S.; Karkhaneh, A. On-demand release of ciprofloxacin from a smart nanofiber depot with acoustic stimulus. J. Biosci., 2018, 43(5), 959-967.
[http://dx.doi.org/10.1007/s12038-018-9808-8] [PMID: 30541956]
[105]
Chouhan, D.; Chakraborty, B.; Nandi, S.K.; Mandal, B.B. Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta Biomater., 2017, 48, 157-174.
[http://dx.doi.org/10.1016/j.actbio.2016.10.019] [PMID: 27746359]
[106]
Hashemikia, S.; Farhangpazhouh, F.; Parsa, M.; Hasan, M.; Hassanzadeh, A.; Hamidi, M. Fabrication of ciprofloxacin-loaded chitosan/polyethylene oxide/silica nanofibers for wound dressing application: In vitro and in vivo evaluations. Int. J. Pharm., 2021, 597, 120313.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120313] [PMID: 33540002]
[107]
Yang, J.; Wang, K.; Yu, D.G.; Yang, Y.; Bligh, S.W.A.; Williams, G.R. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater. Sci. Eng. C, 2020, 111, 110805.
[http://dx.doi.org/10.1016/j.msec.2020.110805] [PMID: 32279788]
[108]
Li, H.; Zhang, Z.; Godakanda, V.U.; Chiu, Y.J.; Angkawinitwong, U.; Patel, K.; Stapleton, P.G.; de Silva, R.M.; de Silva, K.M.N.; Zhu, L.M.; Williams, G.R. The effect of collection substrate on electrospun ciprofloxacin-loaded poly(vinylpyrrolidone) and ethyl cellulose nanofibers as potential wound dressing materials. Mater. Sci. Eng. C, 2019, 104, 109917.
[http://dx.doi.org/10.1016/j.msec.2019.109917] [PMID: 31500044]
[109]
Federico, S.; Pitarresi, G.; Palumbo, F.S.; Fiorica, C.; Catania, V.; Schillaci, D.; Giammona, G. An asymmetric electrospun membrane for the controlled release of ciprofloxacin and FGF-2: Evaluation of antimicrobial and chemoattractant properties. Mater. Sci. Eng. C, 2021, 123, 112001.
[http://dx.doi.org/10.1016/j.msec.2021.112001] [PMID: 33812621]
[110]
Ajmal, G.; Bonde, G.V.; Thokala, S.; Mittal, P.; Khan, G.; Singh, J.; Pandey, V.K.; Mishra, B. Ciprofloxacin HCl and quercetin functionalized electrospun nanofiber membrane: fabrication and its evaluation in full thickness wound healing. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 228-240.
[http://dx.doi.org/10.1080/21691401.2018.1548475] [PMID: 30688107]
[111]
Dzikowski, M.; Castanié, N.; Guedon, A.; Verrier, B.; Primard, C.; Sohier, J. Antibiotic incorporation in jet-sprayed nanofibrillar biodegradable scaffolds for wound healing. Int. J. Pharm., 2017, 532(2), 802-812.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.117] [PMID: 28864389]
[112]
Contardi, M.; Heredia-Guerrero, J.A.; Perotto, G.; Valentini, P.; Pompa, P.P.; Spanò, R.; Goldoni, L.; Bertorelli, R.; Athanassiou, A.; Bayer, I.S. Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. Eur. J. Pharm. Sci., 2017, 104, 133-144.
[http://dx.doi.org/10.1016/j.ejps.2017.03.044] [PMID: 28366652]
[113]
Ajmal, G.; Bonde, G.V.; Mittal, P.; Khan, G.; Pandey, V.K.; Bakade, B.V.; Mishra, B. Biomimetic PCL-gelatin based nanofibers loaded with ciprofloxacin hydrochloride and quercetin: A potential antibacterial and anti-oxidant dressing material for accelerated healing of a full thickness wound. Int. J. Pharm., 2019, 567, 118480.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118480] [PMID: 31255776]
[114]
Li, H.; Williams, G.R.; Wu, J.; Lv, Y.; Sun, X.; Wu, H.; Zhu, L.M. Thermosensitive nanofibers loaded with ciprofloxacin as antibacterial wound dressing materials. Int. J. Pharm., 2017, 517(1-2), 135-147.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.008] [PMID: 27940041]
[115]
Zafalon, A.T.; dos Santos, V.J.; Esposito, F.; Lincopan, N.; Rangari, V.; Lugão, A.B.; Parra, D.F. Synthesis of polymeric hydrogel loaded with antibiotic drug for wound healing applications. Miner. Metal Mater. Ser., 2018, (Part F8), 165-176.
[http://dx.doi.org/10.1007/978-3-319-72484-3_18]
[116]
Giram, P.S.; Shitole, A.; Nande, S.S.; Sharma, N.; Garnaik, B. Fast dissolving moxifloxacin hydrochloride antibiotic drug from electrospun Eudragit L-100 nonwoven nanofibrous Mats. Mater. Sci. Eng. C, 2018, 92, 526-539.
[http://dx.doi.org/10.1016/j.msec.2018.06.031] [PMID: 30184779]
[117]
Wang, S.; Zheng, F.; Huang, Y.; Fang, Y.; Shen, M.; Zhu, M.; Shi, X. Encapsulation of amoxicillin within laponite-doped poly(lactic- co -glycolic acid) nanofibers: Preparation, characterization, and antibacterial activity. ACS Appl. Mater. Interfaces, 2012, 4(11), 6393-6401.
[http://dx.doi.org/10.1021/am302130b] [PMID: 23131186]
[118]
Jafari, A.; Amirsadeghi, A.; Hassanajili, S.; Azarpira, N. Bioactive antibacterial bilayer PCL/gelatin nanofibrous scaffold promotes full-thickness wound healing. Int. J. Pharm., 2020, 583, 119413.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119413] [PMID: 32389791]
[119]
Xu, X.; Wang, S.; Wu, H.; Liu, Y.; Xu, F.; Zhao, J. A multimodal antimicrobial platform based on MXene for treatment of wound infection. Colloids Surf. B Biointerfaces, 2021, 207, 111979.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111979] [PMID: 34303995]
[120]
Vashisth, P.; Srivastava, A.K.; Nagar, H.; Raghuwanshi, N.; Sharan, S.; Nikhil, K.; Pruthi, P.A.; Singh, R.P.; Roy, P.; Pruthi, V. Drug functionalized microbial polysaccharide based nanofibers as transdermal substitute. Nanomedicine, 2016, 12(5), 1375-1385.
[http://dx.doi.org/10.1016/j.nano.2016.01.019] [PMID: 26964481]
[121]
Yang, X.; Yang, J.; Wang, L.; Ran, B.; Jia, Y.; Zhang, L.; Yang, G.; Shao, H.; Jiang, X. Pharmaceutical intermediate-modified gold nanoparticles: Against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano, 2017, 11(6), 5737-5745.
[http://dx.doi.org/10.1021/acsnano.7b01240] [PMID: 28531351]
[122]
Abou-Zeid, A.A.; Eissa, A.I.; Salemi, H.M. Mode of action of gentamicin antibiotics produced by Micromonospora purpurea. Zentralbl. Bakteriol. Naturwiss., 1978, 133(4), 362-368.
[http://dx.doi.org/10.1016/S0323-6056(78)80054-8] [PMID: 726708]
[123]
Kovács, E.; Savopol, T.; Iordache, M.M.; Săplăcan, L.; Sobaru, I.; Istrate, C.; Mingeot-Leclercq, M.P.; Moisescu, M.G. Interaction of gentamicin polycation with model and cell membranes. Bioelectrochemistry, 2012, 87, 230-235.
[http://dx.doi.org/10.1016/j.bioelechem.2012.03.001] [PMID: 22522030]
[124]
Drulis-Kawa, Z.; Gubernator, J.; Dorotkiewicz-Jach, A.; Doroszkiewicz, W.; Kozubek, A. A comparison of the in vitro antimicrobial activity of liposomes containing meropenem and gentamicin. Cell. Mol. Biol. Lett., 2006, 11(3), 360-375.
[http://dx.doi.org/10.2478/s11658-006-0030-6] [PMID: 16847556]
[125]
Mugabe, C.; Azghani, A.O.; Omri, A. Preparation and characterization of dehydration–rehydration vesicles loaded with aminoglycoside and macrolide antibiotics. Int. J. Pharm., 2006, 307(2), 244-250.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.005] [PMID: 16289986]
[126]
Torres-Giner, S.; Martinez-Abad, A.; Gimeno-Alcañiz, J.V.; Ocio, M.J.; Lagaron, J.M. Controlled delivery of gentamicin antibiotic from bioactive electrospun polylactide-based ultrathin fibers. Adv. Eng. Mater., 2012, 14(4), B112-B122.
[http://dx.doi.org/10.1002/adem.201180006]
[127]
Monteiro, N.; Martins, M.; Martins, A.; Fonseca, N.A.; Moreira, J.N.; Reis, R.L.; Neves, N.M. Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Acta Biomater., 2015, 18, 196-205.
[http://dx.doi.org/10.1016/j.actbio.2015.02.018] [PMID: 25749293]
[128]
Nada, A.A.; Ali, E.A.; Soliman, A.A.F.; Shen, J.; Abou-Zeid, N.Y.; Hudson, S.M. Multi-layer dressing made of laminated electrospun nanowebs and cellulose-based adhesive for comprehensive wound care. Int. J. Biol. Macromol., 2020, 162, 629-644.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.184] [PMID: 32574744]
[129]
Yang, J.; Liu, C.L.; Ding, Y.N.; Sun, T.C.; Bai, X.H.; Cao, Z.K.; Ramakrishna, S.; Zhang, J.; Long, Y.Z. Synergistic antibacterial polyacrylonitrile/gelatin nanofibers coated with metal-organic frameworks for accelerating wound repair. Int. J. Biol. Macromol., 2021, 189, 698-704.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.175] [PMID: 34453981]
[130]
Tonda-Turo, C.; Ruini, F.; Ceresa, C.; Gentile, P.; Varela, P.; Ferreira, A.M.; Fracchia, L.; Ciardelli, G. Nanostructured scaffold with biomimetic and antibacterial properties for wound healing produced by ‘green electrospinning’. Colloids Surf. B Biointerfaces, 2018, 172, 233-243.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.039] [PMID: 30172204]
[131]
Grossman, T.H. Tetracycline antibiotics and resistance. Cold Spring Harb. Perspect. Med., 2016, 6(4), a025387.
[http://dx.doi.org/10.1101/cshperspect.a025387] [PMID: 26989065]
[132]
Alavarse, A.C.; de Oliveira Silva, F.W.; Colque, J.T.; da Silva, V.M.; Prieto, T.; Venancio, E.C.; Bonvent, J.J. Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. Mater. Sci. Eng. C, 2017, 77, 271-281.
[http://dx.doi.org/10.1016/j.msec.2017.03.199] [PMID: 28532030]
[133]
Chopra, I.; Roberts, M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev., 2001, 65(2), 232-260.
[http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001] [PMID: 11381101]
[134]
Argast, M.; Beck, C.F. Tetracycline uptake by susceptible Escherichia coli cells. Arch. Microbiol., 1985, 141(3), 260-265.
[http://dx.doi.org/10.1007/BF00408069] [PMID: 3923992]
[135]
Ghorbani, M.; Mahmoodzadeh, F.; Yavari Maroufi, L.; Nezhad-Mokhtari, P. Electrospun tetracycline hydrochloride loaded zein/gum tragacanth/poly lactic acid nanofibers for biomedical application. Int. J. Biol. Macromol., 2020, 165(Pt A), 1312-1322.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.225] [PMID: 33039533]
[136]
Alhusein, N.; Blagbrough, I.S.; Beeton, M.L.; Bolhuis, A. De Bank, P.A. Electrospun Zein/PCL fibrous matrices release tetracycline in a controlled manner, killing staphylococcus aureus both in biofilms and ex vivo on pig skin, and are compatible with human skin cells. Pharm. Res., 2016, 33(1), 237-246.
[http://dx.doi.org/10.1007/s11095-015-1782-3] [PMID: 26337770]
[137]
Liao, N.; Unnithan, A.R.; Joshi, M.K.; Tiwari, A.P.; Hong, S.T.; Park, C.H.; Kim, C.S. Electrospun bioactive poly (ɛ-caprolactone)–cellulose acetate–dextran antibacterial composite mats for wound dressing applications. Colloids Surf. A Physicochem. Eng. Asp., 2015, 469, 194-201.
[http://dx.doi.org/10.1016/j.colsurfa.2015.01.022]
[138]
Ezhilarasu, H.; Ramalingam, R.; Dhand, C.; Lakshminarayanan, R.; Sadiq, A.; Gandhimathi, C.; Ramakrishna, S.; Bay, B.H.; Venugopal, J.R.; Srinivasan, D.K. Biocompatible Aloe vera and Tetracycline Hydrochloride Loaded Hybrid Nanofibrous Scaffolds for Skin Tissue Engineering. Int. J. Mol. Sci., 2019, 20(20), 5174.
[http://dx.doi.org/10.3390/ijms20205174] [PMID: 31635374]
[139]
Bakhsheshi-Rad, H.R.; Ismail, A.F.; Aziz, M.; Akbari, M.; Hadisi, Z.; Omidi, M.; Chen, X. Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In vitro and in vivo assessment. Int. J. Biol. Macromol., 2020, 149, 513-521.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.139] [PMID: 31954780]
[140]
Stechmiller, J.; Cowan, L.; Schultz, G. The role of doxycycline as a matrix metalloproteinase inhibitor for the treatment of chronic wounds. Biol. Res. Nurs., 2010, 11(4), 336-344.
[http://dx.doi.org/10.1177/1099800409346333] [PMID: 20031955]
[141]
Cui, S.; Sun, X.; Li, K.; Gou, D.; Zhou, Y.; Hu, J.; Liu, Y. Polylactide nanofibers delivering doxycycline for chronic wound treatment. Mater. Sci. Eng. C, 2019, 104, 109745.
[http://dx.doi.org/10.1016/j.msec.2019.109745] [PMID: 31499963]
[142]
Shamsi, F.; Zeraatpisheh, Z.; Alipour, H.; Nazari, A.; Aligholi, H. The effects of minocycline on proliferation, differentiation and migration of neural stem/progenitor cells. Int. J. Neurosci., 2020, 130(6), 601-609.
[http://dx.doi.org/10.1080/00207454.2019.1699083] [PMID: 31801401]
[143]
Ramalingam, R.; Dhand, C.; Mayandi, V.; Leung, C.M.; Ezhilarasu, H.; Karuppannan, S.K.; Prasannan, P.; Ong, S.T.; Sunderasan, N.; Kaliappan, I.; Kamruddin, M.; Barathi, V.A.; Verma, N.K.; Ramakrishna, S.; Lakshminarayanan, R.; Arunachalam, K.D. Core–shell structured antimicrobial nanofiber dressings containing herbal extract and antibiotics combination for the prevention of biofilms and promotion of cutaneous wound healing. ACS Appl. Mater. Interfaces, 2021, 13(21), 24356-24369.
[http://dx.doi.org/10.1021/acsami.0c20642] [PMID: 34024104]
[144]
Sabitha, M.; Rajiv, S. Synthesis and characterization of biocompatible tigecycline imbibed electrospun poly ε-caprolactone urethane urea fibers. RSC Advances, 2015, 5(3), 2249-2257.
[http://dx.doi.org/10.1039/C4RA08458F]
[145]
Nimal, T.R.; Baranwal, G.; Bavya, M.C.; Biswas, R.; Jayakumar, R. Anti-staphylococcal activity of injectable nano tigecycline/Chitosan-PRP composite hydrogel using Drosophila melanogaster model for infectious wounds. ACS Appl. Mater. Interfaces, 2016, 8(34), 22074-22083.
[http://dx.doi.org/10.1021/acsami.6b07463] [PMID: 27508491]
[146]
Chao, S.; Li, Y.; Zhao, R.; Zhang, L.; Li, Y.; Wang, C.; Li, X. Synthesis and characterization of tigecycline-loaded sericin/poly(vinyl alcohol) composite fibers via electrospinning as antibacterial wound dressings. J. Drug Deliv. Sci. Technol., 2018, 44, 440-447.
[http://dx.doi.org/10.1016/j.jddst.2018.01.022]
[147]
Tverdek, F.P.; Crank, C.W.; Segreti, J. Antibiotic therapy of methicillin-resistant Staphylococcus aureus in critical care. Crit. Care Clin., 2008, 24(2), 249-260. vii-viii.
[http://dx.doi.org/10.1016/j.ccc.2007.12.013] [PMID: 18361944]
[148]
Topuz, F.; Uyar, T. Electrospinning of Cyclodextrin Functional Nanofibers for Drug Delivery Applications. Pharmaceutics, 2018, 11(1), 6.
[http://dx.doi.org/10.3390/pharmaceutics11010006] [PMID: 30586876]
[149]
Pakravan, M.; Heuzey, M.C.; Ajji, A. A fundamental study of chitosan/PEO electrospinning. Polymer (Guildf.), 2011, 52(21), 4813-4824.
[http://dx.doi.org/10.1016/j.polymer.2011.08.034]
[150]
Kalalinia, F.; Taherzadeh, Z.; Jirofti, N.; Amiri, N.; Foroghinia, N.; Beheshti, M.; Bazzaz, B.S.F.; Hashemi, M.; Shahroodi, A.; Pishavar, E.; Tabassi, S.A.S.; Movaffagh, J. Evaluation of wound healing efficiency of vancomycin-loaded electrospun chitosan/poly ethylene oxide nanofibers in full thickness wound model of rat. Int. J. Biol. Macromol., 2021, 177, 100-110.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.209] [PMID: 33539956]
[151]
Lee, C.H.; Liu, K.S.; Cheng, C.W.; Chan, E.C.; Hung, K.C.; Hsieh, M.J.; Chang, S.H.; Fu, X.; Juang, J.H.; Hsieh, I.C.; Wen, M.S.; Liu, S.J. Codelivery of sustainable antimicrobial agents and platelet-derived growth factor via biodegradable nanofibers for repair of diabetic infectious wounds. ACS Infect. Dis., 2020, 6(10), 2688-2697.
[http://dx.doi.org/10.1021/acsinfecdis.0c00321] [PMID: 32902952]
[152]
Manohar, P.; Loh, B.; Nachimuthu, R.; Hua, X.; Welburn, S.C.; Leptihn, S. Secondary bacterial infections in patients with viral pneumonia. Front. Med., 2020, 7, 420.
[http://dx.doi.org/10.3389/fmed.2020.00420] [PMID: 32850912]
[153]
Ucak, S.; Sudagidan, M.; Borsa, B.A.; Mansuroglu, B.; Ozalp, V.C. Inhibitory effects of aptamer targeted teicoplanin encapsulated PLGA nanoparticles for Staphylococcus aureus strains. World J. Microbiol. Biotechnol., 2020, 36(5), 69.
[http://dx.doi.org/10.1007/s11274-020-02845-y] [PMID: 32333113]
[154]
Amiri, N.; Ajami, S.; Shahroodi, A.; Jannatabadi, N.; Amiri Darban, S.; Fazly Bazzaz, B.S.; Pishavar, E.; Kalalinia, F.; Movaffagh, J. Teico-planin-loaded chitosan-PEO nanofibers for local antibiotic delivery and wound healing. Int. J. Biol. Macromol., 2020, 162, 645-656.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.195] [PMID: 32585266]
[155]
Mwita, J.C.; Souda, S.; Magafu, M.G.M.D.; Massele, A.; Godman, B.; Mwandri, M. Prophylactic antibiotics to prevent surgical site infections in Botswana: findings and implications. Hosp. Pract., 2018, 46(3), 97-102.
[http://dx.doi.org/10.1080/21548331.2018.1450605] [PMID: 29521136]
[156]
Finch, D.R.A.; Taylor, L.; Morris, P.J. Wound sepsis following gastrointestinal surgery: A comparison of topical and two-dose systemic cephradine. Br. J. Surg., 2005, 66(8), 580-582.
[http://dx.doi.org/10.1002/bjs.1800660820] [PMID: 385095]
[157]
Chaudhary, C.; Garg, T. Scaffolds: A novel carrier and potential wound healer. Crit. Rev. Ther. Drug Carrier Syst., 2015, 32(4), 277-321.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2015011246] [PMID: 26080925]
[158]
Rath, G.; Hussain, T.; Chauhan, G.; Garg, T.; Goyal, A.K. Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds. Mater. Sci. Eng. C, 2016, 58, 242-253.
[http://dx.doi.org/10.1016/j.msec.2015.08.050] [PMID: 26478308]
[159]
Noel, G.J.; Bush, K.; Bagchi, P.; Ianus, J.; Strauss, R.S. A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin. Infect. Dis., 2008, 46(5), 647-655.
[http://dx.doi.org/10.1086/526527] [PMID: 18225981]
[160]
Safdari, M.; Shakiba, E.; Kiaie, S.H.; Fattahi, A. Preparation and characterization of Ceftazidime loaded electrospun silk fibroin/gelatin mat for wound dressing. Fibers Polym., 2016, 17(5), 744-750.
[http://dx.doi.org/10.1007/s12221-016-5822-3]
[161]
Basha, M.; AbouSamra, M.M.; Awad, G.A.; Mansy, S.S. A potential antibacterial wound dressing of cefadroxil chitosan nanoparticles in situ gel: Fabrication, in vitro optimization and in vivo evaluation. Int. J. Pharm., 2018, 544(1), 129-140.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.021] [PMID: 29655798]
[162]
Iqbal, H.; Khan, B.A.; Khan, Z.U.; Razzaq, A.; Khan, N.U.; Menaa, B.; Menaa, F. Fabrication, physical characterizations and in vitro antibacterial activity of cefadroxil-loaded chitosan/poly(vinyl alcohol) nanofibers against Staphylococcus aureus clinical isolates. Int. J. Biol. Macromol., 2020, 144, 921-931.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.169] [PMID: 31704336]
[163]
Zafar, M.; Najeeb, S.; Khurshid, Z.; Vazirzadeh, M.; Zohaib, S.; Najeeb, B.; Sefat, F. Potential of electrospun nanofibers for biomedical and dental applications. Materials, 2016, 9(2), 73.
[http://dx.doi.org/10.3390/ma9020073] [PMID: 28787871]
[164]
Wang, Z.; Cai, N.; Zhao, D.; Xu, J.; Dai, Q.; Xue, Y.; Luo, X.; Yang, Y.; Yu, F. Mechanical reinforcement of electrospun water-soluble polymer nanofibers using nanodiamonds. Polym. Compos., 2013, 34(10), 1735-1744.
[http://dx.doi.org/10.1002/pc.22577]
[165]
Tamimi, E.; Ardila, D.C.; Haskett, D.G.; Doetschman, T.; Slepian, M.J.; Kellar, R.S.; Vande Geest, J.P. Biomechanical comparison of glutaraldehyde-crosslinked gelatin fibrinogen electrospun scaffolds to porcine coronary arteries. J. Biomech. Eng., 2016, 138(1), 011001.
[http://dx.doi.org/10.1115/1.4031847] [PMID: 26501189]
[166]
Chen, C.K.; Huang, S.C. Preparation of reductant–responsive n -maleoyl-functional chitosan/poly(vinyl alcohol) nanofibers for drug delivery. Mol. Pharm., 2016, 13(12), 4152-4167.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00758] [PMID: 27809542]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy