Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Trypsin/α-Amylase Inhibitors from Capsicum chinense Seeds: Characterization and Antifungal Activity against Fungi of Agronomic Importance

Author(s): Marciele Souza da Silva, Layrana de Azevedo dos Santos, Gabriel Bonan Taveira, Celso Shiniti Nagano, Renata Pinheiro Chaves, Andre de Oliveira Carvalho, Rosana Rodrigues and Valdirene Moreira Gomes*

Volume 30, Issue 3, 2023

Published on: 09 March, 2023

Page: [260 - 274] Pages: 15

DOI: 10.2174/0929866530666230221141804

Price: $65

conference banner
Abstract

Background: Protease inhibitors (PIs) have attracted attention due to their important roles in plant defense.

Objective: The objective of this work was to characterize and evaluate the antimicrobial activity of the peptides of a family of serine PIs from Capsicum chinense Jacq. seeds.

Methods: Initially, PIs were extracted from the seeds and subjected to purification by chromatography, resulting in three different peptide enriched fractions (PEFs) termed PEF1, PEF2 and PEF3. Subsequently, the PEF3 was subjected to trypsin inhibition assays, α-amylase activity assays, antimicrobial activity assays on phytopathogenic fungi, and assays to determine the likely mechanisms of action.

Results: The PEF3 was composed of three protein bands with molecular masses ranging between 6 and 14 kDa. The amino acid residues of the ~6 kDa band showed high similarity with serine PIs. PEF3 inhibited the activity of the enzymes trypsin, human salivary α-amylase, and Tenebrio molitor larval α-amylase and inhibited the growth of phytopathogenic fungi, showing 83.7% loss of viability in Fusarium oxysporum. PEF3 induced reactive oxygen species in Colletotrichum lindemuthianum and F. oxysporum to dissipate their mitochondrial membrane potential and activated caspases in C. lindemuthianum.

Conclusion: Our results reinforce the importance of PIs in plant defense mechanisms against phytopathogenic fungi as well as in their biotechnological applications for the control of plant pathogens.

« Previous
Graphical Abstract

[1]
Fones, H.N.; Fisher, M.C.; Gurr, S.J. Emerging fungal threats to plants and animals challenge agriculture and ecosystem resilience. Microbiol. Spectr., 2017, 5, 2.
[2]
Pelegrini, P.B.; Murad, A.M.; Silva, L.P.; dos Santos, R.C.P.; Costa, F.T.; Tagliari, P.D.; Bloch, C., Jr; Noronha, E.F.; Miller, R.N.G.; Franco, O.L. Identification of a novel storage glycine-rich peptide from guava (Psidium guajava) seeds with activity against Gram-negative bacteria. Peptides, 2008, 29(8), 1271-1279.
[http://dx.doi.org/10.1016/j.peptides.2008.03.013] [PMID: 18448201]
[3]
Camó, C.; Bonaterra, A.; Badosa, E.; Baró, A.; Montesinos, L.; Montesinos, E.; Planas, M.; Feliu, L. Antimicrobial peptide KSL-W and analogues: Promising agents to control plant diseases. Peptides, 2019, 112, 85-95.
[http://dx.doi.org/10.1016/j.peptides.2018.11.009] [PMID: 30508634]
[4]
Morais, T.P.; Zaini, P.A.; Chakraborty, S.; Gouran, H.; Carvalho, C.P.; Almeida-Souza, H.O.; Souza, J.B.; Santos, P.S.; Goulart, L.R.; Luz, J.M.Q.; Nascimento, R.; Dandekar, A.M. The plant-based chimeric antimicrobial protein SlP14a-PPC20 protects tomato against bacterial wilt disease caused by Ralstonia solanacearum. Plant Sci., 2019, 280, 197-205.
[http://dx.doi.org/10.1016/j.plantsci.2018.11.017] [PMID: 30823998]
[5]
Nordström, R.; Malmsten, M. Delivery systems for antimicrobial peptides. Adv. Colloid Interface Sci., 2017, 242, 17-34.
[http://dx.doi.org/10.1016/j.cis.2017.01.005] [PMID: 28159168]
[6]
Talamini, V.; Nunes, M.U.C. Control strategies for the main diseases of organic tomatoes in the central region of Sergipe; Embrapa: Aracaju, SE, 2018.
[7]
Carrizo, G.C.; Sterpetti, M.; Volpi, P.; Ummarino, M.; Saccardo, F. Wild Capsicums: Identification and in situ analysis of Brazilian species. In: XVth EUCARPIA meeting on genetics and breeding of Capsicum and Eggplant; Torino: Italy, 2013; pp. 205-213.
[8]
Carrizo García, C.; Barfuss, M.H.J.; Sehr, E.M.; Barboza, G.E.; Samuel, R.; Moscone, E.A.; Ehrendorfer, F. Phylogenetic relationships, diversification and expansion of chili peppers (Capsicum, Solanaceae). Ann. Bot., 2016, 118(1), 35-51.
[http://dx.doi.org/10.1093/aob/mcw079] [PMID: 27245634]
[9]
Moreira, A.F.P.; Ruas, P.M.; Ruas, C.F.; Baba, V.Y.; Giordani, W.; Arruda, I.M.; Rodrigues, R.; Gonçalves, L.S.A. Genetic diversity, population structure and genetic parameters of fruit traits in Capsicum chinense. Sci. Hortic., 2018, 236, 1-9.
[http://dx.doi.org/10.1016/j.scienta.2018.03.012]
[10]
Moses, M.; Umaharan, P.; Dayanandan, S. Microsatellite based analysis of the genetic structure and diversity of Capsicum chinense in the neotropics. Genet. Resour. Crop Evol., 2014, 61(4), 741-755.
[http://dx.doi.org/10.1007/s10722-013-0069-y]
[11]
Gallo-Franco, J.J.; Duque-Gamboa, D.N.; Toro-Perea, N. Bacterial communities of Aphis gossypii and Myzus persicae (Hemiptera: Aphididae) from pepper crops (Capsicum sp.). Sci. Rep., 2019, 9(1), 5766.
[http://dx.doi.org/10.1038/s41598-019-42232-8] [PMID: 30962510]
[12]
Baba, V.Y.; Powell, A.F.; Ivamoto-Suzuki, S.T.; Pereira, L.F.P.; Vanzela, A.L.L.; Giacomin, R.M.; Strickler, S.R.; Mueller, L.A.; Rodrigues, R.; Gonçalves, L.S.A. Capsidiol-related genes are highly expressed in response to Colletotrichum scovillei during Capsicum annuum fruit development stages. Sci. Rep., 2020, 10(1), 12048.
[http://dx.doi.org/10.1038/s41598-020-68949-5] [PMID: 32694584]
[13]
Maracahipes, Á.C.; Viscovini, K.K.C.G.; Annunciatto, E.S.; Neves, L.G.; Serafim, M.; da Luz, P.B.; Araújo, K.L. Genetic diversity of the germplasm active bank of Capsicum of UNEMAT based on components resistant to the fungus Colletotrichum gloeosporioides. Aust. J. Crop Sci., 2016, 10(7), 940-948.
[http://dx.doi.org/10.21475/ajcs.2016.10.07.p7437]
[14]
Hill, T.A.; Ashrafi, H.; Reyes-Chin-Wo, S.; Yao, J.; Stoffel, K.; Truco, M.J.; Kozik, A.; Michelmore, R.W.; Van Deynze, A. Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30K unigene Pepper GeneChip. PLoS One, 2013, 8(2), e56200.
[http://dx.doi.org/10.1371/journal.pone.0056200] [PMID: 23409153]
[15]
dos Santos, L.A.; Taveira, G.B.; Ribeiro, S.F.F.; Pereira, L.S.; Carvalho, A.O.; Rodrigues, R.; Oliveira, A.E.A.; Machado, O.L.T.; Araújo, J.S.; Vasconcelos, I.M.; Gomes, V.M. Purification and characterization of peptides from Capsicum annuum fruits which are α-amylase inhibitors and exhibit high antimicrobial activity against fungi of agronomic importance. Protein Expr. Purif., 2017, 132, 97-107.
[http://dx.doi.org/10.1016/j.pep.2017.01.013] [PMID: 28161544]
[16]
Silva, M.S.; Ribeiro, S.F.F.; Taveira, G.B.; Rodrigues, R.; Fernandes, K.V.S.; Carvalho, A.O.; Vasconcelos, I.M.; Mello, E.O.; Gomes, V.M. Application and bioactive properties of CaTI, a trypsin inhibitor from Capsicum annuum seeds: Membrane permeabilization, oxidative stress and intracellular target in phytopathogenic fungi cells. J. Sci. Food Agric., 2017, 97(11), 3790-3801.
[http://dx.doi.org/10.1002/jsfa.8243] [PMID: 28139827]
[17]
Dang, L.; Van Damme, E.J.M.; Damme, V. Toxic proteins in plants. Phytochemistry, 2015, 117, 51-64.
[http://dx.doi.org/10.1016/j.phytochem.2015.05.020] [PMID: 26057229]
[18]
Campos, M.L.; Lião, L.M.; Alves, E.S.F.; Migliolo, L.; Dias, S.C.; Franco, O.L. A structural perspective of plant antimicrobial peptides. Biochem. J., 2018, 475(21), 3359-3375.
[http://dx.doi.org/10.1042/BCJ20180213] [PMID: 30413680]
[19]
Giuliani, A.; Pirri, G.; Nicoletto, S. Antimicrobial peptides: An overview of a promising class of therapeutics. Open Life Sci., 2007, 2(1), 1-33.
[http://dx.doi.org/10.2478/s11535-007-0010-5]
[20]
Andrés, M.T.; Acosta-Zaldívar, M.; Fierro, J.F. Antifungal mechanism of action of lactoferrin: Identification of H+-ATPase (P3A-Type) as a new apoptotic-cell membrane receptor. Antimicrob. Agents Chemother., 2016, 60(7), 4206-4216.
[http://dx.doi.org/10.1128/AAC.03130-15] [PMID: 27139463]
[21]
Corrêa, J.A.F.; Evangelista, A.G.; Nazareth, T.M.; Luciano, F.B. Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia , 2019, 8, 100494.
[http://dx.doi.org/10.1016/j.mtla.2019.100494]
[22]
Li, J.; Koh, J.J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front. Neurosci., 2017, 11, 73.
[http://dx.doi.org/10.3389/fnins.2017.00073] [PMID: 28261050]
[23]
Kim, S.Y.; Ahn, H.G.; Ha, P.J.; Lim, U.T.; Lee, J.H. Toxicities of 26 pesticides against 10 biological control species. J. Asia Pac. Entomol., 2018, 21(1), 1-8.
[http://dx.doi.org/10.1016/j.aspen.2017.10.015]
[24]
Pandit, G.; Ilyas, H.; Ghosh, S.; Bidkar, A.P.; Mohid, S.A.; Bhunia, A.; Satpati, P.; Chatterjee, S. Insights into the mechanism of antimicrobial activity of seven-residue peptides. J. Med. Chem., 2018, 61(17), 7614-7629.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00353] [PMID: 30070835]
[25]
Zeng, H.; Li, T.; Tian, J.; Zhang, L. TUBP1 protein lead to mitochondria-mediated apoptotic cell death in Verticillium dahliae. Int. J. Biochem. Cell Biol., 2018, 103, 35-44.
[http://dx.doi.org/10.1016/j.biocel.2018.08.001] [PMID: 30081099]
[26]
Cotabarren, J.; Lufrano, D.; Parisi, M.G.; Obregón, W.D. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: A systematic review. Plant Sci., 2020, 292, 110398.
[http://dx.doi.org/10.1016/j.plantsci.2019.110398] [PMID: 32005400]
[27]
Dayler, C.S.A.; Mendes, P.A.M.; Prates, M.V.; Bloch, C., Jr; Franco, O.L.; Grossi-de-Sá, M.F. Identification of a novel bean α-amylase inhibitor with chitinolytic activity. FEBS Lett., 2005, 579(25), 5616-5620.
[http://dx.doi.org/10.1016/j.febslet.2005.09.030] [PMID: 16213488]
[28]
Vieira Bard, G.C.; Nascimento, V.V.; Oliveira, A.E.A.; Rodrigues, R.; Da Cunha, M.; Dias, G.B.; Vasconcelos, I.M.; Carvalho, A.O.; Gomes, V.M. Vicilin-like peptides from Capsicum baccatum L. seeds are α-amylase inhibitors and exhibit antifungal activity against important yeasts in medical mycology. Biopolymers, 2014, 102(4), 335-343.
[http://dx.doi.org/10.1002/bip.22504] [PMID: 24817604]
[29]
Dias, G.B.; Gomes, V.M.; Pereira, U.Z.; Ribeiro, S.F.F.; Carvalho, A.O.; Rodrigues, R.; Machado, O.L.T.; Fernandes, K.V.S.; Ferreira, A.T.S.; Perales, J.; Da Cunha, M.; Cunha, M.D. Isolation, characterization and antifungal activity of proteinase inhibitors from Capsicum chinense Jacq. Seeds. Protein J., 2013, 32(1), 15-26.
[http://dx.doi.org/10.1007/s10930-012-9456-z] [PMID: 23117889]
[30]
Ribeiro, S.F.F.; Silva, M.S.; Da Cunha, M.; Carvalho, A.O.; Dias, G.B.; Rabelo, G.; Mello, É.O.; Santa-Catarina, C.; Rodrigues, R.; Gomes, V.M. Capsicum annuum L. trypsin inhibitor as a template scaffold for new drug development against pathogenic yeast. Antonie van Leeuwenhoek, 2012, 101(3), 657-670.
[http://dx.doi.org/10.1007/s10482-011-9683-x] [PMID: 22160750]
[31]
Taveira, G.B.; Mathias, L.S.; da Motta, O.V.; Machado, O.L.T.; Rodrigues, R.; Carvalho, A.O.; Teixeira-Ferreira, A.; Perales, J.; Vasconcelos, I.M.; Gomes, V.M. Thionin-like peptides from Capsicum annuum fruits with high activity against human pathogenic bacteria and yeasts. Biopolymers, 2014, 102(1), 30-39.
[http://dx.doi.org/10.1002/bip.22351] [PMID: 23896704]
[32]
da Silva Gebara, R.; Taveira, G.B.; de Azevedo dos Santos, L.; Calixto, S.D.; Simão, T.L.B.V.; Lassounskaia, E.; Muzitano, M.F.; Teixeira-Ferreira, A.; Perales, J.; Rodrigues, R.; de Oliveira Carvalho, A.; Gomes, V.M. Identification and characterization of two defensins from Capsicum annuum fruits that exhibit antimicrobial activity. Probiotics Antimicrob. Proteins, 2020, 12(3), 1253-1265.
[http://dx.doi.org/10.1007/s12602-020-09647-6] [PMID: 32221795]
[33]
de Azevedo dos Santos, L.; Taveira, G.B.; da Silva, M.S.; da Silva Gebara, R.; da Silva Pereira, L.; Perales, J.; Teixeira-Ferreira, A.; de Oliveira Mello, É.; de Oliveira Carvalho, A.; Rodrigues, R.; Gomes, V.M. Antimicrobial peptides from Capsicum chinense fruits: agronomic alternatives against phytopathogenic fungi. Biosci. Rep., 2020, 40(8), BSR20200950.
[http://dx.doi.org/10.1042/BSR20200950] [PMID: 32785580]
[34]
Schägger, H.; von Jagow, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem., 1987, 166(2), 368-379.
[http://dx.doi.org/10.1016/0003-2697(87)90587-2] [PMID: 2449095]
[35]
León, I.R.; Neves-Ferreira, A.G.C.; Valente, R.H.; Mota, E.M.; Lenzi, H.L.; Perales, J. Improved protein identification efficiency by mass spectrometry using N-terminal chemical derivatization of peptides from Angiostrongylus costaricensis, a nematode with unknown genome. J. Mass Spectrom., 2007, 42(6), 781-792.
[http://dx.doi.org/10.1002/jms.1214] [PMID: 17511016]
[36]
Carneiro, R.F.; de Melo, A.A.; de Almeida, A.S.; Moura, R.M.; Chaves, R.P.; de Sousa, B.L.; do Nascimento, K.S.; Sampaio, S.S.; Lima, J.P.M.S.; Cavada, B.S.; Nagano, C.S.; Sampaio, A.H. H-3, a new lectin from the marine sponge Haliclona caerulea: Purification and mass spectrometric characterization. Int. J. Biochem. Cell Biol., 2013, 45(12), 2864-2873.
[http://dx.doi.org/10.1016/j.biocel.2013.10.005] [PMID: 24144578]
[37]
Ribeiro, S.F.F.; Fernandes, K.V.S.; Santos, I.S.; Taveira, G.B.; Carvalho, A.O.; Lopes, J.L.S.; Beltramini, L.M.; Rodrigues, R.; Vasconcelos, I.M.; Da Cunha, M.; Souza-Filho, G.A.; Gomes, V.M. New small proteinase inhibitors from Capsicum annuum seeds: Characterization, stability, spectroscopic analysis and a cDNA cloning. Biopolymers, 2013, 100(2), 132-140.
[http://dx.doi.org/10.1002/bip.22172] [PMID: 23616096]
[38]
Felicioli, R.; Garzelli, B.; Vaccari, L.; Melfi, D.; Balestreri, E. Activity staining of protein inhibitors of proteases on gelatin-containing polyacrylamide gel electrophoresis. Anal. Biochem., 1997, 244(1), 176-179.
[http://dx.doi.org/10.1006/abio.1996.9917] [PMID: 9025927]
[39]
da Silva, F.C.V.; do Nascimento, V.V.; Fernandes, K.V.; Machado, O.L.T.; da Silva Pereira, L.; Gomes, V.M.; Carvalho, A.O. Recombinant production and α-amylase inhibitory activity of the lipid transfer protein from Vigna unguiculata (L. Walp.) seeds. Process Biochem., 2018, 65, 205-212.
[http://dx.doi.org/10.1016/j.procbio.2017.10.018]
[40]
Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem., 1985, 150(1), 76-85.
[http://dx.doi.org/10.1016/0003-2697(85)90442-7] [PMID: 3843705]
[41]
Thevissen, K.; Terras, F.R.G.; Broekaert, W.F. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl. Environ. Microbiol., 1999, 65(12), 5451-5458.
[http://dx.doi.org/10.1128/AEM.65.12.5451-5458.1999] [PMID: 10584003]
[42]
Mello, E.O.; Ribeiro, S.F.F.; Carvalho, A.O.; Santos, I.S.; Da Cunha, M.; Santa-Catarina, C.; Gomes, V.M. Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr. Microbiol., 2011, 62(4), 1209-1217.
[http://dx.doi.org/10.1007/s00284-010-9847-3] [PMID: 21170711]
[43]
Taveira, G.B.; Mello, É.O.; Souza, S.B.; Monteiro, R.M.; Ramos, A.C.; Carvalho, A.O.; Rodrigues, R.; Okorokov, L.A.; Gomes, V.M. Programmed cell death in yeast by thionin-like peptide from Capsicum annuum fruits involving activation of caspases and extracellular H+ flux. Biosci. Rep., 2018, 38(2), BSR20180119.
[http://dx.doi.org/10.1042/BSR20180119] [PMID: 29599127]
[44]
Vermelho, A.B.; Pereira, A.F.; Coelho, R.R.R.; Souto-Padrón, T. Microbiology Practices; Guanabara Koogan: Rio de Janeiro, 2006, 239.
[45]
da Silva, M.S.; Gomes, V.M.; Taveira, G.B.; de Azevedo dos Santos, L.; Maracahipes, Á.C.; Rodrigues, R.; de Oliveira Carvalho, A.; Fernandes, K.V.S.; Oliveira, A.E.A. Bifunctional inhibitors from Capsicum chinense seeds with antimicrobial activity and specific mechanism of action against phytopathogenic fungi. Protein Pept. Lett., 2021, 28(2), 149-163.
[http://dx.doi.org/10.2174/0929866527666200617124221] [PMID: 32552632]
[46]
Bártová, V.; Bárta, J.; Jarošová, M. Antifungal and antimicrobial proteins and peptides of potato (Solanum tuberosum L.) tubers and their applications. Appl. Microbiol. Biotechnol., 2019, 103(14), 5533-5547.
[http://dx.doi.org/10.1007/s00253-019-09887-9] [PMID: 31144014]
[47]
Clemente, M.; Corigliano, M.; Pariani, S.; Sánchez-López, E.; Sander, V.; Ramos-Duarte, V. Plant serine protease inhibitors: Biotechnology application in agriculture and molecular farming. Int. J. Mol. Sci., 2019, 20(6), 1345.
[http://dx.doi.org/10.3390/ijms20061345] [PMID: 30884891]
[48]
Jamal, F.; Pandey, P.K.; Singh, D.; Khan, M.Y. Serine protease inhibitors in plants: Nature’s arsenal crafted for insect predators. Phytochem. Rev., 2013, 12(1), 1-34.
[http://dx.doi.org/10.1007/s11101-012-9231-y]
[49]
da Silva, S.M.; Koehnlein, E.A.; Bracht, A.; Castoldi, R.; de Morais, G.R.; Baesso, M.L.; Peralta, R.A.; de Souza, C.G.M.; de Sá-Nakanishi, A.B.; Peralta, R.M.; Peralta, R.M. Inhibition of salivary and pancreatic α-amylases by a pinhão coat (Araucaria angustifolia) extract rich in condensed tannin. Food Res. Int., 2014, 56, 1-8.
[http://dx.doi.org/10.1016/j.foodres.2013.12.004]
[50]
da Silva Pereira, L.; do Nascimento, V.V.; de Fátima Ferreira Ribeiro, S.; Rodrigues, R.; Fernandes, K.V.S.; de Oliveira Carvalho, A.; Vasconcelos, I.M.; dos Santos Bento, C.; Sudré, C.P.; Zottich, U.; Gomes, V.M. Characterization of Capsicum annuum L. leaf and root antimicrobial peptides: Antimicrobial activity against phytopathogenic microorganisms. Acta Physiol. Plant., 2018, 40(6), 107.
[http://dx.doi.org/10.1007/s11738-018-2685-9]
[51]
Islamov, R.A.; Fursov, O.V. Bifunctional inhibitor of α-amylase/trypsin from wheat grain. Appl. Biochem. Microbiol., 2007, 43(4), 379-382.
[http://dx.doi.org/10.1134/S0003683807040035] [PMID: 17929568]
[52]
Gadge, P.P.; Wagh, S.K.; Shaikh, F.K.; Tak, R.D.; Padul, M.V.; Kachole, M.S. A bifunctional α-amylase/trypsin inhibitor from Pigeonpea seeds: Purification, biochemical characterization and its bio-efficacy against Helicoverpa armigera. Pestic. Biochem. Physiol., 2015, 125, 17-25.
[http://dx.doi.org/10.1016/j.pestbp.2015.06.007] [PMID: 26615146]
[53]
Voorrips, R.E.; Finkers, R.; Sanjaya, L.; Groenwold, R. QTL mapping of anthracnose (Colletotrichum spp.) resistance in a cross between Capsicum annuum and C. chinense. Theor. Appl. Genet., 2004, 109(6), 1275-1282.
[http://dx.doi.org/10.1007/s00122-004-1738-1] [PMID: 15309301]
[54]
Kołaczkowska, A.; Kołaczkowski, M. Drug resistance mechanisms and their regulation in non-Candida albicans species. J. Antimicrob. Chemother., 2016, 71(6), 1438-1450.
[http://dx.doi.org/10.1093/jac/dkv445] [PMID: 26801081]
[55]
Dokka, M.K.; Davuluri, S.P. Antimicrobial activity of a trypsin inhibitor from the seeds of Abelmoschus moschatus L. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3, 184-199.
[56]
Silva, R.G.G.; Vasconcelos, I.M.; Filho, A.J.U.B.; Carvalho, A.F.U.; Souza, T.M.; Gondim, D.M.F.; Varela, A.L.N.; Oliveira, J.T.A. Castor bean cake contains a trypsin inhibitor that displays antifungal activity against Colletotrichum gloeosporioides and inhibits the midgut proteases of the dengue mosquito larvae. Ind. Crops Prod., 2015, 70, 48-55.
[http://dx.doi.org/10.1016/j.indcrop.2015.02.058]
[57]
Pariani, S.; Contreras, M.; Rossi, F.R.; Sander, V.; Corigliano, M.G.; Simón, F.; Busi, M.V.; Gomez-Casati, D.F.; Pieckenstain, F.L.; Duschak, V.G.; Clemente, M. Characterization of a novel Kazal-type serine proteinase inhibitor of Arabidopsis thaliana. Biochimie, 2016, 123, 85-94.
[http://dx.doi.org/10.1016/j.biochi.2016.02.002] [PMID: 26853817]
[58]
Haney, E.F.; Straus, S.K.; Hancock, R.E.W. Reassessing the host defense peptide landscape. Front Chem., 2019, 7, 43.
[http://dx.doi.org/10.3389/fchem.2019.00043] [PMID: 30778385]
[59]
Dib, H.X.; de Oliveira, D.G.L.; de Oliveira, C.F.R.; Taveira, G.B.; de Oliveira Mello, E.; Verbisk, N.V.; Chang, M.R.; Corrêa, D., Junior; Gomes, V.M.; Macedo, M.L.R. Biochemical characterization of a Kunitz inhibitor from Inga edulis seeds with antifungal activity against Candida spp. Arch. Microbiol., 2019, 201(2), 223-233.
[http://dx.doi.org/10.1007/s00203-018-1598-8] [PMID: 30483842]
[60]
Wang, G. Improved methods for classification, prediction, and design of antimicrobial peptides. Methods Mol. Biol., 2015, 1268, 43-66.
[http://dx.doi.org/10.1007/978-1-4939-2285-7_3] [PMID: 25555720]
[61]
Moore, J.; Rajasekaran, K.; Cary, J.W.; Chlan, C. Mode of action of the antimicrobial peptide D4E1 on Aspergillus flavus. Int. J. Pept. Res. Ther., 2019, 25(3), 1135-1145.
[http://dx.doi.org/10.1007/s10989-018-9762-1]
[62]
Soares, J.R.; José Tenório de Melo, E.; da Cunha, M.; Fernandes, K.V.S.; Taveira, G.B.; da Silva Pereira, L.; Pimenta, S.; Trindade, F.G.; Regente, M.; Pinedo, M.; de la Canal, L.; Gomes, V.M.; de Oliveira Carvalho, A. Interaction between the plant ApDef1 defensin and Saccharomyces cerevisiae results in yeast death through a cell cycle- and caspase-dependent process occurring via uncontrolled oxidative stress. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(1), 3429-3443.
[http://dx.doi.org/10.1016/j.bbagen.2016.09.005] [PMID: 27614033]
[63]
Jha, S.; Chattoo, B.B. Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res., 2010, 19(3), 373-384.
[http://dx.doi.org/10.1007/s11248-009-9315-7] [PMID: 19690975]
[64]
Rocha, G.L.; Fernandez, J.H.; Oliveira, A.E.A.; Fernandes, K.V.S. Programmed cell death-related proteases in plants., 2017, 70(7), 1991-1995.
[http://dx.doi.org/10.5772/65938]
[65]
Klimpel, A.; Neundorf, I. Bifunctional peptide hybrids targeting the matrix of mitochondria. J. Control. Release, 2018, 291, 147-156.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.029] [PMID: 30367921]
[66]
Li, Z.; Wang, X.; Teng, D.; Mao, R.; Hao, Y.; Yang, N.; Chen, H.; Wang, X.; Wang, J. Improved antibacterial activity of a marine peptide-N2 against intracellular Salmonella typhimurium by conjugating with cell-penetrating peptides-bLFcin6/Tat11. Eur. J. Med. Chem., 2018, 145, 263-272.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.066] [PMID: 29329001]
[67]
Mardirossian, M.; Pérébaskine, N.; Benincasa, M.; Gambato, S.; Hofmann, S.; Huter, P.; Müller, C.; Hilpert, K.; Innis, C.A.; Tossi, A.; Wilson, D.N. The dolphin proline-rich antimicrobial peptide tur1a inhibits protein synthesis by targeting the bacterial ribosome. Cell Chem. Biol., 2018, 25(5), 530-539.e7.
[http://dx.doi.org/10.1016/j.chembiol.2018.02.004] [PMID: 29526712]
[68]
Zahn, M.; Berthold, N.; Kieslich, B.; Knappe, D.; Hoffmann, R.; Sträter, N. Structural studies on the forward and reverse binding modes of peptides to the chaperone DnaK. J. Mol. Biol., 2013, 425(14), 2463-2479.
[http://dx.doi.org/10.1016/j.jmb.2013.03.041] [PMID: 23562829]
[69]
Vieira, M.E.B.; Vasconcelos, I.M.; Machado, O.L.T.; Gomes, V.M.; Carvalho, A.O. Isolation, characterization and mechanism of action of an antimicrobial peptide from Lecythis pisonis seeds with inhibitory activity against Candida albicans. Acta Biochim. Biophys. Sin., 2015, 47(9), 716-729.
[http://dx.doi.org/10.1093/abbs/gmv071] [PMID: 26245301]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy